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Outline:

Important issues: Why is modern finance mathematical? What is
systemic risk?

1. A brief historical overview of mathematical finance

2. The role of volatility

3. Current research directions in mathematical finance

4. Mean field models of systemic risk

5. Large deviations for mean field models

6. Concluding remarks
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A historical review

• 1900: Bachelier defends thesis on ”Theory of Speculation” and
”invents” Brownian motion. Probability theory enters finance.

• 1929-1940: Great depression, contraction of financial markets.
Qualitative ”Macroeconomic Theory” dominates.

• 1973-1974: Black-Scholes-Merton theory of options pricing. Chicago
Board of Options Exchange opens. Options become financial
instruments with which risk (in currency exchange) can be managed.
Migration of mathematicians and physicists to Investemnt Banking.

• 1987-2008: Golden age of financial mathematics. Banking,
investment and finance become a quantitative and data-driven
industry. Thousands of scientists, engineers and mathematicians
enter the field. More that 30 top universities around the world
establish degree programs in ”Financial Mathematics and
Engineering”. Research publications on mathematical problems in
investment and finance increase dramatically.

• 2008-2010: Critical reorientation of research priorities in quantitative
finance with emphasis on risk. Acceleration of mathematization of
investment and finance.
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The S&P 500 Index of US Equities (Fig: 2006-10)

• S&P 500: An index that measures the value of the top 500
American companies by capitalization.

• Long term (50 year) statistics: Growth rate 11 − 12% annualized
(but negative in last 10 years), Realized Volatility 12 − 13%.

• Derivatives: Financial contracts (instruments) that are traded and
whose value depends on another traded instrument

• Index Options (puts and calls): Derivatives that are highly liquid and
can be used to control the risk of holding equities
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The volatility index (VIX) (Fig: 1990-2010)

• Why is volatility important? Because risk management and the
instruments used for it, such as options, depend essentially on
volatility. They do not depend essentially on the gain or the loss of
the value of the equity.

• Volatility is an indicator of market ”health”, like the temperature of
the human body. VIX is a special, very important volatility index
derived implicitly from options. Volatility generation and liquidity.
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VIX and S&P 500

• When markets are healthy volatility is low and liquidity high
• When volatility is high markets can be unstable
• VIX and S&P 500 are strongly negatively correlated
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Some mathematical research trends in finance

• Modeling fluctuations of prices (started with Bachelier; complexity
increases)

• Pricing financial contracts (commodities, futures, insurance, etc)
• Pricing options (Black-Scholes theory)
• Managing investment portfolios
• Pricing bonds (credit instruments)
• Pricing credit default swaps (insurance against default and loss of

value of bonds)
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What is systemic risk and how to model it

Consider an evolving system with a large number of inter-connected
components, each of which can be in a normal state or in a failed state.
We want to study the probability of overall failure of the system, that is,
its systemic risk.
There are three effects that we want to model and that contribute to the
behavior of systemic risk:

• The intrinsic stability of each component

• The strength of external random perturbations to the system

• The degree of inter-connectedness or cooperation between
components
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Possible applications

• Engineering systems with a large number of interacted parts.
Components can fail but the system fails only when a large number
of components fail simultaneously.

• Power distribution systems. Individual components of the system are
calibrated to withstand fluctuations in demand by sharing loads. But
sharing also increases the probability of an overall failure.

• Banking systems. Banks cooperate and by spreading the risk of
credit shocks between them can operate with less restrictive
individual risk policies (capital reserves). However, this increases the
risk that they may all fail, that is, the systemic risk.
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A basic, bistable mean-field model

• The risk variable xj (t) of each component j = 1, . . . ,N, satisfies the SDEs

dxj (t) = −h
∂

∂y
V
(

xj (t)
)

dt+ θ
(

x̄ (t) − xj (t)
)

dt+σdwj (t)

• Here V (y) is a potential with two stable states. Without noise, the individual
risk xj (t) stays in these states, one of which denotes the normal state and the
other the failed state.

• A typical but not unique choice of V (y) is V (y) = − 1
4y

4 + 1
2y

2. The
parameter h controls the probility with which xj jumps from one state to the
other.

•

{
wj

}N
j=1

are independent Brownian motions and σ is their strength.

• x̄ = 1
N

∑N
i=1 xi is the mean-field, which we take (define) as the systemic risk,

and θ
(

x̄− xj
)

, with θ > 0, is the cooperative interaction parameter.
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Why this model?

• The three parameters, h, σ and θ control the three effects we want
to study: (i) Intrinsic stability, (ii) random perturbations, and (iii)
the degree of cooperation, respectively.

