Fundamentals of Computational Linear Algebra for Inverse Problems

Curt Vogel Department of Mathematical Sciences Montana State University http://www.math.montana/~vogel vogel@math.montana.edu

Acknowledgments

Collaborators

Brent Ellerbroek, NOAO, Tuscon AZ Luc Gilles, Michigan Tech Mike Flanagan, TREX, Maui HI

Funding

AFOSR-DEPSCoR Computational Mathematics Program CfAO Modeling and Simulation Group

Outline

- Fundamentals of Inverse Problems
 - III-Posedness
 - Regularization
- Fundamentals of Computational Linear Algebra
 - Direct vs Iterative Methods
 - Computational Complexity
 - Special Structure \leftrightarrow Special Algorithms
 - Sparse, banded direct solvers
 - Iterative methods for structured systems
 - Preconditioning
- Computational Linear Algebra for AO Wavefront Reconstruction (open loop)
 - Conventional AO
 - MCAO

Forward Model, or "Direct Problem", in Adaptive Optics

Model measurements of wavefront slope $\nabla \phi = (\frac{\partial \phi}{\partial x}, \frac{\partial \phi}{\partial y})$, given

- Sensor subapertures Ω_i , for i = 1, ..., no. of subapertures.
- View angles θ_j , for j = 1, ..., no. of view angles.
- Atmospheric turbulence (refractive index) profile $\rho = \rho(x, y, z)$.
- Idealized "point source" guide star at infinity.

Mathematical model for Shack-Hartmann wavefront sensor:

$$s_{i,j} = (s_x, s_y)_{i,j} = \frac{1}{\operatorname{Area}(\Omega_i)} \int_{\Omega_i} \nabla \phi_j \stackrel{\text{def}}{=} \mathcal{G}_i \phi_j$$

where the aperture-plane phase in direction $\boldsymbol{\theta}_j = (\theta_{x,j}, \theta_{y,j})$ is

$$\phi_j(x,y) = \int_0^H \rho(x + z \,\theta_{x,j}, y + z \,\theta_{y,j}, z) \, dz \stackrel{\text{def}}{=} \mathcal{P}_j \rho_j(x,y) \, dz \stackrel{\text{def}}{=} \mathcal{P}_j(y,y) \, dz$$

Relevant Inverse Problems

Conventional AO Wavefront Sensing.

Estimate aperture-plane phase $\phi(x, y)$, given

 $s_i = \mathcal{G}_i \phi + \text{noise}, \quad i = 1, ..., \text{ no. of subapertures.}$

Assumes ϕ is independent of view angle θ .

Operator Notation: $\mathbf{s} = \mathcal{G}\phi$.

Turbulence Profile Estimation, or "Tomography", in MCAO: Estimate turbulence profile $\rho(x, y, z)$, given

 $s_{i,j} = \mathcal{G}_i \mathcal{P}_j \rho + \text{noise}, \quad i = 1, ..., \text{ no. subaps}, \quad j = 1, ..., \text{ no. view angles},$

Operator Notation: $\mathbf{s} = \mathcal{GP}\rho$.

Ill-Posedness

Operator equation $s = \mathcal{G}\phi$ is called ill-posed if any of the following conditions hold:

- 1. Nonexistence of a solution: There are measurement vectors s which do not correspond to any solution ϕ .
- 2. Nonuniqueness: There are measurement vectors s which correspond to several different solutions ϕ .
- 3. Instability: Certain small changes in the data s give rise to large changes in the solution ϕ .

Abstract Mathematical Definition Has Conceptual Difficulties ...

- Given finite data s and a "distributed parameter" ϕ which is a function of continuous variables (x, y, z, ...), the solution is always nonunique, and hence, ill-posed. Mathematicians examine ill-posedness of idealized problems with infinite-dimensional data. In wavefront sensing, this corresponds to an arbitrarily large number of sensors with arbitrarily small subapertures.
- In practice, solution ϕ must be discretized. Need to solve matrix-vector equation, $\mathbf{s} = G \boldsymbol{\phi}$.
- Structure of discretized problem reflects structure of underlying distributed parameter problem.

Discretization

Distributed parameters can be well-represented by finite-dimensional approximations.

