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Forward Model, or “Direct Problem”, in Adaptive Optics

Model measurements of wavefront slope

� � � � �� ��� � �� ��	 


, given

�

Sensor subapertures

�� , for

� � � �� � � , no. of subapertures.

�

View angles

�� , for

� � � �� � � , no. of view angles.

�

Atmospheric turbulence (refractive index ) profile � � � ��� � � � � 
 .

�

Idealized “point source” guide star at infinity.

Mathematical model for Shack-Hartmann wavefront sensor:

���� � � � � � � � 	 
 ��� � � �
��� � � �� 
 !#"

� �� $&% '� (� ��

where the aperture-plane phase in direction

� � � �) � � � � ) 	 � � 


is

�� �� � � 
 �
*

+ � �� , � ) � � � � � , � ) 	 � � � � 
- � $&% '� .� �
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Relevant Inverse Problems

Conventional AO Wavefront Sensing.
Estimate aperture-plane phase

� �� � � 
 , given

�� � (� � ,�� � ��� � � � � � �� � � � no. of subapertures�

Assumes

�

is independent of view angle

)

.

Operator Notation: � � ( �

.

Turbulence Profile Estimation, or“Tomography”, in MCAO:
Estimate turbulence profile � ��� � � � � 
 , given

���� � � (� .� � , � � ��� � � � � � �� � � � no. subaps � � � � �� � � � no. view angles �

Operator Notation: � � ( . �.
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Ill-Posedness

Operator equation � � ( �

is called ill-posed if any of the following conditions hold:

1. Nonexistence of a solution: There are measurement vectors � which do not
correspond to any solution

�

.

2. Nonuniqueness: There are measurement vectors � which correspond to several
different solutions

�

.

3. Instability: Certain small changes in the data � give rise to large changes in the
solution

�

.

Abstract Mathematical Definition Has Conceptual Difficulties ...

�

Given finite data � and a “distributed parameter”

�

which is a function of
continuous variables (� � � � � �� � � ), the solution is always nonunique, and hence,
ill-posed. Mathematicians examine ill-posedness of idealized problems with
infinite-dimensional data. In wavefront sensing, this corresponds to an arbitrarily
large number of sensors with arbitrarily small subapertures.

�

In practice, solution
�

must be discretized. Need to solve matrix-vector equation,

� � ��

.

�

Structure of discretized problem reflects structure of underlying distributed
parameter problem.
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Discretization

Distributed parameters can be well-represented by finite-dimensional approximations.

Example. Kolmogorov model for aperture-plane phase:

� ��� � � 
 �
� �

�� � �
� �

�� � �
� �� � � �
	 � � � ���� � � 	 ���� � �

with independent, random coefficients

� �� � � � �� � � �� � � ��� � � � � � 	 � � 
 � � � � �� 


. Infinite
series is well-represented by truncated finite sum.

Example. Spline (i.e., smooth piecewise polynomial) tensor product representation used
in finite elements,

� �� � � 
  

!
�� �

"
�� �

# �� � $ � ��� 
 $ � � � 


If

�

is smooth, approximation becomes more accurate as

% � &

increase.

IPAM-2004 – p.7/35



Singular Value Decomposition (SVD)

Tool to analyze discrete linear equations

�� � �. (Has continuous analogue.)

The SVD is a bi-orthonormal diagonalization of � �� matrix

� � ��� � � � � � � �� �	 


� � � �
 � � ��� � �� � � � � � 
� �	 


� � � �

��� � � � � � � �� �	 


� � � �

�

Singular values � � are nonnegative.

�

Right singular vectors � � � � �

are orthonormal,

� � � � � � � � .

�

Left singular vectors � � � � �

are orthonormal,

� � � � � � � � .

Closely related to eigendecomposition of symmetric matrix

� � �

:

� � � � � � � � � ��

Eigenvalues of

� � �

are squared singular values of

�

; eigenvectors of

� � �

are right
singular vectors.
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SVD, Least Squares, and the Pseudo-Inverse

Finite dimensional linear systems

�� � � always have a least squares solution

� � � �  � � � ���� � �
� � � � � � � � ��

If singular values are all positive, have unique least squares solution

� � � � � � � � 
 � � � � �

� �  � � � � �� � 
 � �

� �	 


� �% 	 $�
 � �� �%� �% � �
�

Otherwise, of all possible least squares solutions, the one of minimum Euclidean norm is

� � � �� � �  � � ��� �� 
 � �

� �	 


� �

�

where

� �� � � ��� � if � � � � �

�

if � � � � �
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Information from the SVD

Provided that

�

well-represents the distributed parameter

�

,

�

Zero singular values � � nonuniqueness.�

Corresponding singular vectors are unsensed modes.

