

Data-Driven Models for Efficient Cancer Treatment Delivery

LOUIS-MARTIN ROUSSEAU

The impact of cancer

One person is diagnosed with cancer every 3 minutes in Canada, 20 seconds in USA.

One person dies from cancer every 7 minutes in Canada, 1 minute in USA.

First cause of mortality in Canada (30%): 45% of Canadian will develop cancer 5 year survivability 66%

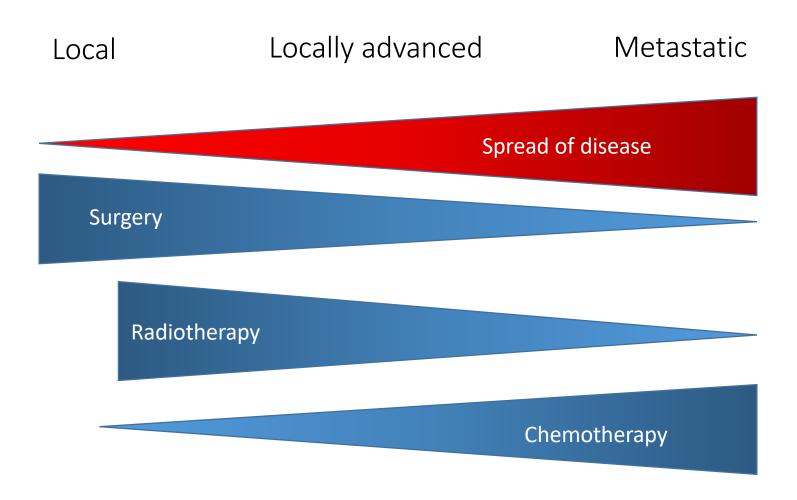
Ever increasing of new cancer cases: 12% within 4 years Aging of population; Demographic growth.



DUISHAN.

How to treat all these patients while keeping excellent care ?

What are your treatment options ?



About 50% of cancer patients will receive radiotherapy

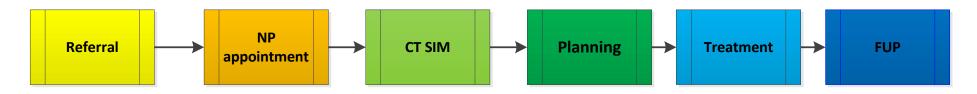
Radiation Therapy

Vickers 6 Prototype Newcastle-on-Tyne 1960

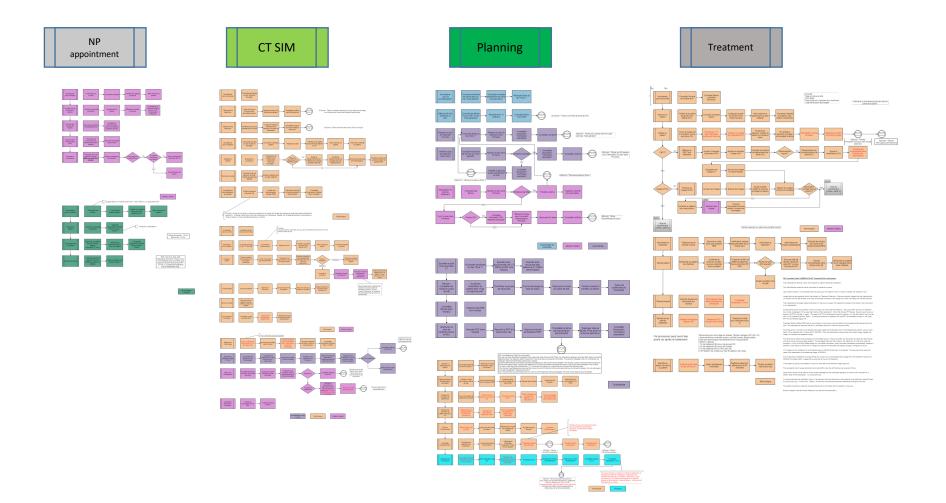
Teams

	Chemotherapy	Radiotherapy
Prescribes	Oncologist	Radiation Oncologist
Prepares	Pharmacist	Physicist
Delivers	Nurse	Therapist

Care Trajectory



Care Trajectory in details



Important steps

Simulation:

- Uses: CT, MRI, PET-CT
- Used for treatment planning purposes
- 3D model of the human body

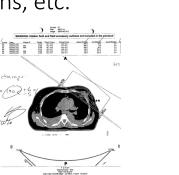
Treatment Planning

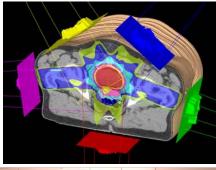
- Calculates radiation deposition in the human body
- Multi-criteria optimization solver
- Server farm, GPU calculations, etc.