Example. Kolmogorov model for aperture-plane phase:

$$\phi(x,y) = \sum_{m=-\infty}^{+\infty} \sum_{n=-\infty}^{+\infty} \beta_{m,n} e^{2\pi i (x\kappa_{x,m} + y\kappa_{y,n})}$$

with independent, random coefficients $\beta_{m,n} \sim \text{Normal}(0, |(\kappa_{x,m}, \kappa_{y,n})|^{-11/6})$. Infinite series is well-represented by truncated finite sum.

Example. Spline (i.e., smooth piecewise polynomial) tensor product representation used in finite elements,

$$\phi(x,y) \approx \sum_{m=1}^{M} \sum_{n=1}^{N} \gamma_{m,n} B_m(x) B_n(y)$$

If ϕ is smooth, approximation becomes more accurate as M, N increase.

Singular Value Decomposition (SVD)

Tool to analyze discrete linear equations $G\phi = \mathbf{s}$. (Has continuous analogue.) The SVD is a bi-orthonormal diagonalization of $m \times n$ matrix

$$G = \underbrace{[\mathbf{u}_1 \dots \mathbf{u}_n]}_{m \times n \ U} \underbrace{\operatorname{diag}(\mu_1, \dots, \mu_n)}_{n \times n \ D} \underbrace{[\mathbf{v}_1 \dots \mathbf{v}_n]}_{n \times n \ V}$$

- Singular values μ_i are nonnegative.
- Right singular vectors $\mathbf{v}_i \in \mathbb{R}^n$ are orthonormal, $V^T V = I_{n \times n}$.
- Left singular vectors $\mathbf{u}_i \in \mathbb{R}^m$ are orthonormal, $U^T U = I_{n \times n}$.

Closely related to eigendecomposition of symmetric matrix $G^T G$:

$$G^T G = V \ D^2 \ V^{-1}.$$

Eigenvalues of $G^T G$ are squared singular values of G; eigenvectors of $G^T G$ are right singular vectors.

SVD, Least Squares, and the Pseudo-Inverse

Finite dimensional linear systems $G\phi = s$ always have a least squares solution

$$\boldsymbol{\phi}_{\mathrm{LS}} = \arg\min_{\boldsymbol{\phi}\in\mathbb{R}^n} ||G\boldsymbol{\phi} - \mathbf{s}||^2$$

If singular values are all positive, have unique least squares solution

$$\phi_{\rm LS} = (G^T G)^{-1} G^T \mathbf{s}$$
$$= \underbrace{V \operatorname{diag}(1/\mu_i) U^T}_{\text{pseudo-inverse } G^{\dagger}} \mathbf{s}$$

Otherwise, of all possible least squares solutions, the one of minimum Euclidean norm is

$$\boldsymbol{\phi}_{\mathrm{LSMN}} = \underbrace{V \operatorname{diag}(\mu_i^+) U^T}_{G^\dagger} \mathbf{s}$$

where

$$\mu_i^+ = \begin{cases} 1/\mu_i & \text{if } \mu_i > 0, \\ 0 & \text{if } \mu_i = 0. \end{cases}$$

IPAM-2004 - p.9/3

Information from the SVD

Provided that β well-represents the distributed parameter ϕ ,

- Zero singular values \implies nonuniqueness.
 - Corresponding singular vectors are unsensed modes.
- Relatively small singular values \implies instability.
 - Corresponding right singular vectors are unstable modes.

The condition number is a measure of instability.

$$\kappa(G) \stackrel{\text{def}}{=} \frac{\text{largest singular value of } G}{\text{smallest nonzero singular value of } G}$$

Matrix G is called ill-conditioned if $\kappa(G)$ is relatively large.

Regularization

- In mathematics, "regularity" means smoothness.
- Historically, accurate approximations to ill-posed inverse problems $\mathcal{G}\phi = s$ were obtained by imposing smoothness constraints on the solution ϕ .
- Regularization has evolved to mean any technique that yields accuarate approximate solutions to $\mathcal{G}\phi = s$.

