Robust Principal Component Analysis?

Emmanuel Candès

IPAM's 10th Anniversary Conference, UCLA, November 2010

Collaborators

- Xiaodong Li (Stanford)
- Yi Ma (Microsoft Research Asia \& UIUC)
- John Wright (Microsoft Research Asia)

Agenda

- A separation problem
- Computer vision applications

The separation problem

$$
M=L_{0}+S_{0}
$$

- M: data matrix (observed)
- L_{0} : low-rank (unobserved)
- S_{0} : sparse (unobserved)

The separation problem

$$
M=L_{0}+S_{0}
$$

- M: data matrix (observed)
- L_{0} : low-rank (unobserved)
- S_{0} : sparse (unobserved)

Problem: can we recover L_{0} and S_{0} accurately?

Seems daunting but solution would be really great!

Motivation

Classical PCA

$$
M=L_{0}+N_{0}
$$

- L_{0} : low-rank (unobserved)
- N_{0} : (small) perturbation

Classical PCA

$$
M=L_{0}+N_{0}
$$

- L_{0} : low-rank (unobserved)
- N_{0} : (small) perturbation

Dimensionality reduction (Schmidt 1907, Hotelling 1933)

$$
\begin{array}{ll}
\operatorname{minimize} & \|M-L\| \\
\text { subject to } & \operatorname{rank}(L) \leq k
\end{array}
$$

Classical PCA

$$
M=L_{0}+N_{0}
$$

- L_{0} : low-rank (unobserved)
- N_{0} : (small) perturbation

Dimensionality reduction (Schmidt 1907, Hotelling 1933)

$$
\begin{array}{ll}
\operatorname{minimize} & \|M-L\| \\
\text { subject to } & \operatorname{rank}(L) \leq k
\end{array}
$$

Solution given by truncated SVD

$$
M=U \Sigma V^{*}=\sum_{i} \sigma_{i} u_{i} v_{i}^{*} \quad \Rightarrow \quad L=\sum_{i \leq k} \sigma_{i} u_{i} v_{i}^{*}
$$

Classical PCA

$$
M=L_{0}+N_{0}
$$

- L_{0} : low-rank (unobserved)
- N_{0} : (small) perturbation

Dimensionality reduction (Schmidt 1907, Hotelling 1933)

$$
\begin{array}{ll}
\operatorname{minimize} & \|M-L\| \\
\text { subject to } & \operatorname{rank}(L) \leq k
\end{array}
$$

Solution given by truncated SVD

$$
M=U \Sigma V^{*}=\sum_{i} \sigma_{i} u_{i} v_{i}^{*} \quad \Rightarrow \quad L=\sum_{i \leq k} \sigma_{i} u_{i} v_{i}^{*}
$$

Fundamental statistical tool: enormous impact

PCA and corruptions/outliers

PCA: very sensitive to outliers

PCA and corruptions/outliers

PCA: very sensitive to outliers

Breaks down with one (badly) corrupted data point

Robust PCA

Gross errors frequently occur in many applications

- Image processing
- Web data analysis
- Bioinformatics
- ...
- Occlusions
- Malicious tampering
- Sensor failures
- ...

Important to make PCA robust

- Influence function techniques: Huber; De La Torre and Black
- Multivariate trimming: Gnanadesikan and Kettenring
- Alternating minimization: Ke and Kanade
- Random sampling techniques: Fischler and Bolles
- ...

Occlusions in computer vision

An interesting separation problem

Recover low-rank L_{0} and sparse S_{0} from

$$
M=L_{0}+S_{0}
$$

Many applications other than robust PCA: informative component may be

- L_{0} (RPCA)
- S_{0} (examples to follow)

Video surveillance

Sequence of video frames with a static background

Problem: detect any activity in the foreground

Video surveillance

Sequence of video frames with a static background

Problem: detect any activity in the foreground

$M=L_{0}+S_{0}$
This is a separation problem!

