
Robust Principal Component Analysis?

Emmanuel Candès

IPAM’s 10th Anniversary Conference, UCLA, November 2010

Collaborators

Xiaodong Li (Stanford)

Yi Ma (Microsoft Research Asia & UIUC)

John Wright (Microsoft Research Asia)

Agenda

A separation problem

Computer vision applications

The separation problem

M = L0 + S0

M : data matrix (observed)

L0: low-rank (unobserved)

S0: sparse (unobserved)

Problem: can we recover L0 and S0 accurately?

Seems daunting but solution would be really great!

The separation problem

M = L0 + S0

M : data matrix (observed)

L0: low-rank (unobserved)

S0: sparse (unobserved)

Problem: can we recover L0 and S0 accurately?

Seems daunting but solution would be really great!

Motivation

Classical PCA

M = L0 +N0

L0: low-rank (unobserved)

N0: (small) perturbation

Dimensionality reduction (Schmidt 1907, Hotelling 1933)

minimize ‖M − L‖
subject to rank(L) ≤ k

Solution given by truncated SVD

M = UΣV ∗ =
∑
i

σiuiv
∗
i ⇒ L =

∑
i≤k

σiuiv
∗
i

Fundamental statistical tool: enormous impact

Classical PCA

M = L0 +N0

L0: low-rank (unobserved)

N0: (small) perturbation

Dimensionality reduction (Schmidt 1907, Hotelling 1933)

minimize ‖M − L‖
subject to rank(L) ≤ k

Solution given by truncated SVD

M = UΣV ∗ =
∑
i

σiuiv
∗
i ⇒ L =

∑
i≤k

σiuiv
∗
i

Fundamental statistical tool: enormous impact

Classical PCA

M = L0 +N0

L0: low-rank (unobserved)

N0: (small) perturbation

Dimensionality reduction (Schmidt 1907, Hotelling 1933)

minimize ‖M − L‖
subject to rank(L) ≤ k

Solution given by truncated SVD

M = UΣV ∗ =
∑
i

σiuiv
∗
i ⇒ L =

∑
i≤k

σiuiv
∗
i

Fundamental statistical tool: enormous impact

Classical PCA

M = L0 +N0

L0: low-rank (unobserved)

N0: (small) perturbation

Dimensionality reduction (Schmidt 1907, Hotelling 1933)

minimize ‖M − L‖
subject to rank(L) ≤ k

Solution given by truncated SVD

M = UΣV ∗ =
∑
i

σiuiv
∗
i ⇒ L =

∑
i≤k

σiuiv
∗
i

Fundamental statistical tool: enormous impact

PCA and corruptions/outliers

PCA: very sensitive to outliers

Breaks down with one (badly) corrupted data point

PCA and corruptions/outliers

PCA: very sensitive to outliers

Breaks down with one (badly) corrupted data point

Robust PCA

Gross errors frequently occur in many applications

Image processing

Web data analysis

Bioinformatics

...

Occlusions

Malicious tampering

Sensor failures

...

Important to make PCA robust

Influence function techniques: Huber; De La Torre and Black

Multivariate trimming: Gnanadesikan and Kettenring

Alternating minimization: Ke and Kanade

Random sampling techniques: Fischler and Bolles

...

Occlusions in computer vision

An interesting separation problem

Recover low-rank L0 and sparse S0 from

M = L0 + S0

Many applications other than robust PCA: informative component may be

L0 (RPCA)

S0 (examples to follow)

Video surveillance

Sequence of video frames with a static background

Problem: detect any activity in the foreground

…

…

RPCA M = L0 + S0

This is a separation problem!

Video surveillance

Sequence of video frames with a static background

Problem: detect any activity in the foreground

…

…

RPCA M = L0 + S0

This is a separation problem!

