Adaptive Optics with Adaptive Filtering and Control

Steve Gibson Mechanical and Aerospace Engineering University of California, Los Angeles 90095-1597 gibson@ucla.edu

This research was supported by AFOSR Grant F49620-02-01-0319.

Abstract

This presentation describes improved adaptive and quasi adaptive filtering and control methods for adaptive optics. Adaptive compensation is needed in many adaptive optics applications because wind velocities and the strength of atmospheric turbulence can change rapidly, rendering any fixed-gain reconstruction algorithm far from optimal. The performance of the new methods is illustrated by application to recently developed simulations of high energy laser propagation through extended turbulence.

The presentation covers three advances over our previous publications on the use of adaptive filtering and control in adaptive optics. First, the adaptive loop is designed to use the closed-loop wavefront sensor vector as the input to the adaptive loop, as opposed to the estimate of the open-loop wavefront sensor vector used in previous publications on this subject. Second, it is demonstrated that a quasi adaptive loop, which updates gains periodically from short data sequences, often is as effective as the fully adaptive loop, which updates gains at every time step. Finally, the adaptive optics simulations presented here are much more realistic than those in our previous publications because a recently developed adaptive optics simulation with high-fidelity wavefront propagation model and detailed sensor characteristics, including nonlinearities, is used.

Adaptive Optics for HEL Beam Control

UCLA, Mission Research Corp., Tempest Technologies

On-Target Intensity (Strehl Ratio) for Two Controllers: New Adaptive Control Loop, Standard AO Loop

Time Step

Red Block: WaveTrain HEL System Model (Matt Whiteley, Mission Research Corp.)

Blue Blocks: Standard AO loop

Green Blocks: Augmentation with adaptive filtering and control (UCLA)

Adaptive control loop significantly improves beam control and increases intensity of energy focused on target.

WaveTrain* Model of a High-Energy-Laser System (Mission Research Corporation)

* WaveTrain is a product of MZA Associates Corporation. The model used in this research is based on non-sensitive features of HEL systems.

Path length = 266,700 m Target Altitude = 29,000 m ABL Altitude = 12,200 m

Target Speed = 1620 m/s ABL Speed = 200 m/s

SIMULATION MODEL 1

Red Block: WaveTrain HEL System Model Blue Blocks: Standard AO and Track Loops Green Blocks: Adaptive Control Loop

SIMULATION MODEL 2

Red Block: WaveTrain HEL System Model Blue Blocks: Standard AO and Track Loops Green Blocks: Fixed-gain Control Loop

Multichannel Adaptive Lattice Filters for Filtering, Identification, and Control

- Recursive least-squares (RLS) lattice filters produce faster adaptation (convergence) than algorithms based on stochasticgradient (LMS) adaptation.
- RLS lattice filters produce true minimum-variance performance in the presence of broad-band noise.
- UCLA Algorithms: Orthogonalization of multiple channels eliminates need for matrix inversions.

Properties of Lattice Filters

- Fast real-time computation
- Numerically stable for number of channels > 100, filter order > 100
- Excellent VLSI realization

Residual-Error Lattice Filter

- * $Y(t) = \begin{bmatrix} y(t) & u(t) \end{bmatrix}$
- * \hat{e} : forward propagating forward error
- * \hat{r} : forward propagating backward error
- * *e* : backward propagating forward error
- * *ř* : backward propagating backward error

Well chosen DM modes are essential for adaptive loop in AO.

- Control channels are uncoupled for adaptive loop, allowing much faster convergence to optimal gains.
 (Modes need to be orthogonal in actuator space.)
- Spatial filtering removes high-frequency noise and marginally controllable optical modes.

Examples of Modes

- Two-step process starting with Zernike polynomials
- Singular-value decomposition of poke matrix or least-squares reconstructor
- Frequency-weighted modes computed from DM geometry and poke matrix

OLD MODES from SVD of recon

First 6 of 194

10 12 14 16 18

8

16

18

2 4 6

-0.1

18

10 12 14 16

8

-0.15

-0.1

16

18

2 4 6

16

18

2 4 6

8 10 12 14 16 18

New AO Modes Optimized to Maximize Low-Frequency Modal Power

New AO Modes Optimized to Maximize Low-Frequency Modal Power

With Increasing Mode Number, Radial and Circular Frequencies Increase

Results for Point Source Beacon

16 Phase Screens

Target Board On-axis Intensity

Red: Fixed-gain FIR identified with different random seed, 80 new modes

Blue: Adaptive control loop with 1000 learning steps

Black: Standard AO and track loops

All AO loops tilt removed

Results for Point Source Beacon

16 Phase Screens

Focal Plane On-axis Intensity

Red: Fixed-gain FIR identified with different random seed, 80 new modes

Blue: Adaptive control loop with 1000 learning steps

Black: Standard AO and track loops

All AO loops tilt removed

Results for Extended Beacon

16 Phase Screens, 8 Speckle Realizations

Target Board On-axis Intensity

Red: Fixed-gain FIR identified with different random seed, 80 new modes

Blue: 80 New modes, Standard AO and track loops only

Black: 194 Modes, Standard AO and track loops with MZA recon

All AO loops tilt removed

REFERENCES

J. S. Gibson, C.-C. Chang, and B. L. Ellerbroek, "Adaptive Optics: Wavefront Correction by Use of Adaptive Filtering and Control," *Applied Optics, Optical Technology and Biomedical Optics*, Vol. 39, No. 16, June 2000, pp. 2525–2538.

C.-C. Chang and J. S. Gibson, "Parallel Control Loops Based on Spatial Sub Band Processing for Adaptive Optics," American Control Conference, (Chicago, Illinois), June 2000.

J. S. Gibson, C.-C. Chang, and Neil Chen, "Adaptive Optics with a New Modal Decomposition of Actuator and Sensor Spaces," American Control Conference, (Arlington, VA), June 2001.

Yu-Tai Liu and Steve Gibson, "Adaptive Optics with Adaptive Filtering and Control," 2004 American Control Conference, Boston, MA, June 2004.

Byung-Sub Kim, Steve Gibson, and Tsu-Chin Tsao, "Adaptive Control of a Tilt Mirror for Laser Beam Steering," 2004 American Control Conference, Boston, MA, June 2004.

S.-B. Jiang and J. S. Gibson, "An Unwindowed Multichannel Lattice Filter with Orthogonal Channels," *IEEE Transactions on Signal Processing*, vol. 43, no. 12, pp. 2831–2842, December 1995.

S.-J. Chen and J. S. Gibson, "Feedforward Adaptive Noise Control with Multivariable Gradient Lattice Filters," *IEEE Transactions on Signal Processing*, Vol. 49, No. 3, March 2001, pp. 511–520.