�

Relatively small singular values � � instability.�

Corresponding right singular vectors are unstable modes.

The condition number is a measure of instability.

� � � 
 $&% '� largest singular value of

�

smallest nonzero singular value of

�

Matrix

�

is called ill-conditioned if � � � 

is relatively large.
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Regularization

�

In mathematics, “regularity” means smoothness.

�

Historically, accurate approximations to ill-posed inverse problems
( � � � were

obtained by imposing smoothness constraints on the solution
�

.

�

Regularization has evolved to mean any technique that yields accuarate
approximate solutions to

( � � �.

Very brief sketch of Mathematical Theory of regularization.
Problem with noisy data: � � ( ��

�� 	% , ��

Regularized solution

�� % � � �� % �
� � �� � � 


, depends on data �, prior information,
regularization parameters, ..., in a manner for which

�� % �
� ��
�� 	% as � � � �
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Truncated Singular Value Decomposition (TSVD)

Gives approximation

�
� to least squares minimimum norm solution to

�� � �.

� � � ! " � � � � � �  � � ��� �� 
 � � �

�
�" � +

� �� �
� � � �

 

� �" � �
� �� �

� � � �

� �	 


���

Can be rewritten as

�
� �

�
	 � � � �� 
 � �� �

� � � �

where filter function zeros components corresponding to small singular values.

	 � �
 
 � � � 
 � � �

� � 
 � ��
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Tikhonov Regularization

Yields penalized least squares approximation to

�� � �.

�
� �  � � � �� �

� � �� � � � � � , � � � � � � �

� � � � � , � � 
 � � � � �

�
�

� � � �� �

� �� , �
� �

�
�" � +

� ��
� �� , �

� �	 


� � � ��

� � � �" �
� �� �

� � � �

Tikhonov filter function is smoothed version of TSVD filter.
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Incorporating Prior Information

Illustrative Example. For simplicity suppose

� ��� 
  � "� � � �� $� �� 
 � � � � � �
.

Measure roughness of

�

by squared

� �

norm of derivative,

� � � 
 �

�
+

�- �
- �

� � - �

 

�
+ �

�� - $�
- �

�
� �

�� - $�
- �

�
� - �

�
� �

��
� �

+
- $�

- �
- $�

- � - � �

� �	 


� "	

��

� � � � � �

Tikhonov regularization with roughness penalty:

�
� �  � � � �� �

� � �� � � � � � , � � � � �

� � � � � , � � 
 � � � � ��
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Tikhonov Regularization–Minimum Variance Connection

Stochastic model for conventional AO sensor measurements:

� � ( � ,��

with noise� � � �� � ��� 


, independent of phase

� � � �� � �� 

.

Assume deformable mirror figure

��� � depends linearly on actuator vector �:

�� � �� � � 
 �
�

	� 
� �� � � 
 $&% '� � ��

Assume (open loop) actuator vector depend linearly on sensor measurements:

� � � ��

Minimum variance reconstruct matrix is

� � �  � � � ����� ��� � � � � � �� � � � ��� �  � � � �� � � � � � � � � � � � ��

�  � � � �� � � � � � � � � � ( 
 � � � �� � � ���
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Tikhonov-MV Connection, Continued

� �  �  � � � �� � ��  � � � � � � � � � ( 
 � � � �� � � � � � � � ( 
 � � � �� � ���

� � � � � 
 � � � �

� �	 


�� � � � � �� � � � %� �� 
 �

�� ( � � ( �� ( � , �� 
 � �

� �	 


	 � 
 � � ��� �� �
  � � % � �� 
 �

Fitting operator

 � � � � � 
 � � � �

maps phase estimate

� �
to actuator command �;

� � � � � � �� ( � � ( �� ( � , �� 
 � � �

� � ( � � � �� ( , � � �� 
 � � ( � � � �� �

� � ( � ( ,�� �� � � �� 
 � � ( � � � provided that

��� � � �� �

�  � � � ��� � � � ( � � � � � � ,�� �� � � � � �� ��

Minimum variance phase estimation is equivalent to Tikhonov regularization applied to

equation

( � � � with penalty parameter � � � �� and penalty operator

� � � � �� .
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Approaches to Reconstructor Computation

Poke Matrix Inversion.