Ranking and collaborative filtering

Movies

Users


× ×

× ×
× ×

× ×
×

× ×



M = L0 + S0

Available data Mij : (i, j) ∈ Ωobs

L0 : all users’ ratings (what we would like to know)

S0 : ratings that have been tampered with

Ranking and collaborative filtering

Movies

Users


× ×

× ×
× ×

× ×
×

× ×



M = L0 + S0

Available data Mij : (i, j) ∈ Ωobs

L0 : all users’ ratings (what we would like to know)

S0 : ratings that have been tampered with

Other applications

Face recognition

System identification

Quantum-state tomography (Gross)

Graphical modeling with latent variables (Chandrasekaran, Parrilo, Willsky)

Theoretical aspects

Principal Component Pursuit (PCP)

M = L0 + S0

L0 unknown (rank unknown)

S0 unknown (# of entries 6= 0, locations, magnitudes all unknown)

Recovery via (convex) PCP

minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = M

See also Chandrasekaran, Sanghavi, Parrilo, Willsky (’09)

nuclear norm: ‖L‖∗ =
∑
i σi(L) (sum of sing. values)

`1 norm: ‖S‖1 =
∑
ij |Sij | (sum of abs. values)

Nuclear norm heuristics introduced in 90’s

`1 norm heuristics introduced in 50’s

Principal Component Pursuit (PCP)

M = L0 + S0

L0 unknown (rank unknown)

S0 unknown (# of entries 6= 0, locations, magnitudes all unknown)

Recovery via (convex) PCP

minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = M

See also Chandrasekaran, Sanghavi, Parrilo, Willsky (’09)

nuclear norm: ‖L‖∗ =
∑
i σi(L) (sum of sing. values)

`1 norm: ‖S‖1 =
∑
ij |Sij | (sum of abs. values)

Nuclear norm heuristics introduced in 90’s

`1 norm heuristics introduced in 50’s

Principal Component Pursuit (PCP)

M = L0 + S0

L0 unknown (rank unknown)

S0 unknown (# of entries 6= 0, locations, magnitudes all unknown)

Recovery via (convex) PCP

minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = M

See also Chandrasekaran, Sanghavi, Parrilo, Willsky (’09)

nuclear norm: ‖L‖∗ =
∑
i σi(L) (sum of sing. values)

`1 norm: ‖S‖1 =
∑
ij |Sij | (sum of abs. values)

Nuclear norm heuristics introduced in 90’s

`1 norm heuristics introduced in 50’s

Surprise

M = L0 + S0

L0 unknown

S0 unknown

Recovery via
minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = M

Under broad conditions, solution (L̂, Ŝ) obeys

L̂ = L0, Ŝ = S0!

Surprise

M = L0 + S0

L0 unknown

S0 unknown

Recovery via
minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = M

Under broad conditions, solution (L̂, Ŝ) obeys

L̂ = L0, Ŝ = S0!

When does separation make sense?

M cannot be low-rank and sparse

M = e1e
∗
n =


0 0 · · · 0 1
0 0 · · · 0 0
...

...
...

...
...

0 0 · · · 0 0



Low-rank component cannot be sparse

L0 ∈ Rn×n = UΣV ∗ =
∑

1≤i≤r

σiuiv
∗
i r = rank(L0)

Coherence condition (C. and Recht, ’08): ei = (0, . . . , 0, 1, 0, . . . , 0)

‖U∗ei‖2 ≤
µr

n
‖V ∗ei‖2 ≤

µr

n

and
|UV ∗|2ij ≤

µr

n2

Roughly: singular vectors (PC’s) are not sparse/spiky

What if the sparse component has low-rank?

Example: first column of S0 is that of L0

S0 =


∗ 0 · · · 0 0
∗ 0 · · · 0 0
...

...
...

...
...

∗ 0 · · · 0 0

 ⇒ M0 = L0 − S0 =


0 ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗
...

...
...

...
...

0 ∗ · · · ∗ ∗



Sparsity pattern will be assumed (uniform) random

What if the sparse component has low-rank?

Example: first column of S0 is that of L0

S0 =


∗ 0 · · · 0 0
∗ 0 · · · 0 0
...

