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Historical motivation

For an automorphism α ∈ Aut(A), the Pimsner-Voiclescu 6-term exact sequence

K0(A)
id−K0(α)

// K0(A) // K0(Aoα Z)

��

K1(Aoα Z)

OO

K1(A)oo K1(A)
1−K1(α)

oo

is a fundamental tool in the computation of the crossed product Aoα Z.

For example, K∗(Aθ)
is most easily computed using it. To apply it, one wants to know which algebras are Z-crossed
products. Sometimes this is given, but if not there is a result of Landstad which tells you when
a C∗-algebra is a Z-crossed product.

Theorem (Landstad)

A unital C∗-algebra A is isomorphic to a Z-crossed product if and only if there exist a circle
action γ : T→ Aut(A) and a unitary u ∈ U(A) satisfying γz(u) = zu for all z ∈ T. In this case
A ∼= Aγ oAd(u) Z.
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Historical motivation

As it turns out, there are many interesting C∗-algebras with canonical circle actions that don’t
arise as Z-crossed products,

for example AF-algebras, On, OE , Toeplitz algebra.

In his PhD thesis, Exel showed that under mild assumptions on the circle action (much weaker
than having an equivariant unitary), the given algebra A is isomorphic to the crossed product of
what he called a partial automorphism: an isomorphism α : I → J between ideals I and J of A.
This applies to the algebras mentioned above.

To complement this, he proved a version of the Pimsner-Voiculescu sequence:

K0(I )
K0(ι)−K0(α)

// K0(A) // K0(Aoα Z)

��

K1(Aoα Z)

OO

K1(A)oo K1(I )
K1(ι)−K1(α)

oo

Combining these things, one can (re-)compute the K -theory of many relevant C∗-algebras.
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A brief introduction to partial actions

These successes promted the study of partial actions of more general groups.

Definition (Exel, McClanahan)

A partial action of a discrete group G on a C∗-algebra A is a collection (Ag )g∈G of ideals of A,
together with isomorphisms αg : Ag−1 → Ag , for g ∈ G , such that α1 = idA and αgh extends
αg ◦ αh wherever the composition is well-defined.

There are two upshots: one can construct new C∗-algebras, and one can also realize known
C∗-algebras as partial crossed products, providing more tools to study them.

Examples

1 Global actions: take Ag = A for all g ∈ G .

2 The trivial partial action: take Ag = {0} for all g ∈ G \ {1}.
3 Solutions to differential equations give partial actions of R.
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A brief introduction to partial actions

Prototypical example: restriction to an ideal of a global action

Start with a global action β : G → Aut(B), and let A be an ideal in B. Then β induces (by
restriction) a partial action α on A:

Ag = A ∩ βg (A) and αg = βg |Ag−1 : Ag−1 → Ag .

Partial actions of this form are called globalizable.

There are many tools to study partial actions: Takai duality; numerous connections to
groupoids and Fell bundles; notions of amenability; Morita globalizations; etc.

However, things don’t work the same way as for global actions, and many of the most used
results in the global setting simply fail for partial actions.
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Partial actions of finite groups: what goes wrong

We now focus on finite groups.

In the global setting, averaging arguments are used all the
time. For example, there is a faithful conditional expectation E : A→ Aα, given by
E (a) = 1

|G |
∑

g∈G αg (a). This does not work in the partial setting!

Definition (fixed point algebra)

For a partial action α =
(
(Ag )g∈G , (αg )g∈G

)
, we set

Aα = {a ∈ A : αg (axg−1) = aαg (xg−1) for all xg−1 ∈ Ag−1}.

Fixed point algebras are often too small: there does not always exist a faithful conditional
expectation E : A→ Aα.

Another important feature of finite group actions is the fact that there is a corner embedding

c : Aα → Aoα G

given by c(a) = 1
|G |
∑

g∈G uga. This also fails in the partial setting.
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Our projects

The initial goal of the project was to study the structure of crossed products and fixed point
algebras by partial actions of finite groups.

In the global setting, a lot can be said if one
assumes, for example, the Rokhlin property, so we wanted to extend this notion to the partial
setting and prove preservation results. The first problem was to find the right definition; this
took some years (!) to get settled. But the biggest problem was that the usual arguments from
the global setting don’t work here. The Rokhlin property is an averaging property by
construction, but for partial actions all these arguments break down.

So we had to take a step back and first try to understand partial actions of finite groups better
(without any Rokhlin-type assumptions). This brings us to the decomposition property.
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The decomposition property

We begin with a motivating example.