� � � �

, where “poke matrix”

� � ( �

maps actuators � to
sensors �.�

Unsensed modes cannot be recovered.�

Can be unstable if

�

has small singular values.

�

Doesn’t incorporate prior information; not adaptive.

Minimum Variance Reconstructor (Walner Decomposition).

� �  � � � � �
� �	 
���


 � � � � �� ( �

� �	 
� �

� ( �� ( � , ��� �	 


��


 � �

�

Requires inversion of

��� � � � �
(easy); additional regularization may be

needed if

�� has small singular values.

�

Requires inversion of

�� (hard for large matrices).

�

Inversion of

�� is stable due to

� � term.
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MV Reconstruction via F-E Decomposition

Assume

�

is discretized; replace

� � �

and

( � �

.

� �  � � � � � 
 � � � �

� �	 


�

� � � � � �� � , � � �� 
 � � � � � � ��� �	 


�

�

Fitting step requires inversion of

� � �

, perhaps with regularization (easy).

�

Estimation step is stable, due to regularization.

�

Estimation step requires inversion of

� � (easy).

�

Estimation step requires inversion of
�� and

� � � � � � �� � , � � �� (hard, but

good approximations exist to make this much easier).
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Matrix Inversion

Canonical Problem: Solve linear system

��� � �

, where

�

is nonsingular.

�

In fitting step,

� � � � �

.

�

In estimation step,

� � � � � � �� � , �

, where

�  � � �� .

Gaussian Elimination. General-purpose algorithm to solve canonical problem.

�

Works (at least in principle) for any nonsingular matrix

�

.

�

Complexity, or computational cost, is

& � �� , � � & � 

when

�

is

& � &

. Storage
requirements are � & �

. Not practical when
&

is large.

More efficient algorithms to solve canonical problem must take advantage of special
structure of

�

.�

Sparsity

�

Spectral structure (eigenvalues and eigenvectors).
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Sparse, Banded Matrices

Matrix

�

is called sparse is most of its entries are zeros.

More precisely, let� � � � 


denote the number of nonzero entries in
�

, and let

�

be& � &

. Then

�

is sparse if

� � � � 
 � & ��
Sparse matrix

�

is called banded with bandwidth 	 if

	� � � � whenever
� � � � � � 	�

If

�

has bandwidth 	 � &

, can modify Gaussian elimination (LU factorization) so that

�

Storage is

& � 	.

�

Complexity is

& � 	 , � � & 

.

Resulting method is called a sparse, banded direct solver.
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Application: Fitting Step in AO Wavefront Reconstruction

Requires inversion of matrix

� � � � �

, where ith column of

�

is (discretized) response
to ith actuator. For DM’s with piezo-electric stack actuators,

& � &

matrix

�

is sparse

and banded with bandwidth 	 � � &

.
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. IPAM-2004 – p.21/35



Iterative Methods for Linear Systems

Typically fall into 2 classes:

�

Classical stationary fixed-point iterations based on matrix splittings.

�

Krylov subspace methods.

Can combine 2 approaches, e.g., use splitting-based iteration as a preconditioner for a
Krylov method.
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Gauss-Seidel Iteration

Classical stationary fixed-point iterations based on splitting

� � � , � , � �

lower triangular

,

diagonal

,

upper triangular




Derivation of Method:

��� � � � � � , � 
 � � � � �� � � � � � , � 
 � � � � � �� 


.

Iteration is �� � � � � � , � 
 � � � � � ��� 
 � � � � � � �� � �

� � , �

is inverted using forward elimination (analogous to back substitution).

�

Cost per iteration is � � � � � 


. This is often � &

.

�

Block variants are useful for estimation step in MCAO. Cost per iteration is
dominated by inversion of diagonal blocks.

�

Asymptotic convergence rate is usually slow, unless diagonal (or block diagonal)
terms are relatively large.
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Krylov Methods

If initial guess � + � � , these generate sequence of polynomial approximations to

� � �

:

� � � � � ��� +� , � � � , � � � , �� �� 


� �	 


�� � � �

�  � � � � $&% '� � ��

Best-known Krylov method is conjugate gradient iteration (CG).