...
...

...
...

∗ 0 · · · 0 0

 ⇒ M0 = L0 − S0 =


0 ∗ · · · ∗ ∗
0 ∗ · · · ∗ ∗
...

...
...

...
...

0 ∗ · · · ∗ ∗



Sparsity pattern will be assumed (uniform) random

Main result: M = L0 + S0

Theorem

L0 is n× n of rank(L0) ≤ ρrnµ−1(log n)−2

S0 is n× n, random sparsity pattern of cardinality m ≤ ρsn2

Then with probability 1−O(n−10), PCP with λ = 1/
√
n is exact:

L̂ = L0, Ŝ = S0

Same conclusion for rectangular matrices with λ = 1/
√

max dim

Exact

whatever the magnitudes of L0!
whatever the magnitudes of S0!

No tuning parameter!

Can achieve stronger probabilities of success, e. g. 1−O(n−β), β > 0

Connections with matrix completion (MC)

Recover a (low-rank) matrix from a subset of its entries

C. and Recht (’08)

C. and Tao (’09)

Keshavan, Montanari and Oh (’09)

Mazumder, Hastie and Tibshirani (’09)

Different problem: Recht, Fazel and Parrilo
(’07)

Many others


× ? ? ? × ?
? ? × × ? ?
× ? ? × ? ?
? ? × ? ? ×
× ? ? ? ? ?
? ? × × ? ?



Connections with matrix completion (MC)

minimize ‖L‖∗
subject to Lij = L0

ij (i, j) ∈ Ωobs


× ? ? ? × ?
? ? × × ? ?
× ? ? × ? ?
? ? × ? ? ×
× ? ? ? ? ?
? ? × × ? ?



Connections with matrix completion (MC)

minimize ‖L‖∗
subject to Lij = L0

ij (i, j) ∈ Ωobs


× ? ? ? × ?
? ? × × ? ?
× ? ? × ? ?
? ? × ? ? ×
× ? ? ? ? ?
? ? × × ? ?


Theorem (C. and Tao ’09 improving C. and Recht ’08)

rank(L0) = r and L0 as before

Ωobs random set of size m

Solution to SDP is exact with probability at least 1− n−10 if

m & µnr loga n a ≤ 6

Gross’ near-optimal improvement

m & µnr log2 n

Connections with matrix completion (MC)

Missing vs. corrupted data


× ? ? ? × ?
? ? × × ? ?
× ? ? × ? ?
? ? × ? ? ×
× ? ? ? ? ?
? ? × × ? ?


MC: missing



× A A A × A
A A × × A A
× A A × A A
A A × A A ×
× A A A A A
A A × × A A


RPCA: corrupted

Harder to detect and correct than to fill in

Phase transitions in probability of success

(a) PCP, Random Signs (b) PCP, Coherent Signs

(c) Matrix Completion

L0 = XY ∗ is a product of independent n× r i.i.d. N (0, 1/n) matrices

Contemporary result: Chandrasekaran, Sanghavi, Parrilo,
Willsky (’09)

Deterministic conditions for PCP to succeed

T (L0): span of all matrices with row space included in that of L0 or with
col. space included in that of L0

ξ(L0) = sup
N∈T (L0):‖N‖≤1

‖N‖∞

Ω(S0): span of all matrices with support included in that of S0

ν(S0) = sup
N∈Ω(S0):‖N‖∞≤1

‖N‖

Then PCP succeeds for some λ if

ξ(L0) ν(S0) ≤ 1/6

Contemporary result: Chandrasekaran, Sanghavi, Parrilo,
Willsky (’09)

Deterministic conditions for PCP to succeed

T (L0): span of all matrices with row space included in that of L0 or with
col. space included in that of L0

