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Forward Model, or “Direct Problem”, in Adaptive Optics

Model measurements of wavefront slope

� � � � �� ��� � �� ��	 


, given

�

Sensor subapertures

�
� , for

� � � �� � � , no. of subapertures.

�

View angles

�
� , for

� � � �� � � , no. of view angles.

�

Atmospheric turbulence (refractive index ) profile � � � ��� � � � � 
 .

�

Idealized “point source” guide star at infinity.

Mathematical model for Shack-Hartmann wavefront sensor:

���� � � � � � � � 	 
 ��� � � �
��� � � �� 
 !#"

� �� $&% '� (� ��

where the aperture-plane phase in direction

� � � �) � � � � ) 	 � � 


is

�� �� � � 
 �
*

+ � �� , � ) � � � � � , � ) 	 � � � � 
- � $&% '� .� �
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Relevant Inverse Problems

Conventional AO Wavefront Sensing.
Estimate aperture-plane phase

� �� � � 
 , given

�� � (� � ,�� � ��� � � � � � �� � � � no. of subapertures�

Assumes

�

is independent of view angle

)

.

Operator Notation: � � ( �

.

Turbulence Profile Estimation, or“Tomography”, in MCAO:
Estimate turbulence profile � ��� � � � � 
 , given

���� � � (� .� � , � � ��� � � � � � �� � � � no. subaps � � � � �� � � � no. view angles �

Operator Notation: � � ( . �.
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Ill-Posedness

Operator equation � � ( �

is called ill-posed if any of the following conditions hold:

1. Nonexistence of a solution: There are measurement vectors � which do not
correspond to any solution

�

.

2. Nonuniqueness: There are measurement vectors � which correspond to several
different solutions

�

.

3. Instability: Certain small changes in the data � give rise to large changes in the
solution

�

.

Abstract Mathematical Definition Has Conceptual Difficulties ...

�

Given finite data � and a “distributed parameter”

�

which is a function of
continuous variables (� � � � � �� � � ), the solution is always nonunique, and hence,
ill-posed. Mathematicians examine ill-posedness of idealized problems with
infinite-dimensional data. In wavefront sensing, this corresponds to an arbitrarily
large number of sensors with arbitrarily small subapertures.

�

In practice, solution
�

must be discretized. Need to solve matrix-vector equation,

� � ��

.

�

Structure of discretized problem reflects structure of underlying distributed
parameter problem.
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Discretization

Distributed parameters can be well-represented by finite-dimensional approximations.

Example. Kolmogorov model for aperture-plane phase:

� ��� � � 
 �
� �

�� � �
� �

�� � �
� �� � � �
	 � � � ��
�� � � 	 ���� � �

with independent, random coefficients

� �� � � � �� � � �� � � ��� � � � � � 	 � � 
 � � � � �� 


. Infinite
series is well-represented by truncated finite sum.

Example. Spline (i.e., smooth piecewise polynomial) tensor product representation used
in finite elements,

� �� � � 
  

!
�� �

"
�� �

# �� � $ � ��� 
 $ � � � 


If

�

is smooth, approximation becomes more accurate as

% � &

increase.
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Singular Value Decomposition (SVD)

Tool to analyze discrete linear equations

�� � �. (Has continuous analogue.)

The SVD is a bi-orthonormal diagonalization of � �� matrix

� � ��� � � � � � � �� �	 


� � � �

 � � ��� � �� � � � � � 
� �	 


� � � �

��� � � � � � � �� �	 


� � � �

�

Singular values � � are nonnegative.

�

Right singular vectors � � � � �

are orthonormal,

� � � � � � � � .

�

Left singular vectors � � � � �

are orthonormal,

� � � � � � � � .