�

CG requires that

�

is symmetric and positive definite (SPD).

�

CG is optimal in sense that “energy”

� � � � � � 
 $&% '� � � � � � � � �

 � � � � � � � � � �



is minimized over all � � � � � �� � � 
 �

, where the degree of polynomial �� is

� �

.

�

Requires one vector-matrix multiply per iteration, so cost per iteration is � � � � � 


.

�

Convergence is fast if condition number is small or if eigenvalues of

�

are
“clustered” (i.e., they have relatively little spread). Error bound:

� � � � 
 � �

� � ��  � � 
 � �

� � ��  � � 
 , �
��

� � � +
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Preconditioning

Transformation from

��� � �

to

% � � ��� � % � � �

. Nonsingular matrix
%

is called the
preconditioner. Krylov iterative method is then applied to the transformed system.

To be effective� � � � % � � �

must have a smaller condition number (better eigenvalue distribution)
than does

�

. This implies faster convergence.

�

Vector-matrix multiplication

% � � � must be cheap. This implies low cost per
iteration.

Preconditioned conjugate gradient iteration (PCG) is standard for SPD systems.

�

Preconditioner

%

must be SPD.�

Cost per iteration dominated by vector-matrix multiplications

� � and

% � � � .

IPAM-2004 – p.25/35



Choice of Preconditioners

No single preconditioner works well for all problems. Choice of preconditioner should be
based on problem structure.

�

ILU Preconditioner (stands for Incomplete Lower – Upper matrix factorization).
Works well for some sparse systems.

�

Multigrid Preconditioners. Work well for certain discretizations of strongly elliptic
partial differential equations, e.g., Laplace’s equation. Can have complexity � &

!

�

(Block) Circulant Preconditioners. Work well for certain (block) Toeplitz systems.
These rely on the FFT and have complexity � & � � � &

. Variants rely on the fast
cosine transform.
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What Works for AO Wavefront Reconstruction?

Existing fast methods use fitting-estimation decomposition of reconstructor
� �  � � �

,

with

� � � � � � 
 � � � �

and

� � � � � � � �� � , � � �� 
 � � � � � � �� .

Fitting Step. Invert

� � � � �

, where the “influence matrix”

�

maps actuators to mirror
deformations. For piezo-electric stack actuators,

�

is sparse and banded due to local
support of the influence functions.

�

Sparse, banded direct solvers work well. Complexity is � & � � �

.

�

CG works OK. PCG with ILU preconditioning may be better.

Estimation Step. Invert

� � � � � � �� � , � � �� . Note:

�

is SPD.

Special structure for conventional AO with Shack-Hartmann sensors:

� �� is sparse. If sensor interactions are negligible,

� � is diagonal.

� �

is sparse.

� �

looks like a discrete gradient, so

� � �

behaves like a discrete Laplacian.
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Phase Covariance Approximations

Assume Kolmogorov statistics, conventional AO.

� �� is positive semidefinite (piston mode is in null space).

�

On a regular rectangular grid,

�� is block Toeplitz. This follows from stationarity.

� �� is not sparse; entries decay as � � � � �

. Sparse wavelet representation???

Block Circulant Approximation.

�

Imbed aperture in larger rectangular computational domain. Use block circulant
approximation to

�� .

� � � �� also block circulant; can be computed using 2-D FFTs with cost � % � � � %

.

� % � � &

to prevent periodic artifacts; need more storage.

�

Use Fast Cosine Transform?

Ellerbroek’s sparse appoximation to inverse covariance.

�

Motivation: Eigenvalues of

�� decay as � � � � � �

; eigenvalues of the biharmonic

(squared Laplacian) grow as � �

; approximate

� � �� by the biharmonic.

�

With standard finite difference or finite element approximations to the biharmonic,� � �� is sparse and banded with bandwith 	 � � &

and� � � � 
 � &

.