ξ(L0) = sup
N∈T (L0):‖N‖≤1

‖N‖∞

Ω(S0): span of all matrices with support included in that of S0

ν(S0) = sup
N∈Ω(S0):‖N‖∞≤1

‖N‖

Then PCP succeeds for some λ if

ξ(L0) ν(S0) ≤ 1/6

Comparison for random sparsity patterns

Corollary: correct recovery if

max number of corruptions per col. ×
√
µr/n < 1/12

so fraction of corrupted entries must obey

ρs ≤
1
12

√
1
µnr

Accommodate only vanishing fractions – even for rank-1 matrices

Significant differences

models, proofs: not much in common

selection of λ

Comparison for random sparsity patterns

Corollary: correct recovery if

max number of corruptions per col. ×
√
µr/n < 1/12

so fraction of corrupted entries must obey

ρs ≤
1
12

√
1
µnr

Accommodate only vanishing fractions – even for rank-1 matrices

Significant differences

models, proofs: not much in common

selection of λ

Matrix completion from grossly corrupted data

Entries may be both corrupted and missing

(PCP)
minimize ‖L‖∗ + λ‖S‖1
subject to Lij + Sij = Mij , (i, j) ∈ Ωobs

Ωobs locations of observed entries

Theorem

L0 is n× n as before, rank(L0) ≤ ρrnµ−1(log n)−2

Ωobs random set of sizea m = 0.1n2

each observed entry is corrupted with probability τ ≤ τs
Then with probability 1−O(n−10), PCP with λ = 1/

√
0.1n is exact:

L̂ = L0

Same conclusion for rectangular matrices with λ = 1/
√

0.1max dim

amissing fraction is arbitrary

Simultaneous completion and correction!

Matrix completion from grossly corrupted data

Entries may be both corrupted and missing

(PCP)
minimize ‖L‖∗ + λ‖S‖1
subject to Lij + Sij = Mij , (i, j) ∈ Ωobs

Ωobs locations of observed entries

Theorem

L0 is n× n as before, rank(L0) ≤ ρrnµ−1(log n)−2

Ωobs random set of sizea m = 0.1n2

each observed entry is corrupted with probability τ ≤ τs
Then with probability 1−O(n−10), PCP with λ = 1/

√
0.1n is exact:

L̂ = L0

Same conclusion for rectangular matrices with λ = 1/
√

0.1max dim

amissing fraction is arbitrary

Simultaneous completion and correction!

Matrix completion from grossly corrupted data

Entries may be both corrupted and missing

(PCP)
minimize ‖L‖∗ + λ‖S‖1
subject to Lij + Sij = Mij , (i, j) ∈ Ωobs

Ωobs locations of observed entries

Theorem

L0 is n× n as before, rank(L0) ≤ ρrnµ−1(log n)−2

Ωobs random set of sizea m = 0.1n2

each observed entry is corrupted with probability τ ≤ τs
Then with probability 1−O(n−10), PCP with λ = 1/

√
0.1n is exact:

L̂ = L0

Same conclusion for rectangular matrices with λ = 1/
√

0.1max dim

amissing fraction is arbitrary

Simultaneous completion and correction!

A cute thing

If no corruption → MC problem

MC: perfect recovery via

minimize ‖L‖∗
subject to Lij = L0

ij , (i, j) ∈ Ωobs

PCP
minimize ‖L‖∗ + 1√

n
‖S‖1

subject to Lij + Sij = L0
ij , (i, j) ∈ Ωobs

Same answer! Ŝ = 0

A cute thing

If no corruption → MC problem

MC: perfect recovery via

minimize ‖L‖∗
subject to Lij = L0

ij , (i, j) ∈ Ωobs

PCP
minimize ‖L‖∗ + 1√

n
‖S‖1

subject to Lij + Sij = L0
ij , (i, j) ∈ Ωobs

Same answer! Ŝ = 0

Methods of Proof

Find a dual variable certifying that (L0, S0) is solution to PCP

Existence is a deep question in probability theory

Tools from Banach space theory (Rudelson’s lemma, concentration of
measure, noncommutative Khintchine inequality, ...)