Ranking and collaborative filtering

Users $\left[\begin{array}{ccccc}\times & & & \text { Movies } & \\ & \times & \times & & \\ \times & & \times & & \\ & \times & & & \times \\ \times & & & & \\ & \times & \times & & \end{array}\right]$

Ranking and collaborative filtering

- Available data $M_{i j}:(i, j) \in \Omega_{\text {obs }}$
- L_{0} : all users' ratings (what we would like to know)
- S_{0} : ratings that have been tampered with

Other applications

- Face recognition
- System identification
- Quantum-state tomography (Gross)
- Graphical modeling with latent variables (Chandrasekaran, Parrilo, Willsky)

Theoretical aspects

Principal Component Pursuit (PCP)

$$
M=L_{0}+S_{0}
$$

- L_{0} unknown (rank unknown)
- S_{0} unknown (\# of entries $\neq 0$, locations, magnitudes all unknown)

Principal Component Pursuit (PCP)

$$
M=L_{0}+S_{0}
$$

- L_{0} unknown (rank unknown)
- S_{0} unknown (\# of entries $\neq 0$, locations, magnitudes all unknown)

Recovery via (convex) PCP

$$
\begin{array}{ll}
\operatorname{minimize} & \|L\|_{*}+\lambda\|S\|_{1} \\
\text { subject to } & L+S=M
\end{array}
$$

See also Chandrasekaran, Sanghavi, Parrilo, Willsky ('09)

- nuclear norm: $\|L\|_{*}=\sum_{i} \sigma_{i}(L)$ (sum of sing. values)
- ℓ_{1} norm: $\|S\|_{1}=\sum_{i j}\left|S_{i j}\right|$ (sum of abs. values)

Principal Component Pursuit (PCP)

$$
M=L_{0}+S_{0}
$$

- L_{0} unknown (rank unknown)
- S_{0} unknown (\# of entries $\neq 0$, locations, magnitudes all unknown)

Recovery via (convex) PCP

$$
\begin{array}{ll}
\operatorname{minimize} & \|L\|_{*}+\lambda\|S\|_{1} \\
\text { subject to } & L+S=M
\end{array}
$$

See also Chandrasekaran, Sanghavi, Parrilo, Willsky ('09)

- nuclear norm: $\|L\|_{*}=\sum_{i} \sigma_{i}(L)$ (sum of sing. values)
- ℓ_{1} norm: $\|S\|_{1}=\sum_{i j}\left|S_{i j}\right|$ (sum of abs. values)
- Nuclear norm heuristics introduced in 90 's
- ℓ_{1} norm heuristics introduced in 50 's

Surprise

$$
M=L_{0}+S_{0}
$$

- L_{0} unknown
- S_{0} unknown

Recovery via

$$
\begin{array}{ll}
\operatorname{minimize} & \|L\|_{*}+\lambda\|S\|_{1} \\
\text { subject to } & L+S=M
\end{array}
$$

Surprise

$$
M=L_{0}+S_{0}
$$

- L_{0} unknown
- S_{0} unknown

Recovery via

$$
\begin{array}{ll}
\operatorname{minimize} & \|L\|_{*}+\lambda\|S\|_{1} \\
\text { subject to } & L+S=M
\end{array}
$$

Under broad conditions, solution (\hat{L}, \hat{S}) obeys

$$
\hat{L}=L_{0}, \quad \hat{S}=S_{0}!
$$

When does separation make sense?

M cannot be low-rank and sparse

$$
\boldsymbol{M}=\boldsymbol{e}_{1} \boldsymbol{e}_{n}^{*}=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

Low-rank component cannot be sparse

$$
L_{0} \in \mathbb{R}^{n \times n}=U \Sigma V^{*}=\sum_{1 \leq i \leq r} \sigma_{i} u_{i} v_{i}^{*} \quad r=\operatorname{rank}\left(L_{0}\right)
$$

Coherence condition (C. and Recht, '08): $e_{i}=(0, \ldots, 0,1,0, \ldots, 0)$

$$
\left\|U^{*} e_{i}\right\|^{2} \leq \frac{\mu r}{n} \quad\left\|V^{*} e_{i}\right\|^{2} \leq \frac{\mu r}{n}
$$

and

$$
\left|U V^{*}\right|_{i j}^{2} \leq \frac{\mu r}{n^{2}}
$$

Roughly: singular vectors (PC's) are not sparse/spiky

What if the sparse component has low-rank?

Example: first column of S_{0} is that of L_{0}

$$
S_{0}=\left[\begin{array}{ccccc}
* & 0 & \cdots & 0 & 0 \\
* & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
* & 0 & \cdots & 0 & 0
\end{array}\right] \Rightarrow M_{0}=L_{0}-S_{0}=\left[\begin{array}{ccccc}
0 & * & \cdots & * & * \\
0 & * & \cdots & * & * \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & * & \cdots & * & *
\end{array}\right]
$$

What if the sparse component has low-rank?