Very brief sketch of Mathematical Theory of regularization. Problem with noisy data:

$$s = \mathcal{G}\phi_{\mathrm{true}} + \eta.$$

Regularized solution $\phi_{reg} = \phi_{reg}(s,...)$, depends on data *s*, prior information, regularization parameters, ..., in a manner for which

 $\phi_{\mathrm{reg}}
ightarrow \phi_{\mathrm{true}}$ as $\eta
ightarrow 0.$

Truncated Singular Value Decomposition (TSVD)

Gives approximation ϕ_{α} to least squares minimum norm solution to $G\phi = s$.

$$\phi_{LSMN} = G^{\dagger} \mathbf{s} = V \operatorname{diag}(\mu_{i}^{+}) U^{T} \mathbf{s}$$
$$= \sum_{\mu_{i} > 0} \frac{\mathbf{u}_{i}^{T} \mathbf{s}}{\mu_{i}} \mathbf{v}_{i}$$
$$\approx \sum_{\substack{\mu_{i}^{2} > \alpha}{}} \frac{\mathbf{u}_{i}^{T} \mathbf{s}}{\mu_{i}} \mathbf{v}_{i}$$
$$\underbrace{\phi_{\alpha}}{} \phi_{\alpha}$$

Can be rewritten as

$$\phi_{lpha} = \sum_{i} w_{lpha}(\mu_{i}^{2}) rac{\mathbf{u}_{i}^{T}\mathbf{s}}{\mu_{i}} \mathbf{v}_{i}$$

where filter function zeros components corresponding to small singular values.

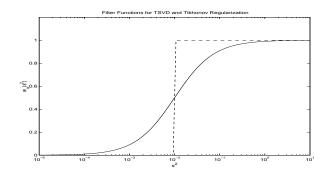
$$w_{lpha}(\lambda) = \left\{ egin{array}{cc} 1, & \lambda > lpha, \ 0, & \lambda \leq lpha. \end{array}
ight.$$

Tikhonov Regularization

Yields penalized least squares approximation to $G\phi = s$.

$$\begin{split} \phi_{\alpha} &= \arg \min_{\phi} ||G\phi - \mathbf{s}||^{2} + \alpha ||\phi||^{2} \\ &= (G^{T}G + \alpha I)^{-1}G^{T}\mathbf{s} \\ &= \sum_{i} \frac{\mu_{i} \mathbf{u}_{i}^{T}\mathbf{s}}{\mu_{i}^{2} + \alpha} \mathbf{v}_{i} \\ &= \sum_{\mu_{i}>0} \underbrace{\frac{\mu_{i}^{2}}{\mu_{i}^{2} + \alpha}}_{w_{\alpha}^{\mathrm{Tikh}}(\mu_{i}^{2})} \frac{\mathbf{u}_{i}^{T}\mathbf{s}}{\mu_{i}} \mathbf{v}_{i} \end{split}$$

Tikhonov filter function is smoothed version of TSVD filter.



Incorporating Prior Information

Illustrative Example. For simplicity suppose $\phi(x) \approx \sum_{i=1}^{N} \phi_i B_i(x), \ 0 \le x \le 1$. Measure roughness of ϕ by squared L^2 norm of derivative,

$$J(\phi) = \int_0^1 \left(\frac{d\phi}{dx}\right)^2 dx$$

$$\approx \int_0^1 \left(\sum_i \phi_i \frac{dB_i}{dx}\right) \left(\sum_j \phi_j \frac{dB_i}{dx}\right) dx$$

$$= \sum_i \sum_j \phi_i \underbrace{\left(\int_0^1 \frac{dB_i}{dx} \frac{dB_j}{dx} dx\right)}_{L_{ij}} \phi_j$$

$$= \phi^T L \phi.$$

Tikhonov regularization with roughness penalty:

$$\phi_{\alpha} = \arg \min_{\phi} ||G\phi - \mathbf{s}||^2 + \alpha \phi^T L\phi$$
$$= (G^T G + \alpha L)^{-1} G^T \mathbf{s}.$$

IPAM-2004 - p.14/3

Tikhonov Regularization–Minimum Variance Connection

Stochastic model for conventional AO sensor measurements:

$$\mathbf{s} = \mathcal{G}\phi + oldsymbol{\eta}$$

with noise $\eta \sim N(0, C_{\eta})$, independent of phase $\phi \sim N(0, C_{\phi})$. Assume deformable mirror figure ϕ_{DM} depends linearly on actuator vector \mathbf{a} :

$$\phi_{\mathrm{DM}}(x,y) = \sum_{j} a_{j}h_{j}(x,y) \stackrel{\mathrm{def}}{=} \mathcal{H}\mathbf{a}.$$

