
This work was performed under the auspices of the U.S. Department of Energy by the University of California,
 Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

Lisa A. Poyneer
Lawrence Livermore National Lab

IPAM: Estimation and Control Problems in Adaptive Optics
UCLA, January 22-24, 2004

UCRL-PRES-201939

Shack-Hartmann primer &

Correlation wave-front 
sensing 



2Lisa A. Poyneer: IPAM 2004: Wave-front sensing

Goals of this talk

Explanation of Shack-Hartmann sensors, probabilistic 
analysis of centroid algorithm
Detailed performance analysis of correlation sensing 
using arbitrary images
Comparison of centroiding to correlation for point-
source applications
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System design may be constrained
e.g. read noise requirements for CCD

Identify important algorithmic/processing issues
e.g. do we need smart background subtraction?

Confirm system performance via rigorous testing of 
predictions

very useful for ‘debugging’ the system

Possible use in real-time to enhance system 
performance

Why analyze algorithm performance?
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Fourier optics 
principle: 

each lenslet forms a 
spot on the CCD
this spot moves with 
the average slope 
(linear phase term) 
in that subaperture

Shack-Hartmann sensing measures the 
phase gradient across a lenslet

Figure from Gary Chanan
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The x-slope is based 
on the difference 
between linear 
combinations of the 
pixels on the right 
and left sides.

Slope estimation with center-of-mass 
(centroid) formula

x̂ =
r − l

t

right sideleft side
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Linearize formula to get tractable 
equation for analysis

Each pixel value is a random variable
Slope estimate is a non-linear function of the pixels

need full probability distributions if quotient is involved

Linearize function around mean values of each 
variable using partial derivatives

f(x, y) ≈ (x − mx)fx(mx, my) + (y − my)fy(mx, my) + f(mx, my)
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Centroid analysis

Linearize, then use basic identities to get mean, 
variance

Var(x̂) =
σ2

r + 2m2
r + σ2

l
+ 2m2

l
− 4mrml

m2
t

+
σ2

t (mr − ml)2

m4
t

+
2(mr − ml)

m3
t

(E[lt]−E[rt])

x̂ ≈

r

mt

−

l

mt

−

t(mr − ml)

m2
t

+
mr − ml

mt

E[x̂] =
mr − ml

mt
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Weight pixels by distance for center
NxN has center at value N/2 - 1/2

Values of r, l, t depend on algorithm

r =
N−1∑

i=N/2

N−1∑
j=0

(i−N/2 + 1/2)s[i, j]

l =
N/2−1∑

i=0

N−1∑
j=0

(−i + N/2− 1/2)s[i, j]

t =
N−1∑
i=0

N−1∑
j=0

s[i, j]
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Each pixel in the spot has an normalized 
expected number of counts (poisson) 
scaled by exposure time + white read noise

Mean and variance are

Probabilistic model for pixel values

s[i, j] = f × p[i, j] + n[i, j]

ms[i, j] = fλ[i, j] σ2
s [i, j] = f2λ[i, j] + σ2

n
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Error due to photons is inversely related to SNR

Error variance due to read noise depends on the 
square of the total number of pixels

Centroid variance is made of two 
independent terms

Var(x̂)p =
σ2

r + σ2
l

fm2
t

Var(x̂)n = σ2
n

(
N2(N2 − 1)

12m2
t

)

RMS error is inverse 
power law in SNR
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With no background, the expected slope is

With poisson background (mean    )    
added in, expected slope is now 

Background light reduces gain of 
centroid estimate

E[x̂] =
mr −ml

mt + N2b

E[x̂] =
mr −ml

mt

b

Incorrect background subtraction, even by a few counts, can lead 
to significant loses in gain and increased error
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Enough on centroiding for now...

Any questions??

On to correlation of arbitrary images
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Almost all AO systems use a point source to measure 
the phase
Many interesting scenarios don’t have a point source 
available

observation of Earth from space with light-weight optics w/ time-
varying aberrations
horizontal and slant-path imaging with small telescope
and of course solar astronomy, where AO using small images of 
solar granulation is successful!

Why limit AO to scenarios
with a point source?
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For pupil-conjugate 
phase aberration, a 
subimage of the scene 
will shift just like a point 
source

Need to field stop down

Use a Shack-Hartmann array to form 
subimages of the scene

Camera image from C. Thompson and R. Sawvel

WFS camera image of one 
quadrant of subapertures
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How to best find image shift?