Example: first column of S_{0} is that of L_{0}

$$
S_{0}=\left[\begin{array}{ccccc}
* & 0 & \cdots & 0 & 0 \\
* & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
* & 0 & \cdots & 0 & 0
\end{array}\right] \Rightarrow M_{0}=L_{0}-S_{0}=\left[\begin{array}{ccccc}
0 & * & \cdots & * & * \\
0 & * & \cdots & * & * \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & * & \cdots & * & *
\end{array}\right]
$$

Sparsity pattern will be assumed (uniform) random

Main result: $M=L_{0}+S_{0}$

Theorem

- L_{0} is $n \times n$ of $\operatorname{rank}\left(L_{0}\right) \leq \rho_{r} n \mu^{-1}(\log n)^{-2}$
- S_{0} is $n \times n$, random sparsity pattern of cardinality $m \leq \rho_{s} n^{2}$

Then with probability $1-O\left(n^{-10}\right), P C P$ with $\lambda=1 / \sqrt{n}$ is exact:

$$
\hat{L}=L_{0}, \quad \hat{S}=S_{0}
$$

Same conclusion for rectangular matrices with $\lambda=1 / \sqrt{\operatorname{maxdim}}$

- Exact
- whatever the magnitudes of L_{0} !
- whatever the magnitudes of S_{0} !
- No tuning parameter!

Can achieve stronger probabilities of success, e. g. $1-O\left(n^{-\beta}\right), \beta>0$

Connections with matrix completion (MC)

Recover a (low-rank) matrix from a subset of its entries

- C. and Recht ('08)
- C. and Tao ('09)
- Keshavan, Montanari and Oh ('09)
- Mazumder, Hastie and Tibshirani ('09)
- Different problem: Recht, Fazel and Parrilo ('07)
- Many others
$\left[\begin{array}{cccccc}\times & ? & ? & ? & \times & ? \\ ? & ? & \times & \times & ? & ? \\ \times & ? & ? & \times & ? & ? \\ ? & ? & \times & ? & ? & \times \\ \times & ? & ? & ? & ? & ? \\ ? & ? & \times & \times & ? & ?\end{array}\right]$

Connections with matrix completion (MC)

$$
\left[\begin{array}{cccccc}
\times & ? & ? & ? & \times & ? \\
? & ? & \times & \times & ? & ? \\
\times & ? & ? & \times & ? & ? \\
? & ? & \times & ? & ? & \times \\
\times & ? & ? & ? & ? & ? \\
? & ? & \times & \times & ? & ?
\end{array}\right]
$$

Connections with matrix completion (MC)

$$
\left[\begin{array}{cccccc}
\times & ? & ? & ? & \times & ? \\
? & ? & \times & \times & ? & ? \\
\times & ? & ? & \times & ? & ? \\
? & ? & \times & ? & ? & \times \\
\times & ? & ? & ? & ? & ? \\
? & ? & \times & \times & ? & ?
\end{array}\right]
$$

Theorem (C. and Tao '09 improving C. and Recht '08)

- $\operatorname{rank}\left(L_{0}\right)=r$ and L_{0} as before
- $\Omega_{\text {obs }}$ random set of size m

Solution to SDP is exact with probability at least $1-n^{-10}$ if

$$
m \gtrsim \mu n r \log ^{a} n \quad a \leq 6
$$

Gross' near-optimal improvement

$$
m \gtrsim \mu n r \log ^{2} n
$$

Connections with matrix completion (MC)

Missing vs. corrupted data

$$
\begin{aligned}
& {\left[\begin{array}{cccccc}
\times & ? & ? & ? & \times & ? \\
? & ? & \times & \times & ? & ? \\
\times & ? & ? & \times & ? & ? \\
? & ? & \times & ? & ? & \times \\
\times & ? & ? & ? & ? & ? \\
? & ? & \times & \times & ? & ?
\end{array}\right]} \\
& \text { MC: missing }
\end{aligned}
$$

$$
\begin{aligned}
& \text { RPCA: corrupted }
\end{aligned}
$$

Harder to detect and correct than to fill in

Phase transitions in probability of success

$L_{0}=X Y^{*}$ is a product of independent $n \times r$ i.i.d. $\mathcal{N}(0,1 / n)$ matrices

Contemporary result: Chandrasekaran, Sanghavi, Parrilo, Willsky ('09)