Assume (open loop) actuator vector depend linearly on sensor measurements:

$$\mathbf{a} = R\mathbf{s}.$$

Minimum variance reconstruct matrix is

$$R_{\rm MV} = \arg \min_{\mathbf{a}=R\mathbf{s}} \langle ||\phi - \phi_{\rm DM}||^2 \rangle = \arg \min_{R} \langle ||\phi - \mathcal{H}R\mathbf{s}||^2 \rangle$$
$$= \arg \min_{R} \langle ||(I - \mathcal{H}R\mathcal{G})\phi - \mathcal{H}R\boldsymbol{\eta}||^2 \rangle$$

Tikhonov-MV Connection, Continued

$$R_{\rm MV} = \arg\min_{R} \operatorname{Trace}\{[(I - \mathcal{H}R\mathcal{G})\phi - \mathcal{H}R\boldsymbol{\eta}][(I - \mathcal{H}R\mathcal{G})\phi - \mathcal{H}R\boldsymbol{\eta}]^{T}\}$$
$$= \underbrace{(\mathcal{H}^{T}\mathcal{H})^{-1}\mathcal{H}^{T}}_{\mathcal{F}=\operatorname{Fitting Operator}} \underbrace{C_{\phi}\mathcal{G}^{T}(\mathcal{G}C_{\phi}\mathcal{G}^{T} + C_{\eta})^{-1}}_{\mathcal{E}=\operatorname{Estimation Operator}}$$

Fitting operator $\mathcal{F} = (\mathcal{H}^T \mathcal{H})^{-1} \mathcal{H}^T$ maps phase estimate $\hat{\phi}$ to actuator command \mathbf{a} ;

$$\hat{\phi} = \mathcal{E}\mathbf{s} = C_{\phi}\mathcal{G}^{T} (\mathcal{G}C_{\phi}\mathcal{G}^{T} + C_{\eta})^{-1}\mathbf{s}$$

$$= (\mathcal{G}^{T}C_{\eta}^{-1}\mathcal{G} + C_{\phi}^{-1})^{-1}\mathcal{G}^{T}C_{\eta}^{-1}\mathbf{s}$$

$$= (\mathcal{G}^{T}\mathcal{G} + \sigma_{\eta}^{2}C_{\phi}^{-1})^{-1}\mathcal{G}^{T}\mathbf{s}, \text{ provided that } C_{\eta} = \sigma_{\eta}^{2}I$$

$$= \arg\min_{\phi}\{||\mathcal{G}\phi - \mathbf{s}||^{2} + \sigma_{\eta}^{2}\phi^{T}C_{\phi}^{-1}\phi\}$$

Minimum variance phase estimation is equivalent to Tikhonov regularization applied to equation $\mathcal{G}\phi = \mathbf{s}$ with penalty parameter $\alpha = \sigma_{\eta}^2$ and penalty operator $L = C_{\phi}^{-1}$.

Approaches to Reconstructor Computation

Poke Matrix Inversion. $R = P^{\dagger}$, where "poke matrix" $P = \mathcal{GH}$ maps actuators **a** to sensors **s**.

- Unsensed modes cannot be recovered.
- Can be unstable if *P* has small singular values.
- Doesn't incorporate prior information; not adaptive.

Minimum Variance Reconstructor (Walner Decomposition).

$$R_{\rm MV} = (\underbrace{\mathcal{H}^T \mathcal{H}}_{R_W})^{-1} \underbrace{\mathcal{H}^T C_{\phi} \mathcal{G}^T}_{A_W} (\underbrace{\mathcal{G} C_{\phi} \mathcal{G}^T + C_{\eta}}_{S_W})^{-1}$$

- Requires inversion of $R_W = \mathcal{H}^T \mathcal{H}$ (easy); additional regularization may be needed if R_W has small singular values.
- Requires inversion of S_W (hard for large matrices).
- Inversion of S_W is stable due to C_η term.

