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Anisoplanatism and MCAO

Minimum variance wavefront reconstruction
methods for MCAQO

— Formulation, analytical solution, and scaling issues

Computationally efficient methods for very high-
order MCAOQO systems

— Spatial frequency domain modeling (Tokovinin)

— Sparse matrix techniques

— Conjugate gradients with multigrid preconditioning
Sample simulation results

— MCAO Performance scaling with telescope diameter

Summary, acknowledgements, references



» Bright guidestars are needed
for wavefront sensing

— Not enough bright natural stars
for astronomical applications

— Progress is being made in using
lasers to generate artificial stars
 Even with lasers, the corrected
field-of-view 1s limited
— Turbulence is 3-dimensional

— One deformable mirror provides
correction in a single direction

— Anisoplanatism




- Low-order AO system on the Gemini-North telescope

* Ambient seeing: 0.9”
* AO-compensated seeing: 0.12” (center of field) to 0.19” (corner)
 Impact increases as the quality of correction improves
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Classical AO
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8 meter telescope
* 2 deformable mirrors with 13 by 13 actuators
5 wavefront sensors with 12 by 12 subapertures



Multiple turbulence layers, deformable mirrors,
wavefront sensors

Richer cross-coupling between variables
Higher dimensionality estimation problem

— Especially for future extremely large telescopes!

Wide-field performance evaluation and optimization



* Quantities of interest
— Turbulence profile x...
— ...to be corrected by a DM actuator command vector a...
— ... using a WFS measurement s with noise component 7 ...

— ...leaving a residual phase error ¢ with mean-square value >

* Relationships

— s=Gx+n (wavefront sensing)

— a=Rs (wavefront reconstruction)
— ¢0=Hx—-Hpa (residual error computation)
— o?=¢'Wo (variance evaluation)

« Objective: Select R to (in some sense) minimize o>



Misffnum Variance Wavefront-RecOn

 Model x, s, and »n as zero mean random variables
with finite second moments

* Select R to minimize <02> (the expected value of &?):
/[ : 2
R, =arg mR}n<0' >
= argmin([H x— H Rs| W[H x— H Rs])

» Partials of <02> with respect to R;; must vanish at R=R,
* Solution given by R.=F.E., where
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F.=(H'WH,) H'WH,



* Interpretation

— E. 1s the “turbulence Estimation matrix”
e Minimum variance estimate of profile x from measurement s
» Depends upon WFS geometry, statistics of x and s
 Independent of the DM geometry

— F™* 1s the “turbulence Fitting matrix”
« RMS best fit to estimated value of x using DM degrees of freedom
* Independent of WFS geometry, statistics of x and s
* Depends upon the DM geometry

e Use

— Once R. 1s known, we can estimate performance using
min(o” ) = ([H,x— H,R.s] W[H x— H,R.s))

— ...or we can use R. to run simulations (or even systems)



AT Computational Comple

A

* R. has complexity O(/N°) to explicitly compute and
evaluate, complexity O(/N?) to apply in real time
— Must be computed/evaluated in a few hours for studies
— Must be applied at rates of 1-2 KHz for actual use

e Current generation MCAO systems have N < 1000

— Computationally feasible

* Proposed MCAO systems have N > 10% or 10°

— Explicit computations nefficient or outright infeasible

— How do we analyze and simulate such systems???



Waveftront propagation, sensing, correction, and
reconstruction are all approximately spatial filtering
operations

Filtering representation becomes exact in the limat
of an infinite aperture AO system

Wavefront reconstruction decouples into small
independent problems at each spatial frequency

— Each problem has dimensionality 2 N, by N,
Overall complexity scales as O(Ny,,) o O(N)
Analytical method only, but very useful



-gifficient Approaches.for the-Spatit

e Must solve Ax=y, where
A=G" <nnT >_1 G+ <xxT >_
without explicitly computing A-!

* Exploit matrix structure

— G, H,, W are sparse
— <nnT > is diagonal (plus a low-rank perturbation due to
laser guide star position uncertainty)

-1 : :
- <xxT > has good approximations that are sparse

 Efficient solutions possible
— Sparse matrix techniques (close, but not quite)
— Conjugate gradients with multigrid preconditioning

or A=H WH,



e Each value of ¢ (7) 1s
determined by turbulence
values along a single ray
path

s
D
i

o(r)

Each WFS measurement s,
is determined by values of
¢(r) within a small
subaperure



Sparse Matrix MethoUté |

« Suppose 4 is sparse (with bandwidth O(N'?))
* Factor
A=LL"

where L 1s sparse and lower triangular

Solve Ax=y in two steps:

Lx’ =y, followedby L'x=x’

Complexity reduced from O(N?) to O(N>?)

Complexity further reduced by reording rows/columns of 4
For F., A= HWH _ is sparse (at least for conventional AO)
For E., A=G" <nnT >_1 G+ <xxT >_1 1sn’t sparse for two reasons:

— The turbulence covariance matrix <xxT> 1sn’t sparse

— For laser guidestars, <nnT > 1s the sum of sparse and low rank terms



- (=) is block diagonal, with N, by N,,,., blocks
— Each diagonal block is full rank!
« We approximate block j as a;'D' D

— «, proportional to layer strength
- D 1s a discrete (and sparse) approximation to V?