Arsenal of techniques developed for matrix completion (C. and Recht, 08)

Important role played by Gross’ golfing scheme (’09)

Methods of Proof

Find a dual variable certifying that (L0, S0) is solution to PCP

Existence is a deep question in probability theory

Tools from Banach space theory (Rudelson’s lemma, concentration of
measure, noncommutative Khintchine inequality, ...)

Arsenal of techniques developed for matrix completion (C. and Recht, 08)

Important role played by Gross’ golfing scheme (’09)

Quantum-state tomography

k spin-1/2 system in an unknown quantum state M ∈ Cn×n (density matrix)

n = 2k, trace(M) = 1, M < 0

Quantum measurements (data)

E[measurement with observable Aj] = 〈Aj ,M〉 = trace(A∗jM)

e.g. {Aj}: tensor Pauli matrices

Q? Can we reduce # measurements by using the structure of special classes of
quantum states?

pure state → rank(M) = 1
interesting mixed states → (approx) low rank

A. Yes. Sample in proportion to the rank of the quantum state (Gross 09)

Quantum-state tomography

k spin-1/2 system in an unknown quantum state M ∈ Cn×n (density matrix)

n = 2k, trace(M) = 1, M < 0

Quantum measurements (data)

E[measurement with observable Aj] = 〈Aj ,M〉 = trace(A∗jM)

e.g. {Aj}: tensor Pauli matrices

Q? Can we reduce # measurements by using the structure of special classes of
quantum states?

pure state → rank(M) = 1
interesting mixed states → (approx) low rank

A. Yes. Sample in proportion to the rank of the quantum state (Gross 09)

Computational aspects and simulations

Computational issues

Wish to solve the SDP

minimize ‖L‖∗ + λ‖S‖1
subject to L+ S = M

Off-the-shelf algorithms (SDPT3, SeDuMi) need n < 80, 100
Customized IPMs don’t do much better

Have developed a simple and scalable algorithm via the Alternating Direction
Method of Multipliers (ADMM)

Empirical performance II

n rank(L0) ‖S0‖0 rank(L̂) ‖Ŝ‖0 ‖L̂−L0‖F
‖L0‖F

SVD Time(s)

500 25 12,500 25 12,500 1.1× 10−6 16 2.9

1,000 50 50,000 50 50,000 1.2× 10−6 16 12.4

2,000 100 200,000 100 200,000 1.2× 10−6 16 61.8

3,000 250 450,000 250 450,000 2.3× 10−6 15 185.2

rank(L0) = 0.05× n, ‖S0‖0 = 0.05× n2.

n rank(L0) ‖S0‖0 rank(L̂) ‖Ŝ‖0 ‖L̂−L0‖F
‖L0‖F

SVD Time(s)

500 25 25,000 25 25,000 1.2× 10−6 17 4.0

1,000 50 100,000 50 100,000 2.4× 10−6 16 13.7

2,000 100 400,000 100 400,000 2.4× 10−6 16 64.5

3,000 150 900,000 150 900,000 2.5× 10−6 16 191.0

rank(L0) = 0.05× n, ‖S0‖0 = 0.10× n2.

Computational cost higher than classical PCA but not by a large factor!

Empirical performance: Chiara’s example

Rank-r matrix L0 = 1√
r
Xn×rYr×n: X, Y independent N (0, 1) entries

Sparse component S0: random support + indep. symmetric ±1 Bernoullis

−6 −4 −2 0 2 4 6 −6 −4 −2 0 2 4 6 −6 −4 −2 0 2 4 6

M L0 S0

−4

−3

−2

−1

0

1

2

3

4

M

0 10 20 30 40
0

60

120

180

240

300

Iteration

ra
nk

(L
)

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

ca
rd

(S
)

(in
 m

ill
io

ns
)