Plan approval

Linear accelerator

- mm accuracy
- 100x more powerful than a radiology X-ray



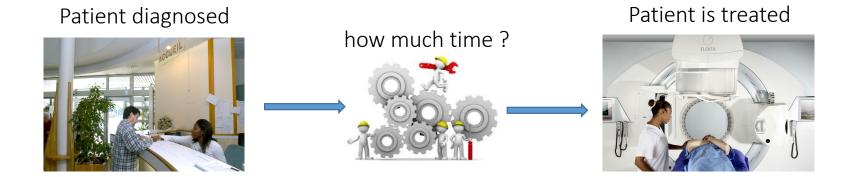


7

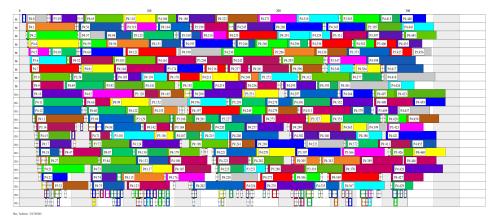
Outline

- Dynamic Radiation Therapy Patient Booking
 - Online stochastic combinatorial optimization
 - Prediction-based scheduling
- Radiation Therapy Treatment Planning
 - Unsupervised learning to reduce problem size
 - Trajectory optimization for Cyberknife

When to book a patient ?



Considering existing calendar...

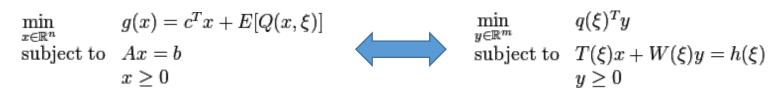


... and patient priorities

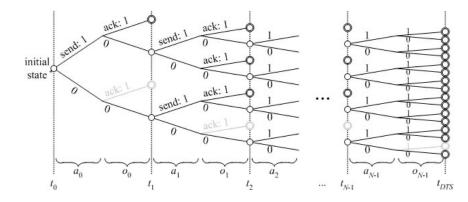
Palliative	Curative 1	Curative 2
(P2)	(P3)	(P4)
< 3 days	< 14 days	< 28 days

Different possible approaches

Stochastic Optimization



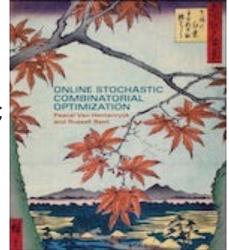
Markov Decision Process

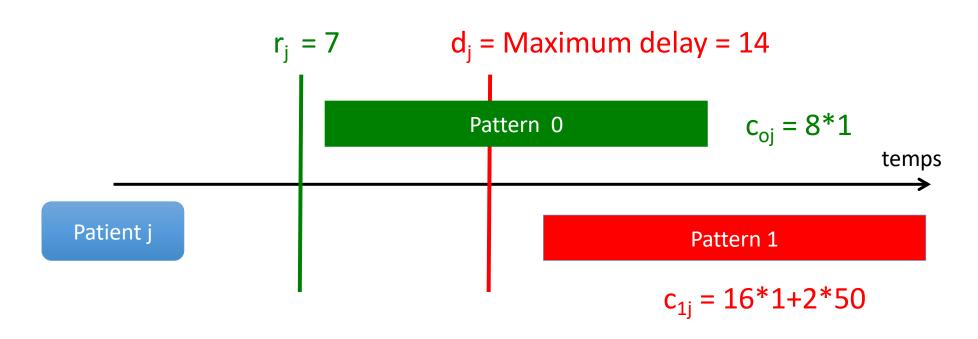


Online Optimization

RT cancer patient booking

- Online stochastic combinatorial optimization:
 - 1. For each solution, we compute :
 - 1. A utilization cost (by day and by linac) for a time slot;
 - 2. We choose the appointment of minimum cost:
 - 1. Waiting time cost (depending of the priority);
 - 2. Expected utilization cost.
- Booking model -> Dantzig-Wolfe decomposition;
- Uncertainties -> Benders decomposition.





Treatment planning fix to 7 days

Stochastic Programming Model

$$\min\sum_{i\in S_j} c_{ij}x_{ij} + \mathbb{E}_{\omega\in\Omega_j} \left[\sum_{l\in\mathcal{P}^{\omega}}\sum_{i\in S_l} c_{il}y_{il}^{\omega} + \sum_{k\in H}\sum_{m\in M} c^o z_{mk}^{\omega}\right]$$

subject to:

$$\sum_{i \in S_{j}} x_{ij} = 1$$

$$\sum_{i \in S_{j}} y_{il}^{\omega} = 1, \quad \forall \omega \in \Omega_{j}, \forall l \in \mathcal{P}^{\omega} \quad \text{Approximated utilization cost of} \\ a \text{ given initial treatment time slot} \quad \text{Choose greedily} \\ \text{the pattern} \\ \frac{1}{\sum_{i \in S_{j}} a_{ijk}^{m} x_{ij} + \sum_{l \in \mathcal{P}^{\omega}} \sum_{i \in S_{l}} a_{ilk}^{m} y_{il}^{\omega} \leq F_{k}^{m} + z_{mk}^{\omega}, \quad \forall m \in M, \forall k \in H, \forall \omega \in \Omega_{j} \\ = \text{dual variable of this constraint} \\ \mathbb{1}_{\mathcal{P}_{p}}(j) \sum_{i \in S_{j}} a_{ijk}^{m} x_{ij} + \sum_{l \in \mathcal{P}^{\omega}_{p}} \sum_{i \in S_{l}} a_{ilk}^{m} y_{il}^{\omega} \geq z_{mk}^{\omega}, \quad \forall m \in M, \forall k \in H, \forall \omega \in \Omega_{j} \\ \\ \sum_{k=b}^{b+4} z_{mk}^{\omega} \leq O_{week}, \quad \forall m \in M, \forall b \in \mathcal{B}, \forall \omega \in \Omega_{j} \\ z_{mk}^{\omega} \in [0, O_{day}], \quad \forall m \in M, \forall k \in H, \forall \omega \in \Omega_{j} \\ x_{ij} \in \{0, 1\}, \quad \forall i \in S_{j} \end{cases}$$

$$y_{il}^{\omega} \in \{0, 1\}, \qquad \forall l \in \mathcal{P}^{\omega}, \forall i \in S_l, \forall \omega \in \Omega_j$$

