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Presentation Outline

• Anisoplanatism and MCAO
• Minimum variance wavefront reconstruction 

methods for MCAO
– Formulation, analytical solution, and scaling issues

• Computationally efficient methods for very high-
order MCAO systems
– Spatial frequency domain modeling (Tokovinin)
– Sparse matrix techniques
– Conjugate gradients with multigrid preconditioning

• Sample simulation results
– MCAO Performance scaling with telescope diameter

• Summary, acknowledgements, references



Anisoplanatism and Adaptive Optics

• Bright guidestars are needed 
for wavefront sensing
– Not enough bright natural stars 

for astronomical applications
– Progress is being made in using 

lasers to generate artificial stars

• Even with lasers, the corrected 
field-of-view is limited
– Turbulence is 3-dimensional
– One deformable mirror provides 

correction in a single direction
– Anisoplanatism



Adaptive Optics Imagery with Anisoplanatism

23”

• Low-order AO system on the Gemini-North telescope
• Ambient seeing:  0.9”
• AO-compensated seeing: 0.12” (center of field) to 0.19” (corner)
• Impact increases as the quality of correction improves



MCAO Compensates Turbulence in Three Dimensions
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Sample MCAO Simulation Result

Classical AO

Guide star offset, arc sec
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• 8 meter telescope
• 2 deformable mirrors with 13 by 13 actuators
• 5 wavefront sensors with 12 by 12 subapertures



Wavefront Reconstruction for MCAO is Challenging

• Multiple turbulence layers, deformable mirrors, 
wavefront sensors

• Richer cross-coupling between variables
• Higher dimensionality estimation problem

– Especially for future extremely large telescopes!

• Wide-field performance evaluation and optimization



Wavefront Reconstruction as a Linear Inverse Problem

• Quantities of interest
– Turbulence profile x…
– …to be corrected by a DM actuator command vector a…
– … using a WFS measurement s with noise component n…
– …leaving a residual phase error φ with mean-square value σ2

• Relationships
– s = Gx + n (wavefront sensing)
– a = Rs (wavefront reconstruction)
– φ = Hxx – Haa (residual error computation)
– σ2 = φTWφ (variance evaluation)

• Objective:  Select R to (in some sense) minimize σ2



Minimum Variance Wavefront Reconstruction

• Model x, s, and n as zero mean random variables 
with finite second moments

• Select R to minimize (the expected value of σ2):2σ
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Interpretation (and Use) of R* = F*E*

• Interpretation
– E* is the “turbulence Estimation matrix”

• Minimum variance estimate of profile x from measurement s
• Depends upon WFS geometry, statistics of x and s
• Independent of the DM geometry

– F* is the “turbulence Fitting matrix”
• RMS best fit to estimated value of x using DM degrees of freedom
• Independent of WFS geometry, statistics of x and s
• Depends upon the DM geometry

• Use
– Once R* is known, we can estimate performance using

– …or we can use R* to run simulations (or even systems)
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Computational Complexity

• R* has complexity O(N3) to explicitly compute and 
evaluate, complexity O(N2) to apply in real time
– Must be computed/evaluated in a few hours for studies
– Must be applied at rates of 1-2 KHz for actual use

• Current generation MCAO systems have N < 1000
– Computationally feasible

• Proposed MCAO systems have N > 104 or 105

– Explicit computations inefficient or outright infeasible
– How do we analyze and simulate such systems???



Analytical Methods in the Spatial Frequency Domain

• Wavefront propagation, sensing, correction, and 
reconstruction are all approximately spatial filtering
operations

• Filtering representation becomes exact in the limit 
of an infinite aperture AO system

• Wavefront reconstruction decouples into small 
independent problems at each spatial frequency
– Each problem has dimensionality 2 Nwfs by Ndm

• Overall complexity scales as O(Nfreq) α O(N)
• Analytical method only, but very useful



Efficient Approaches for the Spatial Domain

• Must solve Ax=y, where

without explicitly computing A-1

• Exploit matrix structure
– G, Ha, W are sparse
– is diagonal (plus a low-rank perturbation due to 

laser guide star position uncertainty)
– has good approximations that are sparse 

• Efficient solutions possible
– Sparse matrix techniques (close, but not quite)
– Conjugate gradients with multigrid preconditioning
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G, H Sparse for Nodal Representations of Turbulence

• Each value of φ (r) is 
determined by turbulence 
values along a single ray 
path

• Each WFS measurement si
is determined by values of 
φ(r) within a small 
subaperure 

Si φ(r)



Sparse Matrix Methods
• Suppose A is sparse (with bandwidth O(N1/2))
• Factor

A = LLT

where L is sparse and lower triangular
• Solve Ax=y in two steps:

Lx’ = y,    followed by  LTx = x’
• Complexity reduced from O(N2) to O(N3/2)
• Complexity further reduced by reording rows/columns of A
• For F*,                       is sparse (at least for conventional AO)
• For E*,                                         isn’t sparse for two reasons:

– The turbulence covariance matrix          isn’t sparse 
– For laser guidestars,          is the sum of sparse and low rank terms
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Sparse Approximation to Turbulence Statistics

• is block diagonal, with Nlayer by Nlayer blocks
– Each diagonal block is full rank!