Some applications

Many applications

Today, applications in computer vision

Application to video surveillance

Sequence of 200 video frames (144× 172 pixels) with a static background

Problem: detect any activity in the foreground

…

…

RPCA

Background modeling from surveillance video, I

(a) Original (b) Low-rank L̂ (c) Sparse Ŝ (d) Low-rank L̂ (e) Sparse Ŝ

PCP Alternating minimization

Alternating minimization of an M-estimator (De La Torre and Black, ’03)

Background modeling from surveillance video, II

(a) Original (b) Low-rank L̂ (c) Sparse Ŝ (d) Low-rank L̂ (e) Sparse Ŝ

PCP Alternating minimization

Three frames from a 250 frame sequence taken in a lobby, with varying
illumination (Li et al., ’04).

Removing shadows and specularities from face images

Sequence of 58 images (192× 168) under different illumination conditions

…

…
RPCA

Removing shadows and specularities from face images

(a) M (b) L̂ (c) Ŝ (a) M (b) L̂ (c) Ŝ

Corrections of specularities in the eyes, shadows, brightness saturation, ...

APPLICATIONS – Repairing vintage movies

Original Repaired

Frame 1 480×620 pixelsCorruptions

.

APPLICATIONS – Repairing vintage movies

Original Repaired

Frame 2Corruptions

.

APPLICATIONS – Repairing vintage movies

Original Repaired

Frame 3Corruptions

.

APPLICATIONS – Repairing vintage movies

Original Repaired

Frame 4Corruptions

.

APPLICATIONS – Repairing vintage movies

Original Repaired

Frame 5Corruptions

.

APPLICATIONS – Repairing vintage movies

Original Repaired

Frame 6Corruptions

.

APPLICATIONS – Repairing vintage movies

Original Repaired

Frame 7Corruptions

.

Robust batch image alignment (Ma et al.)

Input: M corrupted and misaligned batch of images (data)

Output: L aligned low-rank images; S sparse errors

(Model) M ◦ τ = L0 + S0

τ : parametric deformation (rigid, affine, projective)

Bootstrap: find L and S and τ solution to

min‖L‖1 + λ‖S‖1 s.t. ‖L‖1 + λ‖S‖1 = M ◦ τ

Robust batch image alignment (Ma et al.)

Input: M corrupted and misaligned batch of images (data)

Output: L aligned low-rank images; S sparse errors

(Model) M ◦ τ = L0 + S0

τ : parametric deformation (rigid, affine, projective)

Bootstrap: find L and S and τ solution to

min‖L‖1 + λ‖S‖1 s.t. ‖L‖1 + λ‖S‖1 = M ◦ τ

APPLICATIONS – 2D image matching and 3D modeling

2D homographies

Peng, Ganesh, Wright, Ma, to appear CVPR’10

APPLICATIONS – Video stabilization and enhancement

Shaky video ()

vs.

Aligned video ()

Clean video () Error video ()

Peng, Ganesh, Wright, Ma, submitted to CVPR’10.

.

D.avi
Media File (video/avi)

A.avi
Media File (video/avi)

E.avi
Media File (video/avi)

APPLICATIONS – Aligning handwritten digits

Learned-Miller PAMI’06 Vedaldi CVPR’08

Peng, Ganesh, Wright, Ma, submitted to CVPR’10.

.

APPLICATIONS – Simultaneous Alignment and Repair

Peng, Ganesh, Wright, Ma, submitted to CVPR’10.

.

Transform	
 Invariant	
 Low-­‐rank	
 Textures	
 (TILT)	

	
 	
 	
 –	
 corrupted	
 &	
 deformed	
 	

observa,on	

	
 	
 	
 –	
 rec,fied	
 low-­‐rank	

textures	
 	

	
 	
 	
 –	
 sparse	
 errors	

o	

Problem:	
 Given	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 recover	
 	
 	
 	
 	
 ,	
 	
 	
 	
 	
 	
 	
 and	
 	
 	
 	
 	
 	
 .	