	Due date violations			Ave	erage waiting	Utilization	Overtime	
	>3	>14	>28	Palliative	Curative 1	Curative 2		
CICL	14	16	0	2,07	14,38	12,98	88,3%	44
OSCO - 1	9	6	0	1,05	10,57 15,98		88,0%	6

CICL real data:	Very small and simple
 170 patients ; 	<i>i</i> 1
· · · · ·	with homogenous
• 120 days;	appointement times
• 2 linacs with 23 slots.	appointement times

Legrain A, Fortin MA, Lahrichi N, Rousseau L-M (2015) "Online Stochastic Optimization of Radiotherapy Patient Scheduling", *Healthcare Management Science*, 18, 110-123.

Outline

- Dynamic Radiation Therapy Patient Booking
 - Online stochastic combinatorial optimization
 - Prediction-based scheduling
- Radiation Therapy Treatment Planning
 - Unsupervised learning to reduce problem size
 - Trajectory optimization for Cyberknife

UNIVERSITY OF MONTRÉAL HOSPTITAL CENTER (CHUM)

Prediction-based Scheduling for Online RT Scheduling

10 LINACS 5 generics 4 specialized 1 cyberknife **4400** consultations

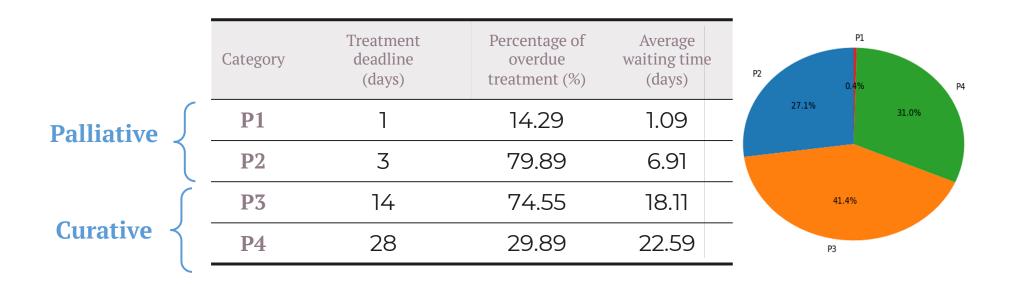
3500 new patients

40.000 fractions

25 to 50 minutes apt.

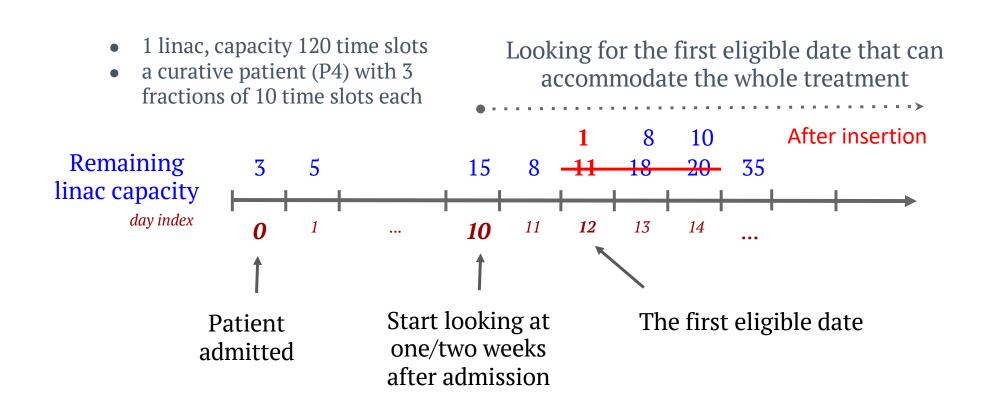
Pham T-S, Legrain A, De Causmaecker P, Rousseau L-M, (2023), A prediction-based approach for online dynamic appointment scheduling: a case study in radiotherapy treatment. Informs Journal of Computing.