MV Reconstruction via F-E Decomposition

Assume ϕ is discretized; replace $\mathcal{H} \leftarrow H$ and $\mathcal{G} \leftarrow G$.

$$R_{\rm MV} = \underbrace{(H^T H)^{-1} H^T}_{F} \underbrace{(G^T C_{\eta}^{-1} G + C_{\phi}^{-1})^{-1} G^T C_{\eta}^{-1}}_{E}$$

- Fitting step requires inversion of $H^T H$, perhaps with regularization (easy).
- Estimation step is stable, due to regularization.
- Estimation step requires inversion of C_{η} (easy).
- Estimation step requires inversion of C_{ϕ} and $A = G^T C_{\eta}^{-1} G + C_{\phi}^{-1}$ (hard, but good approximations exist to make this much easier).

Matrix Inversion

Canonical Problem: Solve linear system $A\mathbf{x} = \mathbf{b}$, where A is nonsingular.

- In fitting step, $A = H^T H$.
- In estimation step, $A = G^T C_{\eta}^{-1} G + L$, where $L \approx C_{\phi}^{-1}$.

Gaussian Elimination. General-purpose algorithm to solve canonical problem.

- Works (at least in principle) for any nonsingular matrix A.
- Complexity, or computational cost, is $N^3/3 + O(N^2)$ when A is $N \times N$. Storage requirements are $\sim N^2$. Not practical when N is large.

More efficient algorithms to solve canonical problem must take advantage of special structure of A.

- Sparsity
- Spectral structure (eigenvalues and eigenvectors).

Sparse, Banded Matrices

Matrix *A* is called sparse is most of its entries are zeros.

More precisely, let nz(A) denote the number of nonzero entries in A, and let A be $N \times N$. Then A is sparse if

 $\operatorname{nz}(A) \ll N^2.$

Sparse matrix A is called banded with bandwidth w if

 $a_{ij} = 0$ whenever |i - j| > w.

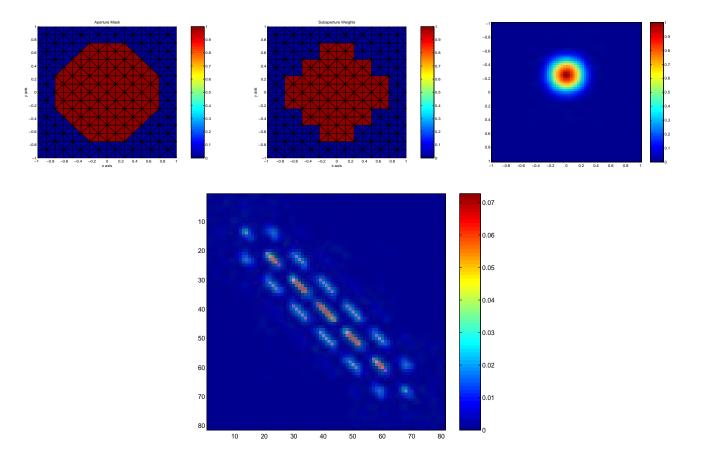
If A has bandwidth $w \ll N$, can modify Gaussian elimination (LU factorization) so that

- Storage is $N \times w$.
- Complexity is $N \times w + \mathcal{O}(N)$.

Resulting method is called a sparse, banded direct solver.

Application: Fitting Step in AO Wavefront Reconstruction

Requires inversion of matrix $A = H^T H$, where ith column of H is (discretized) response to ith actuator. For DM's with piezo-electric stack actuators, $N \times N$ matrix A is sparse and banded with bandwidth $w \sim \sqrt{N}$.



Storage and computational cost are both $\sim N^{3/2}$.

Iterative Methods for Linear Systems

Typically fall into 2 classes:

- Classical stationary fixed-point iterations based on matrix splittings.
- Krylov subspace methods.

Can combine 2 approaches, e.g., use splitting-based iteration as a preconditioner for a Krylov method.

Gauss-Seidel Iteration

Classical stationary fixed-point iterations based on splitting

A = L + D + U (lower triangular + diagonal + upper triangular)

Derivation of Method: $A\mathbf{x} = \mathbf{b} \iff (L+D)\mathbf{x} = \mathbf{b} - U\mathbf{x} \iff \mathbf{x} = (L+D)^{-1}(\mathbf{b} - U\mathbf{x}).$

Iteration is $\mathbf{x}_{k+1} = (L+D)^{-1}(\mathbf{b} - U\mathbf{x}_k), \ k = 0, 1, ...$

- L + D is inverted using forward elimination (analogous to back substitution).
- Cost per iteration is $\sim nz(A)$. This is often $\sim N$.
- Block variants are useful for estimation step in MCAO. Cost per iteration is dominated by inversion of diagonal blocks.
- Asymptotic convergence rate is usually slow, unless diagonal (or block diagonal) terms are relatively large.