• Why mean field interaction? Because it is perhaps the simplest
interaction that models cooperative behavior. And it can be
generalized to include diversity, as explained later, as well as other
more complex interactions such as hierarchical ones.

• Connection with QMU (Quantification of Margins of Uncertainty):
In a cooperating or inter-connected system, individual components
can be operating closer to their margin of failure, as they can benefit
from the stability of the rest of the system. This, however, reduces
the overall margin of uncertainty, that is, increases the systemic
risk. This is one of the main results of the analysis.
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Schematic for the risk of one component
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The large system limit (N → ∞)

• The empirical risk density XN (t) := 1
N

∑N
j=1 δxj(t)(·) converges weakly, in

probability, as N→ ∞ to u (t, ·), the solution of the nonlinear Fokker-Planck
equation :

∂

∂t
u = h

∂

∂y
[U (y)u] +

1

2
σ2 ∂

2

∂y2
u− θ

∂

∂y

{[∫

yu (t,dy) − y

]

u

}

U (y) =
d

dy
V (y) .

• Existence of bi-stable equilibrium states in the limit: Given θ and h, there exists
a critical value σc such that u has one stable equilibrium for σ > σc, and has
two stable equilibria for σ < σc.

• Simplification: If h is small, then u have the bi-stable states if and only if
3σ2 < 2θ.

• Explanation: The condition 2θ > 3σ2 means that the system interaction
dominates the noise, and therefore component cooperation dominates. In
contrast, with strong noise forces, all xj’s act more as independent components
and roughly one half are in one state and the rest are in the other state.
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Simulation 1 - Impact of increasing θ (stabilizing) and σ

(destabilizing)
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Simulation 2 - Impact of increasing h(stabilizing) and N
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Transition to failure and its probability

• For σ < σc (or 3σ2 < 2θ for small h), the value of the systemic risk
remains around x̄ ≈ ±ξb.

• Because of the randomness, the transition in (0, T) (or the system collapse
in the risk sense):

x̄ (0) ≈ −ξb, x̄ (T) ≈ ξb

happens with nonzero probability.

• Question: What is the probability of this happening?
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Large deviation principle

• The asymptotic probabilities, for large N, can be computed through a large deviation
principle.

• [Dawson & Gartner, 1987] M1 (R) is the space of probability measures on R, and A is a set
of M1 (R)-valued continuous process on [0,T ]. Then

P (XN ∈ A) ≈ exp

(

−N inf
φ∈A

Ih (φ)

)

where

Ih (φ) =
1

2σ2

∫T

0

sup

f:
〈

φ,
(

∂
∂y
f
)2〉

6=0

〈

∂
∂t
φ− L∗

φφ−hM∗φ, f
〉2

〈

φ,
(

∂
∂y
f
)2〉

dt

L
∗
ψφ =

1

2
σ2 ∂

2

∂y2
φ− θ

∂

∂y

{[∫

yψ (t,dy) − y

]

φ

}

M
∗φ =

∂

∂y

[(

y3 − y
)

φ
]

.

• To compute the transition probability, A is the set of all continuous transition paths:

A =
{
φ : [0,T ] →M1 (R) , Eφ(0)X = −ξb, Eφ(T)X = ξb

}
.

G. Papanicolaou, IPAM 10th Systemic Risk 17/26



Small h (intrinsic stability) analysis

• Why consider small h?

• The problem is nonlinear and infinite-dimensional, and is generally intractable.
• If h is small then the problem can be reduced to a finite-dimensional problem. For
V (y) = − 1

4y
4 + 1

2y
2, it is a four-dimension problem.

• Numerical simulations show that the probability of transitions is almost zero even for
moderate h.

• When h = 0, the systemic risk is effectively a Brownian motion:

x̄ (t) =
σ

√
N
w̄ (t) .

We expect, therefore, that for small h, a transition path of empirical densities is Gaussian
with a small perturbation:

A=





φ=p+hq :p(t,y) =

1
√

2πb2 (t)

exp

[

(y−a(t))2

2b2 (t)

]

,a(0) = −ξb,a(T) = ξb





.
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Small h analysis (with J. Garnier and T-W Yang)

• For h small, the large deviation problem is solvable approximately by
a ”Chapman-Enskog” expansion, and the transition probability is

P (XN ∈ A)

≈ exp

(

−
N

σ2T

[

2

(

1 − 3
σ2

2θ

)

+
24h

σ2

(

σ2

2θ

)2(

1 − 2
σ2

2θ

)

+O(h2)

])

.