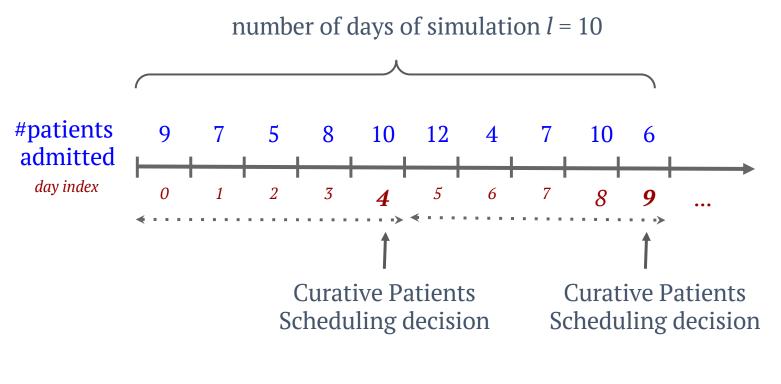
CHUM - 2019



Objective: minimizing overdue treatment and waiting time

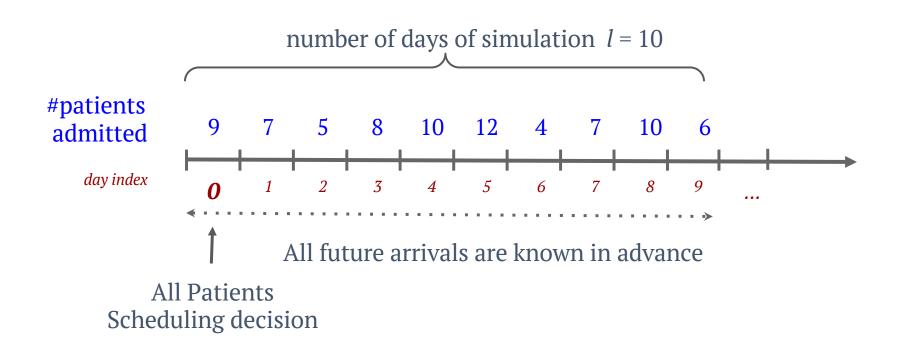
Online Scheduling with a Greedy Heuristic





Palliative patients: schedule at arrival

Offline Scheduling – with Perfect Information



 $x_{tl}^{i} = \begin{cases} 1 & \text{if patient } i \text{ receives their treatment on day } t, \text{ linac } l \\ 0 & \text{otherwise} \end{cases}$

$$\begin{array}{l} \text{minimize} \quad \sum_{i \in \hat{\mathcal{P}}} \sum_{t \in \mathcal{T}, t > a_i} \sum_{l \in \mathcal{L}} \omega_1 (t - a_i) log(t - a_i + 1) x_{tl}^i \\ + \sum_{i \in \hat{\mathcal{P}}} \sum_{t \in \mathcal{T}, t > d_i} \sum_{l \in \mathcal{L}} \omega_2 (t - d_i) log(t - d_i + 1) x_{tl}^i \end{array} \right. \\ \begin{array}{l} \text{waiting time} \end{array}$$

A MIP Model for Batch\Offline Scheduling

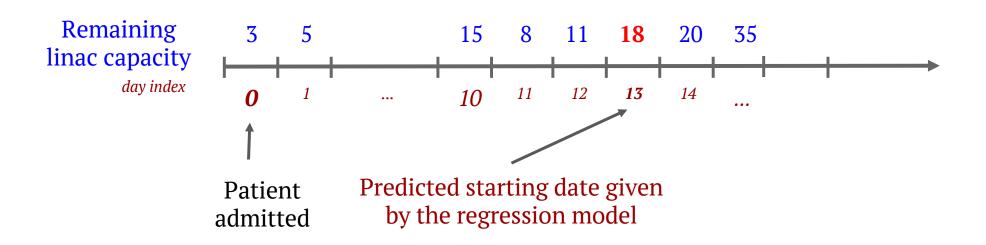
$$\begin{split} &\sum_{t\in\mathcal{T}}\sum_{l\in\mathcal{L}}x_{tl}^{i}=1 \qquad \text{assignment constraint} \qquad \forall i\in\hat{\mathcal{P}} \\ &x_{tl}^{i}=0 \qquad \forall i\in\hat{\mathcal{P}}, l\in\mathcal{L}, t\in\{0,\ldots,r_{i}-1\} \\ &\sum_{i\in\hat{\mathcal{P}}}\sum_{t'=max\{0,t-I_{i}+1\}}^{t}p_{i}x_{t'l}^{i}\leq\hat{C}_{l}^{t} \qquad \text{capacity constraints} \qquad \forall t\in\mathcal{T}, l\in\mathcal{L} \\ &\sum_{i\in\mathcal{P}^{c}}\sum_{t'\in\{t-I_{i}+1,\ldots,t\}}p_{i}x_{t'l}^{i}\leq max\{0,\hat{C}_{l}^{t}-\gamma C_{l}^{t}\} \quad \text{reserved capacity} \quad \forall t\in\mathcal{T}, l\in\mathcal{L} \\ &x_{tl}^{i}\in\{0,1\} \qquad \forall i\in\hat{\mathcal{P}}, t\in\mathcal{T}, l\in\mathcal{L} \end{split}$$

WARNING: CURRENTLY IGNORES INTRA-DAY SCHEDULING

Prediction-based Scheduling

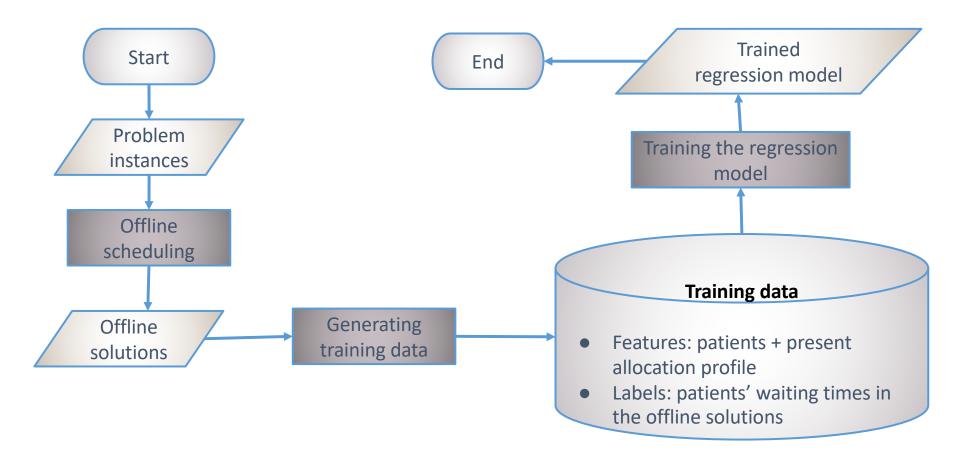
- 1 linac, capacity 120 time slots
- a curative patient with 3 fractions of 10 time slots each