» Heuristic justification #1:
— Both <xxT>_1 and D'D suppress high spatial frequencies

» Heuristic justification #2:

— In the spatial frequency domain

<fc(lc))2*(/c')> x ok -k " =Sk -k

<fc(/<))%*(/c)>_l oc k¥ =K’K” oc [FT(V2 )]T [FT(V2 )]



LGS Measurement-Nd

 Fora LGS WEFS, n 1s determined by two effects:

— Detector readout noise and photon statistics (uncorrelated)

— LGS position uncertainty on the sky

» Two dimensions of uncertainty per guidestar, correlated between subapertures

* More formally
n=n.+n,
<nnT> + <nrnf> + <ntntT> =diag(c))+o UU"
— UU" is a non-sparse matrix of rank 2 N, ¢

« Sparse matrix methods are not immediately applicable



pplylng the M atrix Inversion 1T

M-ur") =M MU=V U ) (MY )

> <nn > <d1ag( )+0' uu > is the sum of diag(ai'z)
and a low rank term UU?
> GT<nnT>_1G+<xx > —G dlag( )G+< > GU' (GU')

AV

1Sparse Low Rank
-1\

» Can solve (GT<nnT>TG+<xxT> j X=y
by solving (GT diag(al.z)G+< xx” >_1)_1 xX=y

and adding a perturbation term depending upon

(GTdiag(af)c ¥ <xxT>1)_l(GU')




afMpleMatrix Factorizatiﬂns"@*

o A matrix o . Cholesky Factor
65536 65536 655360 65536
0.03% Fill 1.65% Fill

Reordered A Cholesky Factor

65536
0.03% Fill 0.33% Fill

 Conventional AO with 1 DM and 1 WES!



#A%) Increases Coupling betweena-Tur& Layers

 However, the coupling
____—  within a single layer is no

greater than before
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® Column block structure due to multiple atmospheric layers

®* Row block structure due to multiple stars/guidestars

3-DM Propagation Matrix (25 directions)
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0

393216

0 393216
0.03 % Fill

e Fill-in of “sparse™
Cholesky factorization
exceeds 10%

 Cannot factor
matrices for a 32m
diameter system in a 2
Gbyte address space



Biggest challenge is solving Ax=y with
A=G (nn")" G +(657)
Minimize ||4x-y||* using conjugate gradients

Use multigrid preconditioning to accelerate convergence

— Preconditioning: Solve an approximate system 4 x=) once per
conjugate gradient cycle

— Multigrid: Solution to 4 x=y determined on multiple spatial scales
to accelerate convergence at all spatial frequencies
Solution on each multigrid scale 1s determined using a
customized (new?) technique:
— Block symmetric Gauss-Seidel iterations on Ax=y
— Block structure derived from atmospheric layers

— Sparse matrix factorization of diagonal blocks



Blocks of 4, x, y denoted as 4, x;, ;

j
Decompose

A=L+D+U

into a sum of lower triangular, diagonal, and upper
triangular blocks

Iterative solution to Ax = (L+D+U)x = y given by
(L+D)x’(n) =y — Ux(n)
(UtD)x(n+1) =y — Lx'(n)
Solve for x’(n) and x(n+1) one block at a time:

Dx;'(n) =y, — ZAijxj(n) i Z‘Ajjxj'(n)

J>i J<i
Dix;(n+1) =y, - Z‘Aijxj'(n) -2 4;x;(n+1)
J<i J>i

Solve systems D.u=v using sparse Cholesky factorizations



* Goal: Evaluate MCAO performance scaling with
aperture diameter D from D=8m to D=32m

* Consider Natural, Sodium, and Rayleigh guidestars

 Other simulation parameters:
— Cerro Pachon turbulence profile with 6 layers

— 1 arc minute square field-of-view

— 3 DM’s conjugate to 0, 5.15, and 10.30 km
 Actuator pitches 0f 0.5, 0.5, and 1.0 m

— 5 higher order guidestars at corners and center of 1’ field
* 0.5 m subapertures

— 4 tip/tilt NGS WEFS for laser guide star cases

— 10 simulation trials per case using 64 m turbulence
screens with 1/32m pitch



Aperture, m 8 16 24 32
WES 2240 8560 18840 33320
measurements
Phase points 7270 21226 42334 70838
estimated (£.)
DM actuators 789 2417 4957 8449

fit (F.)
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- Rapid convergence
for first 20 iterations
» Convergence then
slows due to poor
conditioning of A

* Not an 1ssue for
practical simulations
 Results effectively
independent of
aperture diameter
and guide star type

Relative P CG residual norm

PCG corvergence with 0.02" noize (D=24 / 32 m; NGS / Sodium LGS /Rayleigh LGS)
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MCAO compensates anisoplanatism and corrects for the effects
of atmospheric turbulence across extended fields-of-view

Minimum variance estimation 1s a viable approach to MCAO
wavefront reconstruction

Computationally efficient methods needed for the very high
order systems proposed for future extremely large telescopes

Conjugate gradient wavefront reconstruction using multigrid
preconditioning and block symmetric Gauss-Seidel iterations
enables simulations of 32 meter MCAO systems with 30k
sensor measurements and 8k mirror actuators

Challenging problems remain
— Closed-loop wavefront reconstruction and control
— Hardware and software for real-time implementation



* Luc Gilles and Curt Vogel

— Ongoing collaboration on efficient methods

— Matrix sparsity plots
e Francois Rigaut
— MCAUO figure and performance plot

e Gemini Observatory
— Sample AO results

e Support from AFOSR, NSF, and CfAO



« Adaptive optics websites
— CfAQ, http://ctao.ucolick.org
— Gemini AO web pages at http://www.gemini.edu

 Minimum variance wavefront reconstruction
— Wallner, JOSA 73, 1771 (1983)
— Ellerbroek, JOSA A 11, 783 (1994)
— Fusco et al., JOSA A 18, 2527 (2001)

 Efficient implementations
— Ellerbroek, JOSA A 19, 1803 (2002)
— Ellerbroek, Gilles, Vogel, SPIE Proc. 4839, 989 (2002)
— QGilles, Ellerbroek, Vogel, Appl. Opt. 42, 5233 (2003)
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