Closely related to eigendecomposition of symmetric matrix

� � �

:

� � � � � � � � � ��

Eigenvalues of

� � �

are squared singular values of

�

; eigenvectors of

� � �

are right
singular vectors.
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SVD, Least Squares, and the Pseudo-Inverse

Finite dimensional linear systems

�� � � always have a least squares solution

� � � �  � � � ���� � �
� � � � � � � � ��

If singular values are all positive, have unique least squares solution

� � � � � � � � 
 � � � � �

� � 
 � � � � �� � 
 � �

� �	 


� �% 	 $�
 � ��
 �%� �% � �
�

Otherwise, of all possible least squares solutions, the one of minimum Euclidean norm is

� � � �� � � 
 � � ��� �� 
 � �

� �	 


� �

�

where

� �� � � ��� � if � � � � �

�

if � � � � �
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Information from the SVD

Provided that

�

well-represents the distributed parameter

�

,

�

Zero singular values � � nonuniqueness.�

Corresponding singular vectors are unsensed modes.

�

Relatively small singular values � � instability.�

Corresponding right singular vectors are unstable modes.

The condition number is a measure of instability.

� � � 
 $&% '� largest singular value of

�

smallest nonzero singular value of

�

Matrix

�

is called ill-conditioned if � � � 

is relatively large.
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Regularization

�

In mathematics, “regularity” means smoothness.

�

Historically, accurate approximations to ill-posed inverse problems
( � � � were

obtained by imposing smoothness constraints on the solution
�

.

�

Regularization has evolved to mean any technique that yields accuarate
approximate solutions to

( � � �.

Very brief sketch of Mathematical Theory of regularization.
Problem with noisy data: � � ( ��

�� 	% , ��

Regularized solution

�� % � � �� % �
� � �� � � 


, depends on data �, prior information,
regularization parameters, ..., in a manner for which

�� % �
� ��
�� 	% as � � � �
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Truncated Singular Value Decomposition (TSVD)

Gives approximation

�
� to least squares minimimum norm solution to

�� � �.

� � � ! " � � � � � � 
 � � ��� �� 
 � � �

�
�" � +

� �� �
� � � �

 

� �" � �
� �� �

� � � �

� �	 


���

Can be rewritten as

�
� �

�
	 � � � �� 
 � �� �

� � � �

where filter function zeros components corresponding to small singular values.

	 � �
 
 � � � 
 � � �

� � 
 � ��
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Tikhonov Regularization

Yields penalized least squares approximation to

�� � �.

�
� �  � � � �� �

� � �� � � � � � , � � � � � � �

� � � � � , � � 
 � � � � �

�
�

� � � �� �

� �� , �
� �

�
�" � +

� ��
� �� , �

� �	 


� � � ��

� � � �" �
� �� �

� � � �

Tikhonov filter function is smoothed version of TSVD filter.
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Incorporating Prior Information

Illustrative Example. For simplicity suppose

� ��� 
  � "� � � �� $� �� 
 � � � � � �
.

Measure roughness of

�

by squared

� �

norm of derivative,

� � � 
 �

�
+

�- �
- �

� � - �

 

�
+ �

�� - $�
- �

�
� �

�� - $�
- �

�
� - �

�
� �

��
� �

+
- $�

- �
- $�

- � - � �

� �	 


� "	

��

� � � � � �

Tikhonov regularization with roughness penalty:

�
� �  � � � �� �

� � �� � � � � � , � � � � �

� � � � � , � � 
 � � � � ��

IPAM-2004 – p.14/35



Tikhonov Regularization–Minimum Variance Connection

Stochastic model for conventional AO sensor measurements:

� � ( � ,��

with noise� � � �� � ��� 


, independent of phase

� � � �� � �� 

.

Assume deformable mirror figure

��� � depends linearly on actuator vector �:

�� � �� � � 
 �
�

	� 
� �� � � 
 $&% '� � ��

Assume (open loop) actuator vector depend linearly on sensor measurements:

� � � ��

Minimum variance reconstruct matrix is

� �
 �  � � � ����� ��� � � � � � �� � � � ��� �  � � � �� � � � � � � � � � � � ��

�  � � � �� � � � � � � � � � ( 
 � � � �� � � ���
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Tikhonov-MV Connection, Continued

� � 
 �  � � � �� � ��  � � � � � � � � � ( 
 � � � �� � � � � � � � ( 
 � � � �� � ���

