

Computationally Efficient Wavefront Reconstruction for Multi-Conjugate Adaptive Optics (MCAO)

Brent Ellerbroek

AURA New Initiatives Office

IPAM Workshop on Estimation and Control Problems

in Adaptive Optics

January 23, 2004

THI

Presentation Outline

- Anisoplanatism and MCAO
- Minimum variance wavefront reconstruction methods for MCAO
 - Formulation, analytical solution, and scaling issues
- Computationally efficient methods for very highorder MCAO systems
 - Spatial frequency domain modeling (Tokovinin)
 - Sparse matrix techniques
 - Conjugate gradients with multigrid preconditioning
- Sample simulation results
 - MCAO Performance scaling with telescope diameter
- Summary, acknowledgements, references

TANISOPlanatism and Adaptive Optics

- Bright guidestars are needed for wavefront sensing
 - Not enough bright natural stars for astronomical applications
 - Progress is being made in using lasers to generate artificial stars
- Even with lasers, the corrected field-of-view is limited
 - Turbulence is 3-dimensional
 - One deformable mirror provides correction in a single direction
 - Anisoplanatism

Adaptive Optics Imagery with Anisoplanatism

- · Low-order AO system on the Gemini-North telescope
- Ambient seeing: 0.9"
- AO-compensated seeing: 0.12" (center of field) to 0.19" (corner)
- Impact increases as the quality of correction improves

Compensates Turbulence in Three Dimensions

Sample MCAO Simulation Result

- 8 meter telescope
- 2 deformable mirrors with 13 by 13 actuators
- 5 wavefront sensors with 12 by 12 subapertures

Wavefront Reconstruction for MCAO is Challenging

- Multiple turbulence layers, deformable mirrors, wavefront sensors
- Richer cross-coupling between variables
- Higher dimensionality estimation problem
 - Especially for future extremely large telescopes!
- Wide-field performance evaluation and optimization

Walle Front Reconstruction as a Linear Inverse Problem

- Quantities of interest
 - Turbulence profile *x*...
 - $-\dots$ to be corrected by a DM actuator command vector $a\dots$
 - $-\dots$ using a WFS measurement s with noise component $n\dots$
 - ...leaving a residual phase error ϕ with mean-square value σ^2
- Relationships

$$- s = Gx + n$$
 (wavefront sensing)

$$-a = Rs$$
 (wavefront reconstruction)

$$- \phi = H_x x - H_a a$$
 (residual error computation)

$$- \sigma^2 = \phi^T W \phi \qquad \text{(variance evaluation)}$$

• Objective: Select R to (in some sense) minimize σ^2

Minimum Variance Wavefront Reconstruction

- Model *x*, *s*, and *n* as zero mean random variables with finite second moments
- Select R to minimize $\langle \sigma^2 \rangle$ (the expected value of σ^2): $R_* = \arg\min_{\mathcal{D}} \langle \sigma^2 \rangle$

$$= \arg\min_{R} \langle [H_x x - H_a R s]^T W [H_x x - H_a R s] \rangle$$

- Partials of $\langle \sigma^2 \rangle$ with respect to R_{ij} must vanish at $R=R_*$
- Solution given by $R_*=F_*E_*$, where

$$E_* = \langle xs^T \rangle \langle ss^T \rangle^{-1} = \left(G^T \langle nn^T \rangle^{-1} G + \langle xx^T \rangle^{-1} \right) G^T \langle nn^T \rangle^{-1}$$

$$F_* = \left(H_a^T W H_a\right)^{-1} H_x^T W H_x$$

Taletterpretation (and Use) of R. = F.E.

- Interpretation
 - $-E_*$ is the "turbulence **E**stimation matrix"
 - Minimum variance estimate of profile x from measurement s
 - Depends upon WFS geometry, statistics of x and s
 - Independent of the DM geometry
 - $-F^*$ is the "turbulence Fitting matrix"
 - RMS best fit to estimated value of x using DM degrees of freedom
 - Independent of WFS geometry, statistics of x and s
 - Depends upon the DM geometry
- Use
 - Once R* is known, we can estimate performance using

$$\min_{R} \langle \sigma^2 \rangle = \langle [H_x x - H_a R_* s]^T W [H_x x - H_a R_* s] \rangle$$

 $-\ldots$ or we can use R_* to run simulations (or even systems)

TANK Computational Complexity

- R_* has complexity $O(N^3)$ to explicitly compute and evaluate, complexity $O(N^2)$ to apply in real time
 - Must be computed/evaluated in a few hours for studies
 - Must be applied at rates of 1-2 KHz for actual use
- Current generation MCAO systems have N < 1000
 - Computationally feasible
- Proposed MCAO systems have $N > 10^4$ or 10^5
 - Explicit computations inefficient or outright infeasible
 - How do we analyze and simulate such systems???