Low-­‐rank	
 component	
 Sparse	
 component	
 Parametric	
 deformaJons	

(affine,	
 projecJve…)	

SoluJon:	
 	
 itera,vely	
 es,mate	
 the	
 deforma,on	
 and	
 low-­‐rank	
 texture:	

Iterate:	

TILT	
 via	
 IteraJve	
 RPCA-­‐Like	
 Convex	
 OpJmizaJon	

Itera,on	
 Processes	

TILT	
 –	
 Robust	
 to	
 Background,	
 Occlusion,	
 and	
 CorrupJon	

TILT:	
 All	
 Types	
 of	
 Regular	
 Geometric	
 Structures	
 in	
 Images	

an	
 edge	
 	
 a	
 corner	
 	
 symmetry	
 	
 regularity	
 	

Un-­‐Tilted	
 Low-­‐rank	
 Textures	

TILT:	
 Examples	
 of	
 Symmetric	
 PaSerns	
 and	
 Textures	

Input	
 (red	
 window)	

Output	
 (rec,fied	
 green	
 window)	

TILT:	
 Examples	
 of	
 Characters,	
 Signs,	
 and	
 Texts	

Input	
 (red	
 window)	

Output	
 (rec,fied	
 green	
 window)	

TILT:	
 Examples	
 of	
 Natural	
 Objects	
 with	
 Bilateral	
 Symmetry	

Input	
 (red	
 window)	

Output	
 (rec,fied	
 green	
 window)	

TILT:	
 More	
 Examples	

Input	
 (red	
 window)	

Output	
 (rec,fied	
 green	
 window)	

TILT	
 –	
 Local	
 3D	
 Geometry	
 from	
 Low-­‐rank	
 Textures	

Run	
 TILT	
 on	
 a	
 grid	
 of	
 60x60	
 windows	

TILT	
 –	
 Geometric	
 Image	
 EdiJng	

Extensions

Robustness to noise (same people + Zhou)

In reality: data matrix = low-rank + sparse + noise

M = L0 + S0 + Z0, ‖Z0‖F ≤ δ

Recovery via relaxed PCP

minimize ‖L‖∗ + λ‖S‖1
subject to ‖M − (L+ S)‖F ≤ δ

Reconstruction is stable

1
n2

(
‖L̂− L0‖2F + ‖Ŝ − S0‖2F) ≤ O(δ2)

Dense correction (same people + Ganesh)

Sparse component S0 has random signs

Fraction of nonzero entries in S0 → 1
PCP still succeeds with high probability!

Extensions

Robustness to noise (same people + Zhou)

In reality: data matrix = low-rank + sparse + noise

M = L0 + S0 + Z0, ‖Z0‖F ≤ δ

Recovery via relaxed PCP

minimize ‖L‖∗ + λ‖S‖1
subject to ‖M − (L+ S)‖F ≤ δ

Reconstruction is stable

1
n2

(
‖L̂− L0‖2F + ‖Ŝ − S0‖2F) ≤ O(δ2)

Dense correction (same people + Ganesh)

Sparse component S0 has random signs

Fraction of nonzero entries in S0 → 1
PCP still succeeds with high probability!

Summary

Principled approach to Robust PCA

Works well in theory and in practice

Amenable to large scale problems – early effective algorithms

Many applications

Computer vision
Signal processing
Data analysis
Many more (to come)

Interested in what you think!

E. J. Candès, X. Li, Y. Ma, and J. Wright (2009). Robust Principal Component

Analysis? Stanford Technical Report

Happy Anniversary!

Long Live IPAM!