Find shift between reference         and subimage
Rich field, many possible options including

non-random parameter estimation 
deconvolution (linear phase fitting)
correlation implementation of MMSE metric

S̃[k, l] = R̃[k, l]Exp

[
−j2π(x0k + y0l)

N

]

Best solution was ‘aliased’ correlation which is fastest 
way to get energy-normalization in this case

r[m,n] s[m,n]
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Estimate shift with a correlation-based 
algorithm

C[m, n] =
∑

i

∑

j

r[i − m, j − n]s[i, j]

C0

C1

C−1

x̂0 ∆x

x̂0 = ∆x +
0.5(C−1 − C1)

C−1 + C1 − 2C0

Parabolic interpolation
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Statistical analysis of correlation formula

x̂0 ≈ ∆x + [C
−1(m1 − m0) + C0(m−1 − m1) + C1(m0 − m

−1)

+0.5(m
−1 − m1)(m−1 + m1 − 2m0)] × (m

−1 + m1 − 2m0)
−2

E[x̂0] = ∆x +
0.5(m1 − m

−1)

m
−1 + m1 − 2m0

σ
2
x

= [σ2
−1(m1 − m0)

2 + σ
2
0(m

−1 − m1)
2 + σ

2
1(m0 − m

−1)
2

+2(m1 − m0)(m−1 − m1)σ
2
−1,0 + 2(m1 − m0)(m0 − m

−1)σ
2
−1,1

+2(m
−1 − m1)(m0 − m

−1)σ
2
0,1] × (m

−1 + m1 − 2m0)
−4
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Use same statistical model for pixels

Express means, variances of correlation points in 
terms of pixel models

E[Ck] = mk =
∑

i

∑

j

mr[i − k, j]ms[i, j]

Var(Ck) = σ2

k =
∑

i

∑

j

(
σ2

r [i − k, j]σ2

s [i, j] + σ2

r [i − k, j]m2

s[i, j] + m2

r[i − k, j]σ2

s [i, j]
)

ms[i, j] = fλ[i, j] σ2
s [i, j] = f2λ[i, j] + σ2

n

Recall that: 

Covar(Ck, Cl) = σ2

k,l =
∑

i

∑

j

(
σ2

s [i, j]mr[i − k, j]mr[i − l, j] + σ2

r [i, j]ms[i + k, j]ms[i + l, j]
)
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Simplify into meaningful cases

Combining all those equations is messy and not 
particularly informative in the general case

Let’s examine a few simpler cases to gain insight into 
the performance of correlation for slope estimation

assume zero-shifted, identical reference and subimage (closed-
loop case)
In that case, the means and variances of         ,      are equalC1C

−1



20Lisa A. Poyneer: IPAM 2004: Wave-front sensing

Intuitively, the broader the image’s band of spatial-
frequency content, the better the estimation

Image content directly affects variance

σ2
x =

σ2
1 − σ2−1,1

8(m0 − m1)2

sharpness of autocorrelation
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Performance varies along x- or 
y-axis
Need to find best field of view 
for expected scene scales

Scene performance depends on 
frequency content

σx = 0.009 σx = 0.013
σy = 0.011 σy = 0.019 σy = 0.008
σx = 0.013

σy = 0.087
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In the case of 
changing exposure 
time, the error st. 
dev. follows as 
inverse power law 
in SNR

Scaling laws - exposure time

σx(f) =
1√
f

(σ̃2
1 − m̃1 − σ̃2−1,1)1/2

2
√

2(m̃0 − m̃1)
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Background does not bias estimate

Examination of the mean shift expression shows that 
a uniform background term cancels out entirely
Regardless of scene, no background subtraction 
necessary

E[x̂0] = ∆x +
0.5(m1 − m

−1)

m
−1 + m1 − 2m0

All      terms cancel +b
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Generate 
radiometric 
models for 
background levels
Performance falls 
off with too much 
background

Scaling laws - angle of observation
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σx(b, f) =
{
Nb2 + 2bf2(m̃0 − m̃2 + t̃f−1) + f3[σ̃2

1 − (f − 1)f−1m̃1 − σ̃2−1,1]
}1/2

2
√

2f2(m̃0 − m̃1)



25Lisa A. Poyneer: IPAM 2004: Wave-front sensing

Let’s take another look at 
point sources

Any questions on the correlation of arbitrary images?