Looking for the first eligible date that can accommodate the whole treatment



How do we predict a "good" starting date for a patient?

Training the Regression Model for Scheduling



Constructing Training data from an Offline Solution

Notation	Explanation							
${\cal P}$	set of patients							
C	total linac capacity							
$lpha_i$	admission time point of patient i							
d_i	due date of patient $i \ (d_i \leq r_i)$							
I_i	number of fractions of patient i							
p_i	fraction's length of patient i							
$\hat{c}^{\phi}_{d} \ \hat{C}^{\phi}$	available capacity of all linac on day d , measured at time point ϕ							
\hat{C}^{ϕ}	set of present capacity of all days in the sample horizon \mathcal{D}^{ϕ}							
w_i^*	waiting time of patient <i>i</i> in the offline solution s_i^*							
• Labe	points: $X_i = \{r_i, I_i, d_i, p_i, \hat{C}^{\phi, \phi = \alpha_i}\} \Rightarrow \mathcal{X}$ ls: $y_i = w_i^* \Rightarrow \mathcal{Y}$ MIP as a ? Labelling mate: $\xi : \mathcal{X} \to \mathcal{Y}$ Machine							
• Obje	ctive: $\mathcal{L}(\phi) = \sum_{i} l(\hat{y}_i, y_i) + \sum_{k} \Omega(f_k)$ Loss function $\mathcal{L}(\phi) = \sum_{i} l(\hat{y}_i, y_i) + \sum_{k} \Omega(f_k)$							

Constructing Training data from an Offline Solution

Notation	Explanation	
${\cal P}$	set of patients	
C	total linac capacity	
$lpha_i$	admission time point of patient i	
d_i	due date of patient $i \ (d_i \leq r_i)$	
I_i	number of fractions of patient i	
p_i	fraction's length of patient i	
$\hat{c}^{\phi}_{d} \ \hat{C}^{\phi}$	available capacity of all linac on day d , measured at time	e point ϕ
	set of present capacity of all days in the sample horizon ?	\mathcal{D}^{ϕ}
w_i^*	waiting time of patient i in the offline solution s_i^*	MIP as a Episode Builder ?
• Lab	apoints: $X_i = \{ r_i, I_i, d_i, p_i, \hat{C}^{\phi, \phi = \alpha_i} \} \Rightarrow \mathcal{X}$ els: $y_i = w_i^* \Rightarrow \mathcal{Y}$ ACTION ? mate: $\xi : \mathcal{X} \to \mathcal{Y}$	
• Obj	Pecti $\mathcal{L}(\phi) = \sum_{i} l(\hat{y}_i, y_i) + \sum_{k} \Omega(f_k)$ Loss function \mathcal{L} Regularization	
chaire de recherche du canada en analytique et logistique de soins de sante HANNALOGE	26	POLYTECHNIQUE Montréal

Patient arrivals: Poisson distribution

Treatment plans: based on historical data

Instance setting

- Number of linacs
- Arrival rate (average daily number of patients)

For each instance setting: 500 instances

- 400 for training the regression model
- 100 for testing

PREDICTIVE MODELS

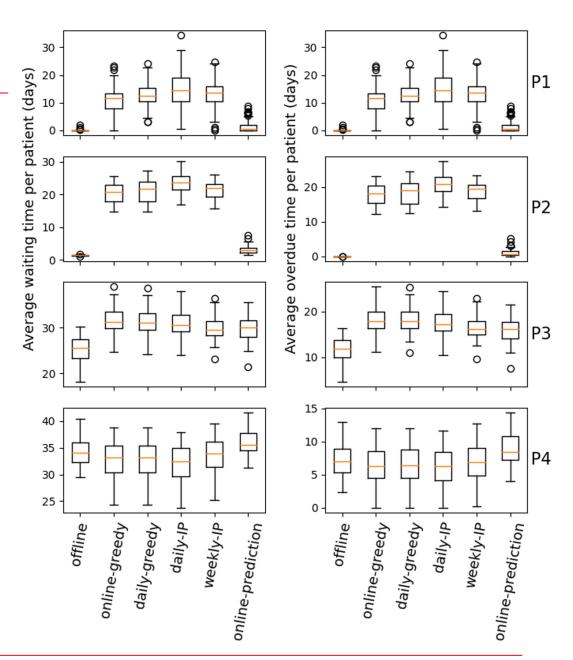
	Training time	Trai	ining	Testing		
	Training time MSE MAE		MSE	MAE		
MLP	116.19	3.45	1.32	3.33	1.29	
SGD	0.35	6.06	1.84	5.61	1.77	
Lasso	0.44	5.97	1.81	5.52	1.74	
ElasticNet	0.25	6.26	1.85	5.83	1.8	
SVR	43.16	3.19	1.07	3.12	1.07	
Decision Tree	0.84	2.41	0.48	6.59	1.4	
Random forest	51	0.38	0.39	2.64	1.03	
XGBoost	7.71	0.96	0.66	2.44	0.97	