Proof via dual certification

Find dual variable Y such that pair (L0, S0;Y) obeys KKT optimality conditions

M = L0 + S0

T : span of all matrices with row space or col. space included in that of L0

Ω: span of all matrices with support included in that of S0

Sufficient (and almost necessary) conditions

T ∩ Ω = {0}
There is W ∈ T⊥ such that

‖W‖ < 1

and Y = UV ∗ +W obeys{
Yij = λ[sgn(S0)]ij (i, j) ∈ Ω
|Yij | < λ otherwise

Proof via dual certification

Find dual variable Y such that pair (L0, S0;Y) obeys KKT optimality conditions

M = L0 + S0

T : span of all matrices with row space or col. space included in that of L0

Ω: span of all matrices with support included in that of S0

Sufficient (and almost necessary) conditions

T ∩ Ω = {0}
There is W ∈ T⊥ such that

‖W‖ < 1

and Y = UV ∗ +W obeys{
Yij = λ[sgn(S0)]ij (i, j) ∈ Ω
|Yij | < λ otherwise

Proof via dual certification

Find dual variable Y such that pair (L0, S0;Y) obeys KKT optimality conditions

M = L0 + S0

T : span of all matrices with row space or col. space included in that of L0

Ω: span of all matrices with support included in that of S0

Sufficient (and almost necessary) conditions

T ∩ Ω = {0}
There is W ∈ T⊥ such that

‖W‖ < 1

and Y = UV ∗ +W obeys{
Yij = λ[sgn(S0)]ij (i, j) ∈ Ω
|Yij | < λ otherwise

Augmented Lagrangian approach

minimize ‖L‖∗ + λ‖S‖1 +
1
2τ
‖M − L− S‖2F

subject to L+ S = M

Lagrangian

L(L, S;Y) = ‖L‖∗ + λ‖S‖1 +
1
τ
〈Y,M − L− S〉+

1
2τ
‖M − L− S‖2F

Basic algorithm (Usawa): dual gradient ascent{
(Lk, Sk) = arg minL,S L(L, S;Yk−1)
Yk = Yk−1 + δk(M − Lk − Sk)

Sequential minimization

Scalar shrinkage: Sτ [x] = sgn(x) max(|x| − τ, 0)

Componentwise thresholding Sτ (X)
Singular value thresholding Dτ (X)

Dτ (X) = USτ (Σ)V ∗ X = UΣV ∗

L(L, S;Y) = ‖L‖∗ + λ‖S‖1 +
1
τ
〈Y,M − L− S〉+

1
2τ
‖M − L− S‖2F

Easy to minimize over L and S separately

arg min
L
L(L, S, Y) = Dτ (M − S + Y)

arg min
S
L(L, S, Y) = Sλτ (M − L+ Y)

Sequential minimization

Scalar shrinkage: Sτ [x] = sgn(x) max(|x| − τ, 0)

Componentwise thresholding Sτ (X)
Singular value thresholding Dτ (X)

Dτ (X) = USτ (Σ)V ∗ X = UΣV ∗

L(L, S;Y) = ‖L‖∗ + λ‖S‖1 +
1
τ
〈Y,M − L− S〉+

1
2τ
‖M − L− S‖2F

Easy to minimize over L and S separately

arg min
L
L(L, S, Y) = Dτ (M − S + Y)

arg min
S
L(L, S, Y) = Sλτ (M − L+ Y)

PCP by alternating directions

initialize: S0, Y0 and τ > 0
while not converged

1 Lk = Dτ (M − Sk−1 + Yk−1) (shrink singular values)

2 Sk = Sλτ (M − Lk + Yk−1) (shrink scalar entries)

3 Yk = Yk−1 + (M − Lk − Sk)
end while
output: L, S

All the computational work is in (1)

When iterates Lk have low rank

Only need to compute few singular values (and vectors) at each step

Lanczos iterations are very effective

PCP by alternating directions

initialize: S0, Y0 and τ > 0
while not converged

1 Lk = Dτ (M − Sk−1 + Yk−1) (shrink singular values)

2 Sk = Sλτ (M − Lk + Yk−1) (shrink scalar entries)

3 Yk = Yk−1 + (M − Lk − Sk)
end while
output: L, S

All the computational work is in (1)

When iterates Lk have low rank

Only need to compute few singular values (and vectors) at each step

Lanczos iterations are very effective