An action of Z3 = {0, 1, 2} on a compact Hausdorff
space X is given by the choice of two open subsets U1,U2 ⊆ X , and a homeomorphism
σ1 : U2 → U1.

V2V1

σ2 = σ−1
1 X

U

U1 U2

Set U = U1 ∩ U2, V1 = U1 \ U, V2 = U2 \ U, and Y = X \ (U1 ∪ U2). The restriction of σ to
U is global; the restriction of σ to Y is the trivial partial action; and the restriction of σ to
V1 t V2 exchanges V1 and V2.
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The decomposition property

V2V1

σ2 = σ−1
1 X

U

U1 U2

The restriction of σ to U is global; the restriction of σ to Y is the trivial partial action; and the
restriction of σ to V1 t V2 exchanges V1 and V2. We get equivariant extensions

0 // C0(U) // C (X ) // C (X \ U) // 0, and

0 // C0(V1 t V2) // C (X \ U) // C (Y ) // 0.
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The decomposition property

This can be done in greater generality, but the combinatorics get extremely complicated.

One
gets |G | − 1 extensions, where in each of them the ideal is “like” the action on V1 t V2 we had
before. We isolated the main conceptual property satisfied with these systems and studied it
independently. We call it the decomposition property.

Given n ∈ N, set Tn(G ) = {τ ⊆ G : 1 ∈ τ, |τ | = n}. For a partial action α of G on A, we set
Aτ =

⋂
g∈τ Ag for τ ∈ Tn(G ). Then Aτ is an ideal in A.

Definition

We say that α has the n-decomposition property if A ∼=
⊕

τ∈Tn(G)

Aτ . We say that α is

decomposable if it has the n-decomposition property for some n ∈ N.
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The decomposition property

Again: α is n-decomposable if A ∼=
⊕

τ∈Tn(G)

Aτ .

Any partial action of a finite group can be

written as an iterated extension of decomposable ones:

Definition

If G is finite, then there are canonical equivariant extensions

0 // (D(k), δ(k)) // (A(k), α(k)) // (A(k−1), α(k−1)) // 0,

for 2 ≤ k ≤ |G | with (A(|G |), α(|G |)) = (A, α), and such that

1 δ(k) has the k-decomposition property for all k;

2 α(1) has the 1-decomposition property.

This means that in order to understand α it suffices to understand all the δ(k), and the
extension problems. We have described the internal structure of decomposable partial actions,
to the extent that we understand them “as good” as we understand global actions.
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The decomposition property

Again: any partial action of a finite group is an iterated extension of decomposable partial
actions.

For τ ∈ Tn(G ), recall Aτ =
⋂

g∈τ Ag . We write Hτ for the largest subgroup of G that acts
globally on Aτ (potentially the trivial subgroup).

Theorem (Decomposable actions behave like global actions)

Suppose that α has the decomposition property. Then

1 α is globalizable.

2 There are a canonical faithful conditional expectation E : A→ Aα, and a canonical
corner-embedding c : Aα → Aoα G .

3 There are canonical identifications Aoα G ∼=
⊕

τ Aτ o Hτ and AG ∼=
⊕

τ A
Hτ
τ .

Note: in (3), Hτ y Aτ is a global action, and Aτ o Hτ is a global crossed product.
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Suppose that α has the decomposition property. Then

1 α is globalizable.

2 There are a canonical faithful conditional expectation E : A→ Aα, and a canonical
corner-embedding c : Aα → Aoα G .

3 There are canonical identifications Aoα G ∼=
⊕

τ Aτ o Hτ and AG ∼=
⊕

τ A
Hτ
τ .

Note: in (3), Hτ y Aτ is a global action, and Aτ o Hτ is a global crossed product.
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One simple application

Again: any partial action is a recursive extension of decomposable partial actions, and each
decomposable partial action “behaves like a global action”.

Since we understand decomposable
actions very well, the complexity of a general α lies in how the different decomposable actions
are glued together.

Corollary

The following properties pass from A to Aoα G , for an arbitrary partial action of finite G :

1 Nuclearity/exactness;

2 Finiteness of the stable/real rank;

3 Being type I.

One shows this first for decomposable partial actions: use previous theorem and the fact that
global actions preserve the above properties. In general, one decomposes α recursively with
iterated extensions of decomposable actions, and uses that the above properties are preserved
by extensions.
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Thank you.
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