Deterministic conditions for PCP to succeed

- $T\left(L_{0}\right)$: span of all matrices with row space included in that of L_{0} or with col. space included in that of L_{0}

$$
\xi\left(L_{0}\right)=\sup _{N \in T\left(L_{0}\right):\|N\| \leq 1}\|N\|_{\infty}
$$

- $\Omega\left(S_{0}\right)$: span of all matrices with support included in that of S_{0}

$$
\nu\left(S_{0}\right)=\sup _{N \in \Omega\left(S_{0}\right):\|N\|_{\infty} \leq 1}\|N\|
$$

Contemporary result: Chandrasekaran, Sanghavi, Parrilo, Willsky ('09)

Deterministic conditions for PCP to succeed

- $T\left(L_{0}\right)$: span of all matrices with row space included in that of L_{0} or with col. space included in that of L_{0}

$$
\xi\left(L_{0}\right)=\sup _{N \in T\left(L_{0}\right):\|N\| \leq 1}\|N\|_{\infty}
$$

- $\Omega\left(S_{0}\right)$: span of all matrices with support included in that of S_{0}

$$
\nu\left(S_{0}\right)=\sup _{N \in \Omega\left(S_{0}\right):\|N\|_{\infty} \leq 1}\|N\|
$$

Then PCP succeeds for some λ if

$$
\xi\left(L_{0}\right) \nu\left(S_{0}\right) \leq 1 / 6
$$

Comparison for random sparsity patterns

Corollary: correct recovery if
max number of corruptions per col. $\times \sqrt{\mu r / n}<1 / 12$
so fraction of corrupted entries must obey

$$
\rho_{s} \leq \frac{1}{12} \sqrt{\frac{1}{\mu n r}}
$$

Accommodate only vanishing fractions - even for rank-1 matrices

Comparison for random sparsity patterns

Corollary: correct recovery if max number of corruptions per col. $\times \sqrt{\mu r / n}<1 / 12$
so fraction of corrupted entries must obey

$$
\rho_{s} \leq \frac{1}{12} \sqrt{\frac{1}{\mu n r}}
$$

Accommodate only vanishing fractions - even for rank-1 matrices

Significant differences

- models, proofs: not much in common
- selection of λ

Matrix completion from grossly corrupted data
Entries may be both corrupted and missing

Matrix completion from grossly corrupted data
Entries may be both corrupted and missing

$$
\begin{array}{lll}
(\mathrm{PCP}) & \begin{array}{l}
\text { minimize } \\
\text { subject to }
\end{array} & \|L\|_{*}+\lambda\|S\|_{1} \\
L_{i j}+S_{i j}=M_{i j},(i, j) \in \Omega_{\mathrm{obs}}
\end{array}
$$

$\Omega_{\text {obs }}$ locations of observed entries

Matrix completion from grossly corrupted data
Entries may be both corrupted and missing

$$
\begin{array}{lll}
\text { (PCP) } & \begin{array}{l}
\text { minimize } \\
\text { subject to }
\end{array} & \|L\|_{*}+\lambda\|S\|_{1} \\
& L_{i j}+S_{i j}=M_{i j},(i, j) \in \Omega_{\text {obs }}
\end{array}
$$

$\Omega_{\text {obs }}$ locations of observed entries

Theorem

- L_{0} is $n \times n$ as before, $\operatorname{rank}\left(L_{0}\right) \leq \rho_{r} n \mu^{-1}(\log n)^{-2}$
- $\Omega_{\text {obs }}$ random set of size ${ }^{a} m=0.1 n^{2}$
- each observed entry is corrupted with probability $\tau \leq \tau_{s}$

Then with probability $1-O\left(n^{-10}\right)$, PCP with $\lambda=1 / \sqrt{0.1 n}$ is exact:

$$
\hat{L}=L_{0}
$$

Same conclusion for rectangular matrices with $\lambda=1 / \sqrt{0.1 \text { max dim }}$

[^0]Simultaneous completion and correction!