Back to point sources...
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How do we apply correlation?

Use a fixed reference image
e.g. ideal gaussian spot of expected system FWHM

Use of fixed reference significantly reduces noise
There is some dependence on reference choice

don’t want reference clearly too big or too small
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Error variance due to noise does not 
depend of number of pixels

Procedure
Take 100 frames of static-aberration WFS data.
Estimate slopes for each subap, each frame
Analyze variance of slopes through time to get noise

For large N, correlation has significantly 
less read noise propagation

Var(x̂)n ∝ σ2
n

8(m0 −m1)2
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Based on spot size from data, predict noise 
propagator using known formula
Compare to actual rms noise

For large N, correlation has significantly 
less read noise propagation

Noise prop

Correlation

Centroider

σx σy

212× 10−5

1.58× 10−5

19.6× 10−3 20.9× 10−3

3.8× 10−3 4.23× 10−3

LLNL/UC Davis Vision system data from Abdul Awwal
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Spot deformities and background bias 
the centroid estimate

Interpolated 
WFS data

Text
After 

thresholding

Centroid 
estimate

Increasing threshold -> ->
LLNL SSHCL system data from Kai LaFortune
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Correlation insensitive to deformities 
and background

Interpolated 
WFS data

Correlation 
estimate

Same subaperture, six different time steps

Used same Gaussian reference for all frames
Since N = 12, also read noise improvement
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Quad-cell is 2 x 2 centroid
Lost light off edge of pixel 
also biases estimate
As spot size changes, so 
does gain

leads to increased residual error 
if there are non-common-path 
errors and references

The quad-cell method suffers from gain 
changes with spot size

Figure from Marcos van Dam

Est is 0.28
Est is 0.14 
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4x4 centroid has a 
more regular 
response with spot 
size than quad-cell.
4x4 correlation is 
even smoother

Using 4x4 pixels ameliorates the gain 
problem
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Testing at Lick of correlation on 4 x 4

Pixels are ~9 times under-Nyquist sampled for 
diffraction limited spots
However, laser spot is very large - it extends beyond 
quad cell area

Test white light probe, larger red probe, and laser on 
the sky, estimate system gain for both algorithms
Take 4K frames telemetry from system to analyze

Lick Tests done with Dave Palmer, Elinor Gates and Tony Misch
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Gain high for white probe

Gain is 1.52 from 
TT steering mirror 
to slope estimate

Both algorithms 
have same gain in 
linear region
Correlation is 
noisier
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Gain lower for red laser probe

Gain is 0.997 from 
TT steering mirror 
to slope estimate

Both algorithms 
have same gain
Correlation is 
noisier
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Both gain and noise results make sense

Both probes are small 
enough that extra pixels 
have very low signal

using those pixels leads to 
more noise

Gain should go down as 
spot gets bigger
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With LGS, quadcell had low gain

Moved LGS with 
uplink mirror
Used best-centered 
voltage to reference 
other trials

Gain is 1.16
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With LGS, correlation had high gain

Low values are due 
to truncation in 
code of output, not 
algorithm error
Gain-normalized, 
noise is equivalent 
to quadcell

Gain is 2.0
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LGS spot size clearly visible in CCD

SNR of each pixel shown, 100 frames of CCD data

White probe, dim Laser probe, dim LGS on sky
Frame 55 Frame 44 Frame 03

(independent color scales)
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We have probed spot size curve

Need to 
calibrate 
relationships 
between probes, 
LGS
How much will 
spot size vary?

Spot size
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There are other options for algorithms

Thresholding of background pixels
‘Shrinking box’ (Vision AO) - necessary to use 
fractional pixels
Optimal estimation strategies

see van Dam and Lane (JOSA A 17), Sallberg et al (JOSA A 14), 
etc.
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Analyze the slope estimation algorithm!

Can do detailed probabilistic analysis of algorithm
This leads to

better understanding of its behavior
ability to design and test system to certain performance 
specifications

Correlation is preferable to centroiding in certain 
situations, especially

many pixels per subaperture with read noise
time-varying background