Krylov Methods

If initial guess $\mathbf{x}_0 = \mathbf{0}$, these generate sequence of polynomial approximations to A^{-1} :

$$\mathbf{x}_{k+1} = \underbrace{(c_0 I + c_1 A + \ldots + c_k A^k)}_{p_k(A)} \mathbf{b} \approx A^{-1} \mathbf{b} \stackrel{\text{def}}{=} \mathbf{x}_*.$$

Best-known Krylov method is conjugate gradient iteration (CG).

- CG requires that A is symmetric and positive definite (SPD).
- CG is optimal in sense that "energy"

$$E(\mathbf{x}_{k+1}) \stackrel{\text{def}}{=} (\mathbf{x}_{k+1} - \mathbf{x}_*)^T A(\mathbf{x}_{k+1} - \mathbf{x}_*)$$

is minimized over all $\mathbf{x}_{k+1} = p_k(A)\mathbf{b}$, where the degree of polynomial p_k is $\leq k$.

- Requires one vector-matrix multiply per iteration, so cost per iteration is $\sim nz(A)$.
- Convergence is fast if condition number is small or if eigenvalues of A are "clustered" (i.e., they have relatively little spread). Error bound:

$$E(\mathbf{x}_k) \le 4 \left(\frac{\sqrt{\operatorname{cond}(A)} - 1}{\sqrt{\operatorname{cond}(A)} + 1}\right)^{2k} E(\mathbf{x}_0)$$

IPAM-2004 - p.24/3

Preconditioning

Transformation from $A\mathbf{x} = \mathbf{b}$ to $M^{-1}A\mathbf{x} = M^{-1}\mathbf{b}$. Nonsingular matrix M is called the preconditioner. Krylov iterative method is then applied to the transformed system.

To be effective

- $\tilde{A} = M^{-1}A$ must have a smaller condition number (better eigenvalue distribution) than does A. This implies faster convergence.
- Vector-matrix multiplication $M^{-1}\mathbf{v}$ must be cheap. This implies low cost per iteration.

Preconditioned conjugate gradient iteration (PCG) is standard for SPD systems.

- Preconditioner *M* must be SPD.
- Cost per iteration dominated by vector-matrix multiplications Av and $M^{-1}v$.

Choice of Preconditioners

No single preconditioner works well for all problems. Choice of preconditioner should be based on problem structure.

- ILU Preconditioner (stands for Incomplete Lower Upper matrix factorization).
 Works well for some sparse systems.
- Multigrid Preconditioners. Work well for certain discretizations of strongly elliptic partial differential equations, e.g., Laplace's equation. Can have complexity $\sim N!$
- (Block) Circulant Preconditioners. Work well for certain (block) Toeplitz systems. These rely on the FFT and have complexity $\sim N \log N$. Variants rely on the fast cosine transform.

What Works for AO Wavefront Reconstruction?

Existing fast methods use fitting-estimation decomposition of reconstructor $R_{\rm MV} = FE$, with $F = (H^T H)^{-1} H^T$ and $E = (G^T C_{\eta}^{-1} G + C_{\phi}^{-1})^{-1} G^T C_{\eta}^{-1}$.

Fitting Step. Invert $A = H^T H$, where the "influence matrix" H maps actuators to mirror deformations. For piezo-electric stack actuators, H is sparse and banded due to local support of the influence functions.

- Sparse, banded direct solvers work well. Complexity is $\sim N^{3/2}$.
- CG works OK. PCG with ILU preconditioning may be better.

Estimation Step. Invert $A = G^T C_{\eta}^{-1} G + C_{\phi}^{-1}$. Note: A is SPD.

Special structure for conventional AO with Shack-Hartmann sensors:

- C_{η} is sparse. If sensor interactions are negligible, C_{η} is diagonal.
- G is sparse.
- G looks like a discrete gradient, so $G^T G$ behaves like a discrete Laplacian.