A cute thing

If no corruption $\rightarrow \mathrm{MC}$ problem

- MC: perfect recovery via

$$
\begin{array}{ll}
\operatorname{minimize} & \|L\|_{*} \\
\text { subject to } & L_{i j}=L_{i j}^{0}, \quad(i, j) \in \Omega_{\mathrm{obs}}
\end{array}
$$

- PCP

$$
\begin{array}{ll}
\operatorname{minimize} & \|L\|_{*}+\frac{1}{\sqrt{n}}\|S\|_{1} \\
\text { subject to } & L_{i j}+S_{i j}=L_{i j}^{0},(i, j) \in \Omega_{\mathrm{obs}}
\end{array}
$$

A cute thing

If no corruption $\rightarrow \mathrm{MC}$ problem

- MC: perfect recovery via

$$
\begin{array}{ll}
\operatorname{minimize} & \|L\|_{*} \\
\text { subject to } & L_{i j}=L_{i j}^{0}, \quad(i, j) \in \Omega_{\mathrm{obs}}
\end{array}
$$

- PCP

$$
\begin{array}{ll}
\operatorname{minimize} & \|L\|_{*}+\frac{1}{\sqrt{n}}\|S\|_{1} \\
\text { subject to } & L_{i j}+S_{i j}=L_{i j}^{0},(i, j) \in \Omega_{\mathrm{obs}}
\end{array}
$$

Same answer! $\hat{S}=0$

Methods of Proof

Find a dual variable certifying that $\left(L_{0}, S_{0}\right)$ is solution to PCP

Existence is a deep question in probability theory

Methods of Proof

Find a dual variable certifying that $\left(L_{0}, S_{0}\right)$ is solution to PCP

Existence is a deep question in probability theory

- Tools from Banach space theory (Rudelson's lemma, concentration of measure, noncommutative Khintchine inequality, ...)
- Arsenal of techniques developed for matrix completion (C. and Recht, 08)
- Important role played by Gross' golfing scheme ('09)

Quantum-state tomography

- k spin- $1 / 2$ system in an unknown quantum state $M \in \mathbb{C}^{n \times n}$ (density matrix)

$$
n=2^{k}, \quad \operatorname{trace}(M)=1, \quad M \succcurlyeq 0
$$

- Quantum measurements (data)
$\mathbb{E}\left[\right.$ measurement with observable $\left.A_{j}\right]=\left\langle A_{j}, M\right\rangle=\operatorname{trace}\left(A_{j}^{*} M\right)$
e.g. $\left\{A_{j}\right\}$: tensor Pauli matrices

Q? Can we reduce \# measurements by using the structure of special classes of quantum states?

- pure state $\rightarrow \operatorname{rank}(M)=1$
- interesting mixed states \rightarrow (approx) low rank

Quantum-state tomography

- k spin- $1 / 2$ system in an unknown quantum state $M \in \mathbb{C}^{n \times n}$ (density matrix)

$$
n=2^{k}, \quad \operatorname{trace}(M)=1, \quad M \succcurlyeq 0
$$

- Quantum measurements (data)

$$
\mathbb{E}\left[\text { measurement with observable } A_{j}\right]=\left\langle A_{j}, M\right\rangle=\operatorname{trace}\left(A_{j}^{*} M\right)
$$

e.g. $\left\{A_{j}\right\}$: tensor Pauli matrices

Q? Can we reduce \# measurements by using the structure of special classes of quantum states?

- pure state $\rightarrow \operatorname{rank}(M)=1$
- interesting mixed states \rightarrow (approx) low rank
A. Yes. Sample in proportion to the rank of the quantum state (Gross 09)

Computational aspects and simulations

Computational issues

Wish to solve the SDP

$$
\begin{array}{ll}
\operatorname{minimize} & \|L\|_{*}+\lambda\|S\|_{1} \\
\text { subject to } & L+S=M
\end{array}
$$

- Off-the-shelf algorithms (SDPT3, SeDuMi) need $n<80,100$
- Customized IPMs don't do much better

Have developed a simple and scalable algorithm via the Alternating Direction Method of Multipliers (ADMM)

Empirical performance II

n	$\operatorname{rank}\left(L_{0}\right)$	$\left\\|S_{0}\right\\|_{0}$	$\operatorname{rank}(\hat{L})$	$\\|\hat{S}\\|_{0}$	$\frac{\left\\|\hat{L}-L_{0}\right\\|_{F}}{\left\\|L_{0}\right\\|_{F}}$	\# SVD	Time(s)
500	25	12,500	25	12,500	1.1×10^{-6}	16	2.9
1,000	50	50,000	50	50,000	1.2×10^{-6}	16	12.4
2,000	100	200,000	100	200,000	1.2×10^{-6}	16	61.8
3,000	250	450,000	250	450,000	2.3×10^{-6}	15	185.2
$\operatorname{rank}\left(L_{0}\right)=0.05 \times n,\left\\|S_{0}\right\\|_{0}=0.05 \times n^{2}$							