� � � � � 
 � � � �

� �	 


�� � � � � ��
 � � � %� �� 
 �

�� ( � � ( �� ( � , �� 
 � �

� �	 


	 � 
 � � ��� �� �
 
 � � % � �� 
 �

Fitting operator


 � � � � � 
 � � � �

maps phase estimate

� �
to actuator command �;

� � � � � � �� ( � � ( �� ( � , �� 
 � � �

� � ( � � � �� ( , � � �� 
 � � ( � � � �� �

� � ( � ( ,�� �� � � �� 
 � � ( � � � provided that

��� � � �� �

�  � � � ��� � � � ( � � � � � � ,�� �� � � � � �� ��

Minimum variance phase estimation is equivalent to Tikhonov regularization applied to

equation

( � � � with penalty parameter � � � �� and penalty operator

� � � � �� .
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Approaches to Reconstructor Computation

Poke Matrix Inversion.

� � � �

, where “poke matrix”

� � ( �

maps actuators � to
sensors �.�

Unsensed modes cannot be recovered.�

Can be unstable if

�

has small singular values.

�

Doesn’t incorporate prior information; not adaptive.

Minimum Variance Reconstructor (Walner Decomposition).

� � 
 � � � � �
� �	 
���


 � � � � �� ( �

� �	 
� �

� ( �� ( � , ��� �	 


��


 � �

�

Requires inversion of

��� � � � �
(easy); additional regularization may be

needed if

�� has small singular values.

�

Requires inversion of

�� (hard for large matrices).

�

Inversion of

�� is stable due to

� � term.
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MV Reconstruction via F-E Decomposition

Assume

�

is discretized; replace

� � �

and

( � �

.

� � 
 � � � � � 
 � � � �

� �	 


�

� � � � � �� � , � � �� 
 � � � � � � ��� �	 


�

�

Fitting step requires inversion of

� � �

, perhaps with regularization (easy).

�

Estimation step is stable, due to regularization.

�

Estimation step requires inversion of

� � (easy).

�

Estimation step requires inversion of
�� and

� � � � � � �� � , � � �� (hard, but

good approximations exist to make this much easier).
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Matrix Inversion

Canonical Problem: Solve linear system

��� � �

, where

�

is nonsingular.

�

In fitting step,

� � � � �

.

�

In estimation step,

� � � � � � �� � , �

, where

�  � � �� .

Gaussian Elimination. General-purpose algorithm to solve canonical problem.

�

Works (at least in principle) for any nonsingular matrix

�

.

�

Complexity, or computational cost, is

& � �� , � � & � 

when

�

is

& � &

. Storage
requirements are � & �

. Not practical when
&

is large.

More efficient algorithms to solve canonical problem must take advantage of special
structure of

�

.�

Sparsity

�

Spectral structure (eigenvalues and eigenvectors).
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Sparse, Banded Matrices

Matrix

�

is called sparse is most of its entries are zeros.

More precisely, let� � � � 


denote the number of nonzero entries in
�

, and let

�

be& � &

. Then

�

is sparse if

� � � � 
 � & ��
Sparse matrix

�

is called banded with bandwidth 	 if

	� � � � whenever
� � � � � � 	�

If

�

has bandwidth 	 � &

, can modify Gaussian elimination (LU factorization) so that

�

Storage is

& � 	.

�

Complexity is

& � 	 , � � & 

.

Resulting method is called a sparse, banded direct solver.
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Application: Fitting Step in AO Wavefront Reconstruction

Requires inversion of matrix

� � � � �

, where ith column of

�

is (discretized) response
to ith actuator. For DM’s with piezo-electric stack actuators,

& � &

matrix

�

is sparse

and banded with bandwidth 	 � � &

.
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Iterative Methods for Linear Systems

Typically fall into 2 classes:

�

Classical stationary fixed-point iterations based on matrix splittings.

�

Krylov subspace methods.