Phase Covariance Approximations

Assume Kolmogorov statistics, conventional AO.

- C_{ϕ} is positive semidefinite (piston mode is in null space).
- On a regular rectangular grid, C_{ϕ} is block Toeplitz. This follows from stationarity.
- C_{ϕ} is not sparse; entries decay as $r^{-5/3}$. Sparse wavelet representation???

Block Circulant Approximation.

- Imbed aperture in larger rectangular computational domain. Use block circulant approximation to C_{ϕ} .
- C_{ϕ}^{-1} also block circulant; can be computed using 2-D FFTs with cost $\sim M \log M$.
- $M \ge 4N$ to prevent periodic artifacts; need more storage.
- Use Fast Cosine Transform?

Ellerbroek's sparse appoximation to inverse covariance.

- Motivation: Eigenvalues of C_{ϕ} decay as $\kappa^{-11/3}$; eigenvalues of the biharmonic (squared Laplacian) grow as κ^4 ; approximate C_{ϕ}^{-1} by the biharmonic.
- With standard finite difference or finite element approximations to the biharmonic, C_{ϕ}^{-1} is sparse and banded with bandwith $w = \sqrt{N}$ and $nz(A) \sim N$.
- Natural boundary conditions?

Implementation Details for Block Circulant Approximation

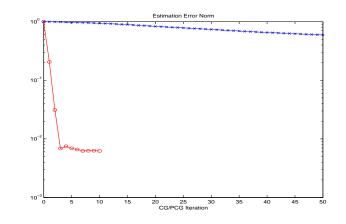
• With circular aperture and rectangular computational domain, $G^T C_{\eta}^{-1} G$ is not Toeplitz. Can't us FFTs to directly solve

$$(G^T C_{\eta}^{-1} G + C_{\phi}^{-1})\boldsymbol{\phi} = G^T C_{\eta}^{-1} \mathbf{s} \stackrel{\text{def}}{=} \mathbf{b}.$$

Instead use PCG with preconditioner based on splitting

$$\underbrace{(\omega I + C_{\phi}^{-1})}_{\text{block circulant}} \boldsymbol{\phi} = \mathbf{b} - \underbrace{(\omega I - G^T C_{\eta}^{-1} G)}_{\text{sparse}} \boldsymbol{\phi}, \quad \omega > 0.$$

Cost per iteration is $\sim M \log M$; PCG convergence is fast.



Implementation Details for Sparse Covariance Approx

Let L denote discrete biharmonic. Approximate C_{ϕ}^{-1} by γL ; can pick scaling factor

$$\begin{split} \gamma &= \arg \min \langle ||\hat{\phi} - \phi||^2 \rangle, \quad \hat{\phi} = \gamma L^{-1/2} w, \quad \phi = C^{1/2} w \\ &= \arg \min \operatorname{Trace}\{(\gamma L^{-1/2} - C^{1/2})(\gamma L^{-1/2} - C^{1/2})^T\} \\ &= \operatorname{Trace}(L^{-1/2} C^{1/2}) / \operatorname{Trace}(L). \end{split}$$

Need to invert $A = (G^T G + \gamma L)$.

Direct Approach.

• A is sparse and banded with bandwidth $w = N^{1/2}$. Sparse, banded direct solvers have complexity and storage $\sim N^{3/2}$.

Iterative Approach.

- A is SPD and $nz(A) \sim N$, so cost of vector-matrix multiplication with A is $\sim N$.
- As preconditioner, use multigrid with symmetric Gauss-Seidel smoother. Works well provided noise level is not too high (Laplacian term $G^T C_{\eta}^{-1} G$ dominates biharmonic term γL).
- Only 2 or 3 PCG iterations needed. Total cost is $\sim N!$

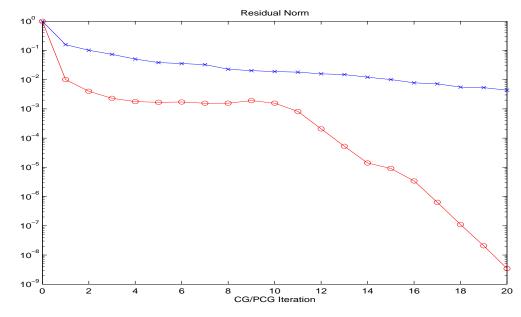
Computational Linear Algebra for MCAO Fitting Step

Requires inversion of matrix $A = \tilde{H}^T \tilde{H}$, where \tilde{H} is a row-block matrix with blocks $\tilde{H}_j = P_j H_j$.