n	$\operatorname{rank}\left(L_{0}\right)$	$\left\\|S_{0}\right\\|_{0}$	$\operatorname{rank}(\hat{L})$	$\\|\hat{S}\\|_{0}$	$\frac{\left\\|\hat{L}-L_{0}\right\\|_{F}}{\left\\|L_{0}\right\\|_{F}}$	\# SVD	Time(s)
500	25	25,000	25	25,000	1.2×10^{-6}	17	4.0
1,000	50	100,000	50	100,000	2.4×10^{-6}	16	13.7
2,000	100	400,000	100	400,000	2.4×10^{-6}	16	64.5
3,000	150	900,000	150	900,000	2.5×10^{-6}	16	191.0

$$
\operatorname{rank}\left(L_{0}\right)=0.05 \times n,\left\|S_{0}\right\|_{0}=0.10 \times n^{2}
$$

Computational cost higher than classical PCA but not by a large factor!

Empirical performance: Chiara's example

Rank-r matrix $L_{0}=\frac{1}{\sqrt{r}} X_{n \times r} Y_{r \times n}: X, Y$ independent $\mathcal{N}(0,1)$ entries
Sparse component S_{0} : random support + indep. symmetric ± 1 Bernoullis

L_{0}

Some applications

- Many applications
- Today, applications in computer vision

Application to video surveillance

Sequence of 200 video frames (144×172 pixels) with a static background

Problem: detect any activity in the foreground

Background modeling from surveillance video, I

Alternating minimization of an M-estimator (De La Torre and Black, '03)

Background modeling from surveillance video, II

Three frames from a 250 frame sequence taken in a lobby, with varying illumination (Li et al., '04).

Removing shadows and specularities from face images

Sequence of 58 images (192×168) under different illumination conditions

Removing shadows and specularities from face images

(a) M

(b) \hat{L}

(c) \hat{S}

(a) M

(b) \hat{L}

(c) \hat{S}

Corrections of specularities in the eyes, shadows, brightness saturation, ...

APPLICATIONS - Repairing vintage movies

Original D

Corruptions

Repaired A

480×620 pixels

APPLICATIONS - Repairing vintage movies

Original D

Corruptions

Repaired A

Frame 2

APPLICATIONS - Repairing vintage movies

Original D

Corruptions

Repaired A

Frame 3

APPLICATIONS - Repairing vintage movies

Original D

Corruptions

Repaired A

Frame 4

APPLICATIONS - Repairing vintage movies

Original D

Corruptions

Repaired A

Frame 5

APPLICATIONS - Repairing vintage movies

Original D

Corruptions

Repaired A

Frame 6

APPLICATIONS - Repairing vintage movies

Original D

Frame 7

Robust batch image alignment (Ma et al.)

- Input: \boldsymbol{M} corrupted and misaligned batch of images (data)
- Output: L aligned low-rank images; \boldsymbol{S} sparse errors
(Model) $\quad \boldsymbol{M} \circ \tau=\boldsymbol{L}_{\mathbf{0}}+\boldsymbol{S}_{\mathbf{0}}$
τ : parametric deformation (rigid, affine, projective)

Robust batch image alignment (Ma et al.)

- Input: \boldsymbol{M} corrupted and misaligned batch of images (data)
- Output: L aligned low-rank images; S sparse errors
(Model) $\quad \boldsymbol{M} \circ \tau=\boldsymbol{L}_{\mathbf{0}}+\boldsymbol{S}_{\mathbf{0}}$
τ : parametric deformation (rigid, affine, projective)

Bootstrap: find L and S and τ solution to

$$
\min \|\boldsymbol{L}\|_{1}+\lambda\|\boldsymbol{S}\|_{1} \quad \text { s.t. } \quad\|\boldsymbol{L}\|_{1}+\lambda\|\boldsymbol{S}\|_{1}=\boldsymbol{M} \circ \tau
$$

APPLICATIONS - 2D image matching and 3D modeling

$\tau \in$ 2D homographies

APPLICATIONS - Video stabilization and enhancement

Shaky video (D) VS.
Aligned video $(D \circ \tau)$

APPLICATIONS - Aligning handwritten digits

D

3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	5	3	3	3	3	3

D								D
3	3	3	3	3	3	3	3	3
3								
3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3
3								
3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3
3	3							
3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3
3								
3	3	3	3	3	3	3	3	3
3	3	3	3	5	3	3	3	3
3								

Learned-Miller PAMI'06

3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3

A									
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3

Vedaldi CVPR'08

3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
2	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	3	3	3

APPLICATIONS - Simultaneous Alignment and Repair

Peng, Ganesh, Wright, Ma, submitted to CVPR'10.