• Here are some comments of this result:

• A large system is more stable than a small system.
• In the long run (T large), a transition will happen.
• Increase of the intrinsic stabilization parameter h reduces systemic

risk.
• Mean transition times are simply related to transition probabilities in

this approximation (use for this M. Williams ’82)

G. Papanicolaou, IPAM 10th Systemic Risk 19/26



Modeling of diversity in cooperative behavior

• The cooperative behavior of components can be different across
groups:

dxj (t) = −hκ
∂

∂y
V (xj (t))dt + σdwj (t) + θj (x̄ (t) − xj (t)) dt.

• The components are partitioned into K groups. In group k, the
components have cooperative parameter Θk.

• In the limit N → ∞ the empirical densities of each groups converge
to the solution of the joint Fokker-Planck equations:

∂

∂t
u1 = hκ

∂

∂y

[

U(y)u1
]

+
1

2
σ2 ∂

2

∂y2
u1 −Θ1

∂

∂y










∫

y

K∑

k=1

ρkuk (t,dy) −y



u1






.

.

.

∂

∂t
uK = hκ

∂

∂y

[

U(y)uK

]

+
1

2
σ2 ∂

2

∂y2
uK−ΘK

∂

∂y










∫

y

K∑

k=1

ρkuk (t,dy) −y



uK






where ρkN is the size of group k.
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Impact of component diversity on the systemic risk

• Why is the diversity interesting?

• The model is more realistic and more widely applicable.
• Diversity significantly affects the system stability by reducing it.

• Impact from the diversity:

• Analytical and numerical studies show that even with the same
parameters and with {θj} whose average equals θ the system still
changes significantly.
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Simulation 3 - Impact of diversity, change of Θk and ρk
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Analysis in the diversity case

• The critical value of the system fluctuation is lower:

• The critical value σhomo
c of the homogeneous case is

√

2
3θ, and σdiv

c is









K∑

k=1

ρk
Θk



/





K∑

k=1

3ρk

2Θ2
k









1/2

.

• If θ =
∑K
k=1 ρkΘk, then σhomo

c > σdiv
c always.

• System with diversity have larger transition probabilities:

• We show that when h is zero, the average of θj is θ, and the diversity of θj is small,
then the system has a higher transition probability.

• Mathematically, if h = 0, Θk = θ (1 + δαk) with δ≪ 1, and
∑K
k=1 ρkαk = 0,

then

P

(

Xdiv
N ∈A

)

≈ exp





−
N

σ2T



2

(

1 −
3σ2

2θ

)

− 2δ2





∑

k

ρkα
2
k





(

3σ2

2θ
+

1

T

∫T

0

(

1 −e−θs
)2
ds

)









.
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A Hierarchical Model of Systemic Risk

Here we consider a hierarchical model with a central agent:

dx0 = σ0dw0 − h0U0(x0)dt − θ0

(

x0 −
1

N

n∑

j=1

xj
)

dt

dxj = σdwj − hU(xj)dt − θ
(

xj − x0

)

dt, j = 1, . . . , N

• X0 models the central stable agent. It is intrinsically stable (h0 > 0),
and not subjected to external fluctuations (σ0 = 0). It can be
destabilized through a mean field interaction with the other agents.

• Xj, j = 1, . . . , N model individual agents that are subjected to
external fluctuations. They are (h > 0) or are not (h = 0)
intrinsically stable. They are stabilized with an interaction with the
stable agent X0.
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On-going and future work, analysis

• Compute the transition probability of the diversity case for small h.

• Show that it is unconditionally true that systems with diversity are
less stable than homogeneous ones.

• Study models with diversities everywhere:

• The most general case (when the limit exists) is that V, σ and θ in
each group can be different, i.e. if xj is in the group k, then the SDE
is

dxj (t) = −h
∂

∂y
Vk (xj (t)) dt + σkdwj (t) + Θk (x̄ (t) − xj (t))dt.

• Combine hierarchical and diversity models. How general should our
models be to deal with realistic problems?
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Research directions for systemic risk

Interconnected financial systems have many sources of instability.
Instabilities are ”everywhere” in the financial world. They are a
consequence of the dual market variables: volatility and liquidity.

• Using the analysis as a guide, design importance sampling algorithms
for computing efficiently (very) small systemic failure probabilities

• Can dynamic control mechanisms reduce systemic risk? What if the
controllers must rely on imperfect information?

• Can transaction fees (Tobin tax) stabilize markets in the systemic
risk sense? (It is not known if they increase or decrease volatility).

• Is statistical arbitrage destabilizing? (Hedging derivatives increases
volatility but portfolio optimization decreases it).
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