The Spatial Frequency Domain

- Wavefront propagation, sensing, correction, and reconstruction are all approximately spatial filtering operations
- Filtering representation becomes exact in the limit of an infinite aperture AO system
- Wavefront reconstruction decouples into small independent problems at each spatial frequency
 - Each problem has dimensionality $2 N_{\text{wfs}}$ by N_{dm}
- Overall complexity scales as $O(N_{freq}) \propto O(N)$
- Analytical method only, but very useful

Tifficient Approaches for the Spatial Domain

• Must solve Ax=y, where

$$A = G^{T} \langle nn^{T} \rangle^{-1} G + \langle xx^{T} \rangle^{-1}$$
 or $A = H_{a}^{T} W H_{a}$ without explicitly computing A^{-1}

- Exploit matrix structure
 - $-G, H_a, W$ are sparse
 - $-\langle nn^T \rangle$ is diagonal (plus a low-rank perturbation due to laser guide star position uncertainty)
 - $-\langle xx^T\rangle^{-1}$ has good approximations that are sparse
- Efficient solutions possible
 - Sparse matrix techniques (close, but not quite)
 - Conjugate gradients with multigrid preconditioning

Garse for Nodal Representations of Turbulence

- Each value of $\phi(r)$ is determined by turbulence values along a single ray path
- Each WFS measurement s_i is determined by values of φ(r) within a small subaperure

THE

Sparse Matrix Methods

- Suppose A is sparse (with bandwidth $O(N^{1/2})$)
- Factor

$$A = LL^T$$

where L is sparse and lower triangular

• Solve Ax=y in two steps:

$$Lx' = y$$
, followed by $L^Tx = x'$

- Complexity reduced from $O(N^2)$ to $O(N^{3/2})$
- Complexity further reduced by reording rows/columns of A
- For F_* , $A = H_a^T W H_a$ is sparse (at least for conventional AO)
- For E_* , $A = G^T \langle nn^T \rangle^{-1} G + \langle xx^T \rangle^{-1}$ isn't sparse for two reasons:
 - The turbulence covariance matrix $\langle xx^T \rangle$ isn't sparse
 - For laser guidestars, $\langle nn^T \rangle$ is the sum of sparse and low rank terms

parse Approximation to Turbulence Statistics

- $\langle xx^T \rangle^{-1}$ is block diagonal, with N_{layer} by N_{layer} blocks
 - Each diagonal block is full rank!
- We approximate block j as $\alpha_i^{-1}D^TD$
 - $-\alpha_i$ proportional to layer strength
 - D is a discrete (and sparse) approximation to ∇^2
- Heuristic justification #1:
 - Both $\langle xx^T \rangle^{-1}$ and D^TD suppress high spatial frequencies
- Heuristic justification #2:
 - In the spatial frequency domain

$$\langle \hat{x}(\kappa) \hat{x}^*(\kappa') \rangle \propto \delta(\kappa - \kappa') \kappa^{-11/3} \approx \delta(\kappa - \kappa') \kappa^{-4}$$

$$\langle \hat{x}(\kappa)\hat{x}^*(\kappa)\rangle^{-1} \propto \kappa^4 = \kappa^2\kappa^2 \propto \left[\mathrm{FT}(\nabla^2) \right]^T \left[\mathrm{FT}(\nabla^2) \right]$$

THE LGS Measurement Noise

- For a LGS WFS, *n* is determined by two effects:
 - Detector readout noise and photon statistics (uncorrelated)
 - LGS position uncertainty on the sky
 - Two dimensions of uncertainty per guidestar, correlated between subapertures
- More formally

$$n = n_r + n_t$$

$$\left\langle nn^T \right\rangle = \left\langle n_r n_r^T \right\rangle + \left\langle n_t n_t^T \right\rangle = \operatorname{diag}(\sigma_i^2) + \sigma_t^2 U U^T$$

- UU^T is a non-sparse matrix of rank 2 N_{LGS}
- Sparse matrix methods are not immediately applicable

Applying the Matrix Inversion Lemma

$$(M - UV^{T})^{-1} = M^{-1} + (M^{-1}U)(I - V^{T}M^{-1}U)^{-1}(M^{-1}V)^{T}$$

- $\langle nn^T \rangle^{-1} = \langle \operatorname{diag}(\sigma_i^2) + \sigma_T^2 U U^T \rangle^{-1} \text{ is the sum of } \operatorname{diag}(\sigma_i^{-2})$ and a low rank term UU^T
- For example For
- Can solve $\left(G^{T}\left\langle nn^{T}\right\rangle^{T}G + \left\langle xx^{T}\right\rangle^{-1}\right)^{-1}x = y$ by solving $\left(G^{T}\operatorname{diag}\left(\sigma_{i}^{2}\right)G + \left\langle xx^{T}\right\rangle^{-1}\right)^{-1}x = y$ and adding a perturbation term depending upon $\left(G^{T}\operatorname{diag}\left(\sigma_{i}^{2}\right)G + \left\langle xx^{T}\right\rangle^{-1}\right)^{-1}\left(GU'\right)$

Sample Matrix Factorizations for E*

Conventional AO with 1 DM and 1 WFS!