Transform Invariant Low-rank Textures (TILT)

D - corrupted \& deformed observation

A-rectified low-rank textures

E - sparse errors

Problem: Given $D \circ \tau=A_{0}+E_{0}$, recover τ, A_{0} and E_{0}.
Parametric deformations Low-rank component Sparse component (affine, projective...)

Solution: iteratively estimate the deformation and low-rank texture:
Iterate

$$
\min \|A\|_{*}+\lambda\|E\|_{1} \quad \operatorname{subj} \quad A+E=D \circ \tau_{k}+J \Delta \tau
$$

TILT via Iterative RPCA-Like Convex Optimization

Iteration Processes

TILT - Robust to Background, Occlusion, and Corruption

TILT: All Types of Regular Geometric Structures in Images

symmetry

regularity

Un-Tilted Low-rank Textures

TILT: Examples of Symmetric Patterns and Textures

Input (red window)

Output (rectified green window)

TILT: Examples of Characters, Signs, and Texts

Input (red window)

Output (rectified green window)

TILT: Examples of Natural Objects with Bilateral Symmetry

Input (red window)

Output (rectified green window)

TILT：More Examples

Input（red window）

Output（rectified green window）

床分 日神如斗路
，
，
积住洽逸㳦添行

TILT - Local 3D Geometry from Low-rank Textures

Run TILT on a grid of 60×60 windows

TILT - Geometric Image Editing

Extensions

Robustness to noise (same people + Zhou)

- In reality: data matrix $=$ low-rank + sparse + noise

$$
M=L_{0}+S_{0}+Z_{0}, \quad\left\|Z_{0}\right\|_{F} \leq \delta
$$

- Recovery via relaxed PCP

$$
\begin{array}{ll}
\operatorname{minimize} & \|L\|_{*}+\lambda\|S\|_{1} \\
\text { subject to } & \|M-(L+S)\|_{F} \leq \delta
\end{array}
$$

- Reconstruction is stable

$$
\frac{1}{n^{2}}\left(\left\|\hat{L}-L_{0}\right\|_{F}^{2}+\left\|\hat{S}-S_{0}\right\|_{F}^{2}\right) \leq O\left(\delta^{2}\right)
$$

Extensions

Robustness to noise (same people + Zhou)

- In reality: data matrix $=$ low-rank + sparse + noise

$$
M=L_{0}+S_{0}+Z_{0}, \quad\left\|Z_{0}\right\|_{F} \leq \delta
$$

- Recovery via relaxed PCP

$$
\begin{array}{ll}
\operatorname{minimize} & \|L\|_{*}+\lambda\|S\|_{1} \\
\text { subject to } & \|M-(L+S)\|_{F} \leq \delta
\end{array}
$$

- Reconstruction is stable

$$
\frac{1}{n^{2}}\left(\left\|\hat{L}-L_{0}\right\|_{F}^{2}+\left\|\hat{S}-S_{0}\right\|_{F}^{2}\right) \leq O\left(\delta^{2}\right)
$$

Dense correction (same people + Ganesh)

- Sparse component S_{0} has random signs
- Fraction of nonzero entries in $S_{0} \rightarrow 1$
- PCP still succeeds with high probability!

Summary

- Principled approach to Robust PCA
- Works well in theory and in practice
- Amenable to large scale problems - early effective algorithms
- Many applications
- Computer vision
- Signal processing
- Data analysis
- Many more (to come)
- Interested in what you think!
E. J. Candès, X. Li, Y. Ma, and J. Wright (2009). Robust Principal Component Analysis? Stanford Technical Report

Happy Anniversary!

Long Live IPAM!

Proof via dual certification

Find dual variable Y such that pair $\left(L_{0}, S_{0} ; Y\right)$ obeys KKT optimality conditions

$$
M=L_{0}+S_{0}
$$

Proof via dual certification

Find dual variable Y such that pair $\left(L_{0}, S_{0} ; Y\right)$ obeys KKT optimality conditions

$$
M=L_{0}+S_{0}
$$

- T : span of all matrices with row space or col. space included in that of L_{0}
- Ω : span of all matrices with support included in that of S_{0}

Proof via dual certification

Find dual variable Y such that pair $\left(L_{0}, S_{0} ; Y\right)$ obeys KKT optimality conditions

$$
M=L_{0}+S_{0}
$$

- T : span of all matrices with row space or col. space included in that of L_{0}
- Ω : span of all matrices with support included in that of S_{0}