• We approximate block j as
− αi proportional to layer strength
- D is a discrete (and sparse) approximation to 

• Heuristic justification #1:
– Both           and DTD suppress high spatial frequencies

• Heuristic justification #2:
– In the spatial frequency domain
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LGS Measurement Noise

• For a LGS WFS, n is determined by two effects:
– Detector readout noise and photon statistics (uncorrelated)

– LGS position uncertainty on the sky
• Two dimensions of uncertainty per guidestar, correlated between subapertures

• More formally

– UUT is a non-sparse matrix of rank 2 NLGS

• Sparse matrix methods are not immediately applicable
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Applying the Matrix Inversion Lemma
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Sample Matrix Factorizations for E*

A matrix

Reordered A

0.03% Fill

0.03% Fill

1.65% Fill

0.33% Fill

Cholesky Factor

Cholesky Factor

• Conventional AO with 1 DM and 1 WFS!



MCAO Increases Coupling between Turbulence Layers

φ(r,θ) φ(r’,θ’)

• However, the coupling 
within a single layer is no 
greater than before



G, H Matrices Are Block Structured for MCAO

• Column block structure due to multiple atmospheric layers
• Row block structure due to multiple stars/guidestars

G (5 guidestars, 6 atmospheric 
layers)

Ha (3 mirrors, 25 stars)



Cross-Coupling of Atmospheric Layers for MCAO

• Fill-in of “sparse” 
Cholesky factorization 
exceeds 10%
• Cannot factor 
matrices for a 32m 
diameter system in a 2 
Gbyte address space



An “Efficient” MCAO Reconstruction Algorithm

• Biggest challenge is solving Ax=y with

• Minimize ||Ax-y||2 using conjugate gradients
• Use multigrid preconditioning to accelerate convergence

– Preconditioning:  Solve an approximate system A’x=y once per 
conjugate gradient cycle

– Multigrid:  Solution to A’x=y determined on multiple spatial scales 
to accelerate convergence at all spatial frequencies

• Solution on each multigrid scale is determined using a 
customized (new?) technique:
– Block symmetric Gauss-Seidel iterations on Ax=y
– Block structure derived from atmospheric layers
– Sparse matrix factorization of diagonal blocks
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Block Symmetric Gauss-Seidel Iterations

• Blocks of A, x, y denoted as Aij, xi, yj
• Decompose

A = L + D + U
into a sum of lower triangular, diagonal, and upper 
triangular blocks

• Iterative solution to Ax = (L+D+U)x = y given by
(L+D)x’(n) = y – Ux(n)

(U+D)x(n+1) = y – Lx’(n)
• Solve for x’(n) and x(n+1) one block at a time:

• Solve systems Diu=v using sparse Cholesky factorizations
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MCAO Simulations for Future Telescopes

• Goal:  Evaluate MCAO performance scaling with 
aperture diameter D from D=8m to D=32m

• Consider Natural, Sodium, and Rayleigh guidestars
• Other simulation parameters:

– Cerro Pachon turbulence profile with 6 layers
– 1 arc minute square field-of-view
– 3 DM’s conjugate to 0, 5.15, and 10.30 km

• Actuator pitches of 0.5, 0.5, and 1.0 m
– 5 higher order guidestars at corners and center of 1’ field

• 0.5 m subapertures
– 4 tip/tilt NGS WFS for laser guide star cases
– 10 simulation trials per case using 64 m turbulence 

screens with 1/32m pitch



Simulation Dimensionality

844949572417789DM actuators 
fit (F*)

7083842334212267270Phase points 
estimated (E*)

333201884085602240WFS 
measurements

3224168Aperture, m



Sample Numerical Results

Natural guidestars

Sodium laser guidestars, h=90 km

Rayleigh Laser guidestars, h=30 km



CG Convergence Histories

• Rapid convergence 
for first 20 iterations
• Convergence then 
slows due to poor 
conditioning of A
• Not an issue for 
practical simulations
• Results effectively 
independent of 
aperture diameter 
and guide star type



Summary

• MCAO compensates anisoplanatism and corrects for the effects 
of atmospheric turbulence across extended fields-of-view

• Minimum variance estimation is a viable approach to MCAO 
wavefront reconstruction 

• Computationally efficient methods needed for the very high 
order systems proposed for future extremely large telescopes

• Conjugate gradient wavefront reconstruction using multigrid 
preconditioning and block symmetric Gauss-Seidel iterations 
enables simulations of 32 meter MCAO systems with 30k 
sensor measurements and 8k mirror actuators

• Challenging problems remain
– Closed-loop wavefront reconstruction and control
– Hardware and software for real-time implementation
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