Can combine 2 approaches, e.g., use splitting-based iteration as a preconditioner for a
Krylov method.
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Gauss-Seidel Iteration

Classical stationary fixed-point iterations based on splitting

� � � , � , � �

lower triangular

,

diagonal

,

upper triangular




Derivation of Method:

��� � � � � � , � 
 � � � � �� � � � � � , � 
 � � � � � �� 


.

Iteration is �� � � � � � , � 
 � � � � � ��� 
 � � � � � � �� � �

� � , �

is inverted using forward elimination (analogous to back substitution).

�

Cost per iteration is � � � � � 


. This is often � &

.

�

Block variants are useful for estimation step in MCAO. Cost per iteration is
dominated by inversion of diagonal blocks.

�

Asymptotic convergence rate is usually slow, unless diagonal (or block diagonal)
terms are relatively large.
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Krylov Methods

If initial guess � + � � , these generate sequence of polynomial approximations to

� � �

:

� � � � � ��� +� , � � � , � � � , �� �� 


� �	 


�� � � �

�  � � � � $&% '� � ��

Best-known Krylov method is conjugate gradient iteration (CG).

�

CG requires that

�

is symmetric and positive definite (SPD).

�

CG is optimal in sense that “energy”

� � � � � � 
 $&% '� � � � � � � � �

 � � � � � � � � � �



is minimized over all � � � � � �� � � 
 �

, where the degree of polynomial �� is

� �

.

�

Requires one vector-matrix multiply per iteration, so cost per iteration is � � � � � 


.

�

Convergence is fast if condition number is small or if eigenvalues of

�

are
“clustered” (i.e., they have relatively little spread). Error bound:

� � � � 
 � �

� � �� 
 � � 
 � �

� � �� 
 � � 
 , �
��

� � � +


IPAM-2004 – p.24/35



Preconditioning

Transformation from

��� � �

to

% � � ��� � % � � �

. Nonsingular matrix
%

is called the
preconditioner. Krylov iterative method is then applied to the transformed system.

To be effective� � � � % � � �

must have a smaller condition number (better eigenvalue distribution)
than does

�

. This implies faster convergence.

�

Vector-matrix multiplication

% � � � must be cheap. This implies low cost per
iteration.

Preconditioned conjugate gradient iteration (PCG) is standard for SPD systems.

�

Preconditioner

%

must be SPD.�

Cost per iteration dominated by vector-matrix multiplications

� � and

% � � � .
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Choice of Preconditioners

No single preconditioner works well for all problems. Choice of preconditioner should be
based on problem structure.

�

ILU Preconditioner (stands for Incomplete Lower – Upper matrix factorization).
Works well for some sparse systems.

�

Multigrid Preconditioners. Work well for certain discretizations of strongly elliptic
partial differential equations, e.g., Laplace’s equation. Can have complexity � &

!

�

(Block) Circulant Preconditioners. Work well for certain (block) Toeplitz systems.
These rely on the FFT and have complexity � & � � � &

. Variants rely on the fast
cosine transform.
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What Works for AO Wavefront Reconstruction?

Existing fast methods use fitting-estimation decomposition of reconstructor
� � 
 � � �

,

with

� � � � � � 
 � � � �

and

� � � � � � � �� � , � � �� 
 � � � � � � �� .

Fitting Step. Invert

� � � � �

, where the “influence matrix”

�

maps actuators to mirror
deformations. For piezo-electric stack actuators,

�

is sparse and banded due to local
support of the influence functions.

�

Sparse, banded direct solvers work well. Complexity is � & � � �

.

�

CG works OK. PCG with ILU preconditioning may be better.

Estimation Step. Invert

� � � � � � �� � , � � �� . Note:

�

is SPD.

Special structure for conventional AO with Shack-Hartmann sensors:

� �� is sparse. If sensor interactions are negligible,

� � is diagonal.

� �

is sparse.

� �

looks like a discrete gradient, so

� � �

behaves like a discrete Laplacian.
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Phase Covariance Approximations

Assume Kolmogorov statistics, conventional AO.

� �� is positive semidefinite (piston mode is in null space).

�

On a regular rectangular grid,

�� is block Toeplitz. This follows from stationarity.