MCAO Increases Coupling between Turbulence Layers

• However, the coupling within a single layer is no greater than before

GHMatrices Are Block Structured for MCAO

- Column block structure due to multiple atmospheric layers
- Row block structure due to multiple stars/guidestars

H_a (3 mirrors, 25 stars)

G (5 guidestars, 6 atmospheric layers)

Gross-Coupling of Atmospheric Layers for MCAO

- Fill-in of "sparse" Cholesky factorization exceeds 10%
- Cannot factor matrices for a 32m diameter system in a 2 Gbyte address space

And Ifficient" MCAO Reconstruction Algorithm

- Biggest challenge is solving Ax = y with $A = G^T \langle nn^T \rangle^{-1} G + \langle \delta \delta^T \rangle^{-1}$
- Minimize $||Ax-y||^2$ using conjugate gradients
- Use multigrid preconditioning to accelerate convergence
 - Preconditioning: Solve an approximate system A'x=y once per conjugate gradient cycle
 - Multigrid: Solution to A'x=y determined on multiple spatial scales to accelerate convergence at all spatial frequencies
- Solution on each multigrid scale is determined using a customized (new?) technique:
 - Block symmetric Gauss-Seidel iterations on Ax=y
 - Block structure derived from atmospheric layers
 - Sparse matrix factorization of diagonal blocks

Block Symmetric Gauss-Seidel Iterations

- Blocks of A, x, y denoted as A_{ij} , x_i , y_j
- Decompose

$$A = L + D + U$$

into a sum of lower triangular, diagonal, and upper triangular blocks

• Iterative solution to Ax = (L+D+U)x = y given by (L+D)x'(n) = y - Ux(n)

$$(U+D)x(n+1) = y - Lx'(n)$$

• Solve for x'(n) and x(n+1) one block at a time:

$$D_{i}x_{i}'(n) = y_{i} - \sum_{j>i} A_{ij}x_{j}(n) - \sum_{j
$$D_{i}x_{i}(n+1) = y_{i} - \sum_{j>i} A_{ij}x_{j}'(n) - \sum_{j>i} A_{ij}x_{j}(n+1)$$$$

• Solve systems $D_i u = v$ using sparse Cholesky factorizations

TIMICAO Simulations for Future Telescopes

- Goal: Evaluate MCAO performance scaling with aperture diameter *D* from *D*=8m to *D*=32m
- Consider Natural, Sodium, and Rayleigh guidestars
- Other simulation parameters:
 - Cerro Pachon turbulence profile with 6 layers
 - 1 arc minute square field-of-view
 - 3 DM's conjugate to 0, 5.15, and 10.30 km
 - Actuator pitches of 0.5, 0.5, and 1.0 m
 - 5 higher order guidestars at corners and center of 1' field
 - 0.5 m subapertures
 - 4 tip/tilt NGS WFS for laser guide star cases
 - 10 simulation trials per case using 64 m turbulence screens with 1/32m pitch

THE Simulation Dimensionally

Aperture, m	8	16	24	32
WFS measurements	2240	8560	18840	33320
Phase points estimated (E_*)	7270	21226	42334	70838
DM actuators fit (F_*)	789	2417	4957	8449

THE

Sample Numerical Results

THE CG Convergence Histories

- Rapid convergence for first 20 iterations
- Convergence then slows due to poor conditioning of A
- Not an issue for practical simulations
- Results effectively independent of aperture diameter and guide star type

Summary

- MCAO compensates anisoplanatism and corrects for the effects of atmospheric turbulence across extended fields-of-view
- Minimum variance estimation is a viable approach to MCAO wavefront reconstruction
- Computationally efficient methods needed for the very high order systems proposed for future extremely large telescopes
- Conjugate gradient wavefront reconstruction using multigrid preconditioning and block symmetric Gauss-Seidel iterations enables simulations of 32 meter MCAO systems with 30k sensor measurements and 8k mirror actuators
- Challenging problems remain
 - Closed-loop wavefront reconstruction and control
 - Hardware and software for real-time implementation

Acknowledgements

- Luc Gilles and Curt Vogel
 - Ongoing collaboration on efficient methods
 - Matrix sparsity plots
- Francois Rigaut
 - MCAO figure and performance plot
- Gemini Observatory
 - Sample AO results
- Support from AFOSR, NSF, and CfAO

References

- Adaptive optics websites
 - CfAO, http://cfao.ucolick.org
 - Gemini AO web pages at http://www.gemini.edu
- Minimum variance wavefront reconstruction
 - Wallner, JOSA 73, 1771 (1983)
 - Ellerbroek, JOSA A 11, 783 (1994)
 - Fusco et al., JOSA A 18, 2527 (2001)
- Efficient implementations
 - Ellerbroek, JOSA A 19, 1803 (2002)
 - Ellerbroek, Gilles, Vogel, SPIE Proc. 4839, 989 (2002)
 - Gilles, Ellerbroek, Vogel, Appl. Opt. 42, 5233 (2003)