�

Natural boundary conditions? IPAM-2004 – p.28/35



Implementation Details for Block Circulant Approximation

�

With circular aperture and rectangular computational domain,

� � � � �� �
is not

Toeplitz. Can’t us FFTs to directly solve

� � � � � �� � , � � �� 
 � � � � � � �� � $&% '� ��

�

Instead use PCG with preconditioner based on splitting

��� � , � � �� 


� �	 


�� 
 � � � �� � 	� � �
� � � � ��� � � � � � � �� � 


� �	 


� � �� �%

� � � � � �

Cost per iteration is � % � � � %

; PCG convergence is fast.
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Implementation Details for Sparse Covariance Approx

Let

�

denote discrete biharmonic. Approximate

� � �� by # �

; can pick scaling factor

# �  � � � �� � � � � � � � � � ��� � � � � # � � � � � 	 � � � � � � � 	

�  � � � �� ��  � � � � # � � � � �
� � � � � 
 � # � � � � �
� � � � � 
 � �

� ��  � � � � � � � � � � � � 
 � ��  � � � � 
�
Need to invert

� � � � � � , # � 


.

Direct Approach.

� �

is sparse and banded with bandwidth 	 � & � � �

. Sparse, banded direct solvers
have complexity and storage � & � � �

.

Iterative Approach.

� �

is SPD and� � � � 
 � &
, so cost of vector-matrix multiplication with

�

is � &

.

�

As preconditioner, use multigrid with symmetric Gauss-Seidel smoother. Works

well provided noise level is not too high (Laplacian term

� � � � �� �

dominates
biharmonic term # �

).

�

Only 2 or 3 PCG iterations needed. Total cost is � &

!
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Computational Linear Algebra for MCAO Fitting Step

Requires inversion of matrix

� � � � � � �

, where

� �

is a row-block matrix with blocks

� �� � �� �� .

� �� represents propagation from turbulence layer at height �� to the ground.

� �� represents actuator influence on DM conjugate to layer �� .

Direct Approach:

�

is sparse, but bandwidth is relatively large; reordering of unknowns
can reduce bandwidth before application of sparse, banded direct solver.

Iterative Approach: PCG with ILU preconditioning is effective. Cost per iteration is � &

.
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Estimation (Tomography) Step in MCAO

Wavefront sensor measurements can be represented (after discretization) as

�� � �
��

�� �
�� � � � ,�� � �

where

�� �represents propagation in direction

�

from layer
�

to the ground. Need to

invert block matrix

� �

with blocks

� �� � �
�

� �� � � � � � �� � � �� � , �� � �� �� �

Here

�� � � �

if

� � �

and

�

otherwise, and
�� represents regularization for layer

�

.

�

Take each

�� to be a discrete biharmonic. Then� � � � � 
 � &

.

�

PCG with multigrid preconditioner, block symmetric Gauss Seidel smoother is
effective. Inversion of diagonal blocks is dominant cost. With sparse, banded direct

method, this cost is � & � � �
� , where

& �denotes size of diagonal blocks.
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7 Luc Gilles, Brent Ellerbroek, and C.R. Vogel, “Layer-oriented multigrid wavefront
reconstruction algorithms for multi-conjugate adaptive optics", Proc. SPIE
4839-118, Adaptive Optics System Technologies II (2002).

8 E. P. Walner, “Optimal wavefront correction using slope measurements,” Journal of
the Optical Society of America 73, pp. 1771–1776 (1983).

IPAM-2004 – p.35/35


	Acknowledgments
	Outline
	Forward Model, or ``Direct Problem'', in Adaptive Optics
	Relevant Inverse Problems
	Ill-Posedness
	Discretization
	Singular Value Decomposition (SVD)
	SVD, Least Squares, and the Pseudo-Inverse
	Information from the SVD
	Regularization
	Truncated Singular Value Decomposition (TSVD)
	Tikhonov Regularization
	Incorporating Prior Information
	Tikhonov Regularization--Minimum Variance Connection
	Tikhonov-MV Connection, Continued
	Approaches to Reconstructor Computation
	MV Reconstruction via F-E Decomposition
	Matrix Inversion
	Sparse, Banded Matrices
	Application: Fitting Step in AO Wavefront Reconstruction
	Iterative Methods for Linear Systems
	Gauss-Seidel Iteration
	Krylov Methods
	Preconditioning
	Choice of Preconditioners
	What Works for AO Wavefront Reconstruction?
	Phase Covariance Approximations
	Implementation Details for Block Circulant Approximation
	Implementation Details for Sparse Covariance Approx
	Computational Linear Algebra for MCAO Fitting Step
	Estimation (Tomography)
Step in MCAO
	Selected Comp. Math & Inverse Problems References
	Selected AO References
	Selected AO References, Continued