Sufficient (and almost necessary) conditions

- $T \cap \Omega=\{0\}$
- There is $W \in T^{\perp}$ such that

$$
\|W\|<1
$$

and $Y=U V^{*}+W$ obeys

$$
\begin{cases}Y_{i j}=\lambda\left[\operatorname{sgn}\left(S_{0}\right)\right]_{i j} & (i, j) \in \Omega \\ \left|Y_{i j}\right|<\lambda & \text { otherwise }\end{cases}
$$

Augmented Lagrangian approach

$$
\begin{array}{ll}
\text { minimize } & \|L\|_{*}+\lambda\|S\|_{1}+\frac{1}{2 \tau}\|M-L-S\|_{F}^{2} \\
\text { subject to } & L+S=M
\end{array}
$$

Lagrangian

$$
\mathcal{L}(L, S ; Y)=\|L\|_{*}+\lambda\|S\|_{1}+\frac{1}{\tau}\langle Y, M-L-S\rangle+\frac{1}{2 \tau}\|M-L-S\|_{F}^{2}
$$

Basic algorithm (Usawa): dual gradient ascent

$$
\begin{cases}\left(L_{k}, S_{k}\right) & =\arg \min _{L, S} \mathcal{L}\left(L, S ; Y_{k-1}\right) \\ Y_{k} & =Y_{k-1}+\delta_{k}\left(M-L_{k}-S_{k}\right)\end{cases}
$$

Sequential minimization

Scalar shrinkage: $\mathcal{S}_{\tau}[x]=\operatorname{sgn}(x) \max (|x|-\tau, 0)$

- Componentwise thresholding $\mathcal{S}_{\tau}(X)$
- Singular value thresholding $\mathcal{D}_{\tau}(X)$

$$
\mathcal{D}_{\tau}(X)=U \mathcal{S}_{\tau}(\Sigma) V^{*} \quad X=U \Sigma V^{*}
$$

Sequential minimization

Scalar shrinkage: $\mathcal{S}_{\tau}[x]=\operatorname{sgn}(x) \max (|x|-\tau, 0)$

- Componentwise thresholding $\mathcal{S}_{\tau}(X)$
- Singular value thresholding $\mathcal{D}_{\tau}(X)$

$$
\begin{gathered}
\mathcal{D}_{\tau}(X)=U \mathcal{S}_{\tau}(\Sigma) V^{*} \quad X=U \Sigma V^{*} \\
\mathcal{L}(L, S ; Y)=\|L\|_{*}+\lambda\|S\|_{1}+\frac{1}{\tau}\langle Y, M-L-S\rangle+\frac{1}{2 \tau}\|M-L-S\|_{F}^{2}
\end{gathered}
$$

Easy to minimize over L and S separately

$$
\begin{aligned}
& \arg \min _{L} \mathcal{L}(L, S, Y)=\mathcal{D}_{\tau}(M-S+Y) \\
& \arg \min _{S} \mathcal{L}(L, S, Y)=\mathcal{S}_{\lambda \tau}(M-L+Y)
\end{aligned}
$$

PCP by alternating directions

initialize: S_{0}, Y_{0} and $\tau>0$
while not converged
(1) $L_{k}=\mathcal{D}_{\tau}\left(M-S_{k-1}+Y_{k-1}\right)$
(shrink singular values)
(2) $S_{k}=\mathcal{S}_{\lambda \tau}\left(M-L_{k}+Y_{k-1}\right)$
(shrink scalar entries)
(0) $Y_{k}=Y_{k-1}+\left(M-L_{k}-S_{k}\right)$
end while output: L, S

PCP by alternating directions

initialize: S_{0}, Y_{0} and $\tau>0$
while not converged
(1) $L_{k}=\mathcal{D}_{\tau}\left(M-S_{k-1}+Y_{k-1}\right)$
(shrink singular values)
(2) $S_{k}=\mathcal{S}_{\lambda \tau}\left(M-L_{k}+Y_{k-1}\right)$ (shrink scalar entries)
(0) $Y_{k}=Y_{k-1}+\left(M-L_{k}-S_{k}\right)$
end while output: L, S

All the computational work is in (1)
When iterates L_{k} have low rank

- Only need to compute few singular values (and vectors) at each step
- Lanczos iterations are very effective

[^0]: ${ }^{a}$ missing fraction is arbitrary