- P_j represents propagation from turbulence layer at height z_j to the ground.
- H_j represents actuator influence on DM conjugate to layer z_j .

Direct Approach: *A* is sparse, but bandwidth is relatively large; reordering of unknowns can reduce bandwidth before application of sparse, banded direct solver.

Iterative Approach: PCG with ILU preconditioning is effective. Cost per iteration is $\sim N$.



Estimation (Tomography) Step in MCAO

Wavefront sensor measurements can be represented (after discretization) as

$$\mathbf{s}_k = G\left(\sum_{\ell=1}^{n_L} P_{k\ell} \rho_\ell\right) + \boldsymbol{\eta}_k,$$

where $P_{k\ell}$ represents propagation in direction k from layer ℓ to the ground. Need to invert block matrix \tilde{A} with blocks

$$\tilde{A}_{ij} = \sum_{k} P_{ki}^{T} G^{T} C_{\eta_k}^{-1} G P_{kj} + \delta_{ij} \alpha_i L_i.$$

Here $\delta_{ij} = 1$ if i = j and 0 otherwise, and L_i represents regularization for layer *i*.

- Take each L_i to be a discrete biharmonic. Then $nz(\tilde{A}) \sim N$.
- PCG with multigrid preconditioner, block symmetric Gauss Seidel smoother is effective. Inversion of diagonal blocks is dominant cost. With sparse, banded direct method, this cost is $\sim N_{\ell}^{3/2}$, where N_{ℓ} denotes size of diagonal blocks.

Selected Comp. Math & Inverse Problems References

- 1. O. Axelsson and V. A. Barker, *Finite Element Solution of Boundary Value Problems*, SIAM, Philadelphia, 2001.
- 2. Y. Saad, *Iterative Methods for Sparse Linear Systems*, (PWS Publishing Company, Boston, 1996).
- 3. U. Trottenberg, C. W. Oosterlee and A. Schüller, *Multigrid*, (Academic Press, London, 2001).
- 4. C. Vogel, Computational Methods for Inverse Problems, SIAM, 2002.

Selected AO References

- 1. B. L. Ellerbroek, "Efficient computation of minimum variance wavefront reconstructors using sparse matrix techniques," Journal of the Optical Society of America A, **19** (2002), pp. 1817-1822.
- 2. B. L. Ellerbroek, Luc Gilles, and C. R. Vogel, "A Computationally efficient wavefront reconstructor for simulation of multi-conjugate adaptive optics on giant telescopes", Proc. SPIE 4839-116, Adaptive Optics System Technologies II (2002).
- B. L. Ellerbroek, Luc Gilles, and C.R. Vogel, "Numerical simulations of multiconjugate adaptive optics wavefront reconstuction on giant telescopes", Applied Optics (2003).
- B. L. Ellerbroek and C.R. Vogel, "Simulations of closed-loop wavefront reconstruction for multiconjugate adaptive optics on giant telescopes", Proc. SPIE 5169-23, Adaptive Optics System Technologies II (2003).
- 5. Luc Gilles, "Order N Sparse Minimum-Variance Open-Loop Reconstructor for Extreme Adaptive Optics", Optics Letters **28**, pp. 1927-1929 (2003)
- 6. Luc Gilles, C.R. Vogel, and B. L. Ellerbroek, "A Multigrid Preconditioned Conjugate Gradient Method for Large Scale Wavefront Reconstruction", Journal of the Optical Society of America A, **19** (2002), pp. 1817-1822.

Selected AO References, Continued

- 7 Luc Gilles, Brent Ellerbroek, and C.R. Vogel, "Layer-oriented multigrid wavefront reconstruction algorithms for multi-conjugate adaptive optics", Proc. SPIE 4839-118, Adaptive Optics System Technologies II (2002).
- 8 E. P. Walner, "Optimal wavefront correction using slope measurements," Journal of the Optical Society of America **73**, pp. 1771–1776 (1983).