DYNAMIC SCHEDULING STRATEGIES

	Scheduling strategy	Scheduling palliative patients	Scheduling curative patients		
	Offline	Scheduling once with all future arr	ivals known in advance		
Batch scheduling	Daily	Every day	Every day		
	Weekly Every day		Every Friday		
	Daily greedy	Every day	Every day		
	Greedy	At admission	At admission		
	Prediction-based	At admission	At admission		

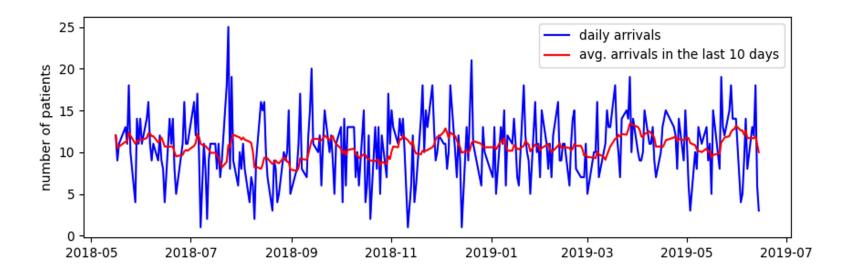
8 LINACS Arrival rate of 12.0

P4 patients are slightly delayed to create enough room for P1 & P2



Experiment on a real CHUM data

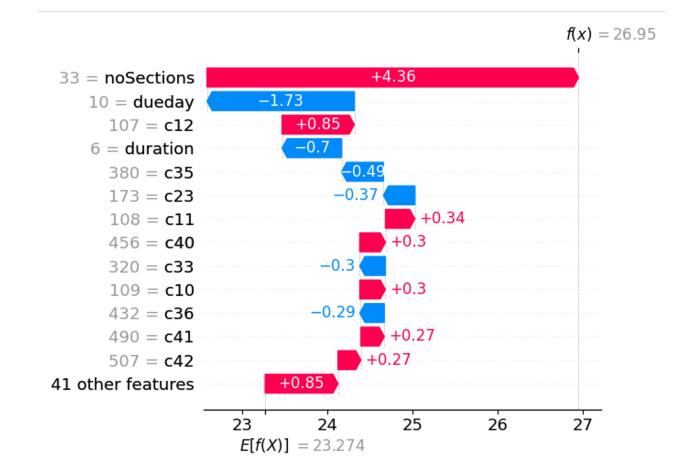
- 7 linacs operating 8 hours/day
- High fluctuation in arrival rate
 - Instance setting for training: arrival rate of 10.1 patients/day



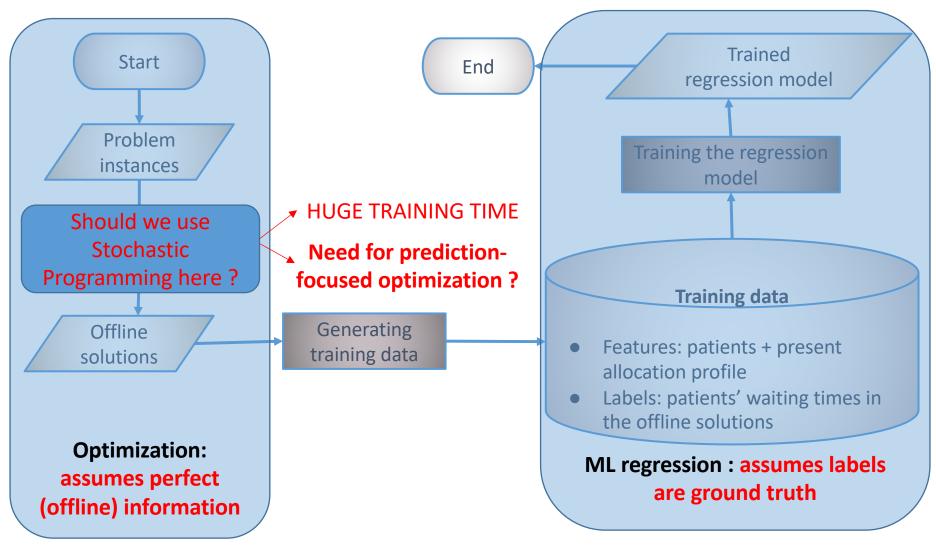
RESULTS ON THE REAL INSTANCE

Avg. Scheduling occupa		Waiting time (days)					Overdue time (days)				
strategy	(%)	overall	P1	P2	P3	P4	overall	P1	P2	P3	P4
online-greedy	97.45	33.02	5.14	6.13	43.67	44.02	44.02	5.14	3.91	29.74	16.18
daily-greedy	97.51	32.91	6.00	6.23	43.48	43.80	17.71	6.00	3.99	29.58	16.00
daily	97.72	33.53	9.79	9.63	42.87	43.44	18.25	9.79	7.15	28.93	15.65
weekly	97.61	33.04	7.86	7.72	42.42	44.10	17.76	7.86	5.37	28.51	16.19
prediction-based	97.14	32.93	3.29	4.05	44.21	44.94	17.69	3.29	1.99	30.22	16.96