� �� is not sparse; entries decay as � � � � �

. Sparse wavelet representation???

Block Circulant Approximation.

�

Imbed aperture in larger rectangular computational domain. Use block circulant
approximation to

�� .

� � � �� also block circulant; can be computed using 2-D FFTs with cost � % � � � %

.

� % � � &

to prevent periodic artifacts; need more storage.

�

Use Fast Cosine Transform?

Ellerbroek’s sparse appoximation to inverse covariance.

�

Motivation: Eigenvalues of

�� decay as � � � � � �

; eigenvalues of the biharmonic

(squared Laplacian) grow as � �

; approximate

� � �� by the biharmonic.

�

With standard finite difference or finite element approximations to the biharmonic,� � �� is sparse and banded with bandwith 	 � � &

and� � � � 
 � &

.

�

Natural boundary conditions? IPAM-2004 – p.28/35



Implementation Details for Block Circulant Approximation

�

With circular aperture and rectangular computational domain,

� � � � �� �
is not

Toeplitz. Can’t us FFTs to directly solve

� � � � � �� � , � � �� 
 � � � � � � �� � $&% '� ��

�

Instead use PCG with preconditioner based on splitting

��� � , � � �� 


� �	 


�� 
 � � � �� � 	� �
 �
� � � � ��� � � � � � � �� � 


� �	 


� � �� �%

� � � � � �

Cost per iteration is � % � � � %

; PCG convergence is fast.
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Implementation Details for Sparse Covariance Approx

Let

�

denote discrete biharmonic. Approximate

� � �� by # �

; can pick scaling factor

# �  � � � �� � � � � � � � � � ��� � � � � # � � � � � 	 � � � � � � � 	

�  � � � �� ��  � � � � # � � � � �
� � � � � 
 � # � � � � �
� � � � � 
 � �

� ��  � � � � � � � � � � � � 
 � ��  � � � � 
�
Need to invert

� � � � � � , # � 


.

Direct Approach.

� �

is sparse and banded with bandwidth 	 � & � � �

. Sparse, banded direct solvers
have complexity and storage � & � � �

.

Iterative Approach.

� �

is SPD and� � � � 
 � &
, so cost of vector-matrix multiplication with

�

is � &

.

�

As preconditioner, use multigrid with symmetric Gauss-Seidel smoother. Works

well provided noise level is not too high (Laplacian term

� � � � �� �

dominates
biharmonic term # �

).

�

Only 2 or 3 PCG iterations needed. Total cost is � &

!
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Computational Linear Algebra for MCAO Fitting Step

Requires inversion of matrix

� � � � � � �

, where

� �

is a row-block matrix with blocks

� �� � �� �� .

� �� represents propagation from turbulence layer at height �� to the ground.

� �� represents actuator influence on DM conjugate to layer �� .

Direct Approach:

�

is sparse, but bandwidth is relatively large; reordering of unknowns
can reduce bandwidth before application of sparse, banded direct solver.

Iterative Approach: PCG with ILU preconditioning is effective. Cost per iteration is � &

.

0 2 4 6 8 10 12 14 16 18 20
10

−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

CG/PCG Iteration

Residual Norm

IPAM-2004 – p.31/35



Estimation (Tomography) Step in MCAO

Wavefront sensor measurements can be represented (after discretization) as

�� � �
��

�� �
�� � � � ,�� � �

where

�� �represents propagation in direction

�

from layer
�

to the ground. Need to

invert block matrix

� �

with blocks

� �� � �
�

� �� � � � � � �� � � �� � , �� � �� �� �

Here

�� � � �

if

� � �

and

�

otherwise, and
�� represents regularization for layer

�

.

�

Take each

�� to be a discrete biharmonic. Then� � � � � 
 � &

.

�

PCG with multigrid preconditioner, block symmetric Gauss Seidel smoother is
effective. Inversion of diagonal blocks is dominant cost. With sparse, banded direct

method, this cost is � & � � �
� , where

& �denotes size of diagonal blocks.
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