Explainability



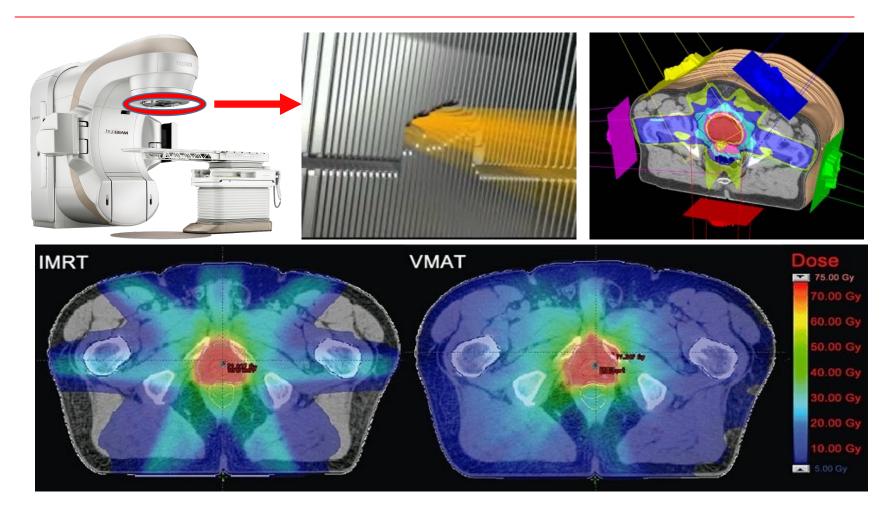
Training the Regression Model for Scheduling



Outline

- Dynamic Radiation Therapy Patient Booking
 - Online stochastic combinatorial optimization
 - Prediction-based scheduling
- Radiation Therapy Treatment Planning
 - Unsupervised learning to reduce problem size
 - Trajectory optimization for Cyberknife

Planning Treatment for Radiation Therapy



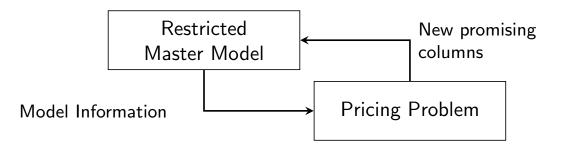
Mahnam M, Gendreau M, Lahrichi N, Rousseau L-M, (2017), "Simultaneous delivery time and aperture shape optimization for the volumetric-modulated arc therapy (VMAT) treatment planning problem", *Physics in Medicine and Biology*, 62,

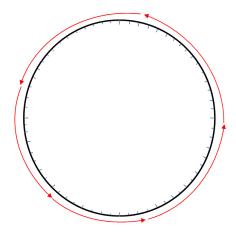
VMAT: Delivery time & aperture shape optimization

- Vocabulary:
 - Voxel: a cube in the body (a 3D pixel)
 - **Sector**: is a position (angle) around the body.
 - **Aperture**: a configuration of the tungsten leafs
 - Beamlet: the smallest possible beam
 - **Dose**: the amount of energy deposited in a voxel (in Gray)
- Decisions:
 - Selecting a **sequence** (each 2°) of apertures.
 - Determining the beam energy & rotation speed.
- Objectives:
 - Maximize plan quality (deposited dose match prescribed dose)
 - Minimize treatment time

VMAT: Delivery time & aperture shape optimization

- Highly combinatorial problem:
 - In a small case with (5 × 10) beams and 100 sectors,
 - there are 7.1×10^{251} apertures shapes.
 - Real problem is (80x80) x 180 sectors
- Using Column Generation (CG): a Mathematical Optimization technique for solving large-scale problems
 - Exploits decomposable structures
 - Handles large number of variables





Master Model: arc and intensity selection

Objective function

• quadratic voxel-based penalty function + delivery time

Constraints

- 1. Calculating the dose deviation from prescribed thresholds
- 2. Each sector should be covered by at most one arc
- 3. Restricting the change of dose rate between adjacent sectors
- 4. Restricting the dose rate to the max R
- 5. The gantry speed at each sector should be enough for leaf motions of the assigned arc
- 6. Restricting the change of sector time between adjacent sectors
- 7. Restricting the sector time to lower and upper bounds
- 8. Restricting the maximum total treatment time.

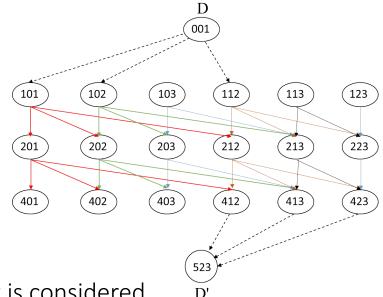
Master Model: arc and intensity selection

$\mathbf{GP}: \min \mathbf{F}(z) + w T_{max}$	Weighted quality and time objective
$z_j = \sum_{k \in K} \sum_{h \in H_k} D_{jh}(A_h^k) y^k \rho_h t_h$	$orall j \in \mathcal{V}$
$\sum_{k \in K} a_h^k y^k \le 1$	$\forall h \in H$
$\mid ho_{h+1} - ho_h \mid \leq \Delta_{ ho}$	$\forall h = 1, 2, \cdots, H - 1$
$0 \le \rho_h \le R$	$\forall h \in H$
$\sum_{k\in K} au_{h,h+1}^ky^k\leq t_h$	$\forall h \in H$
$\mid t_{h+1} - t_h \mid \leq \Delta_t$	$orall h=1,2,\cdots, H -1$
$\underline{T} \leq \frac{\mathbf{t}_{h}}{\mathbf{t}} \leq \overline{T}$	$\forall h \in H$
$\sum_{h \in H} \frac{t_h}{t_h} \le T_{max}$	
$\boldsymbol{y^k} \in \{0,1\}$	$\forall k \in K$

Subproblem: building new arcs

The situation of each row in each sector is indicated as a node (h, l, r);

• e.g. node $(90, 0, 4)_5$ is the position of leaves of row 5 in sector 90:



Constraints include:

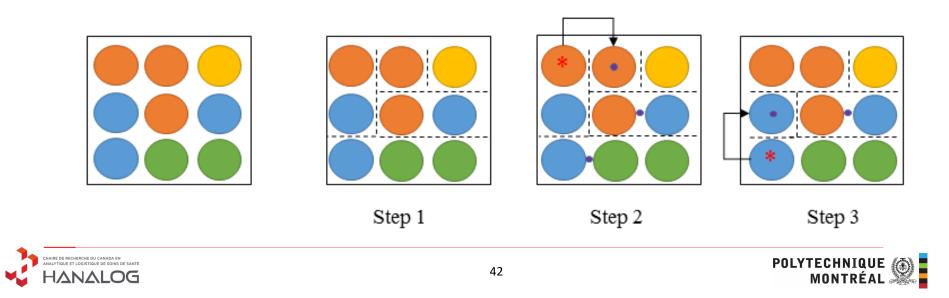
- 1. Maximum leaf motion constraint is considered.
- 2. Conflicting trailing and leading leaves are avoided, i.e. t + 1 \leq r
- 3. Cost of nodes and arcs based on the Master Model (dual values)
- Polynomial shortest path algorithm easily obtain the best solution.

Data-drive size reduction

Random down-sampling is a usual approach (Kufer et al. 2003)

We propose an unsupervised learning method:

- Observation : similar voxels would be considered in a cluster.
- Each voxel is associated with feature tensor based the dose received from each beamlet, assuming fully opened aperture in all sectors.
- We then apply a variant of the K-Means algorithm.



Reducing the problem size

Set # clusters to 5% of initial number of voxels for normal tissue voxels, 15% for tumor voxels

Voxel aggregation computational results.

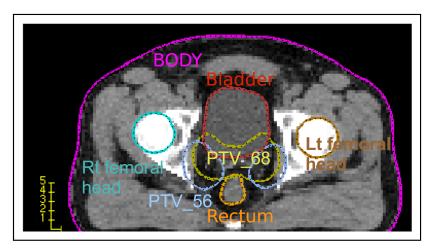
lter	# Transfer Iter	Time (Sec.)	Avg.Dist
0			54.27054
1	19265	0.952947	11.57258
2	2160	0.74742	10.51782
3	301	0.733188	10.44499
4	40	0.729702	10.44053
5	13	0.738105	10.43969

Experimental evaluation

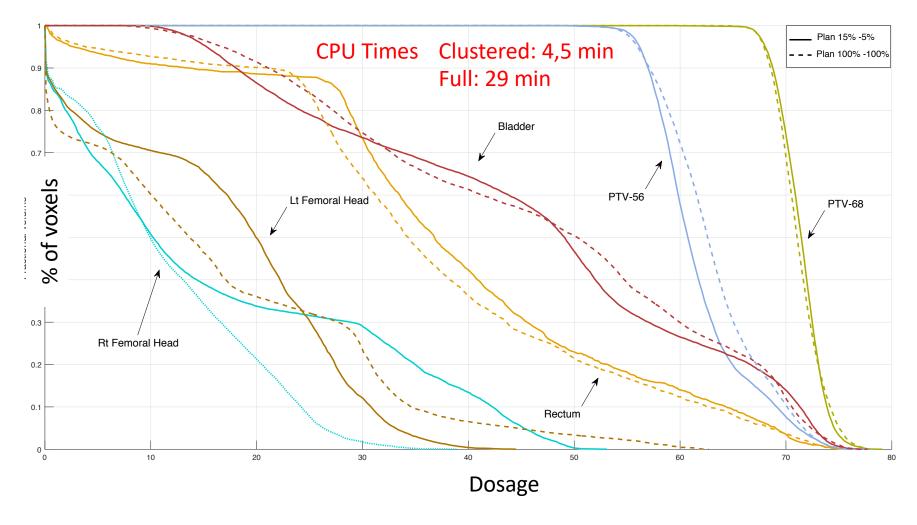
Case Characteristics				
Total $\#$ beamlets	25,404			
Beamlet size (mm)	1 imes 1			
Voxel resolution (mm)	3, 3, 3			
# Target voxels	9491			
# Body voxels	690,373			

Algorithm Parameters				
Max dose rate	600 MU/min			
Max leaf speed	3 cm/sec			
Max fluence change	2 MU/s			
Max time change	2 s			
Gantry speed	$[1 6]^{\circ}/sec$			

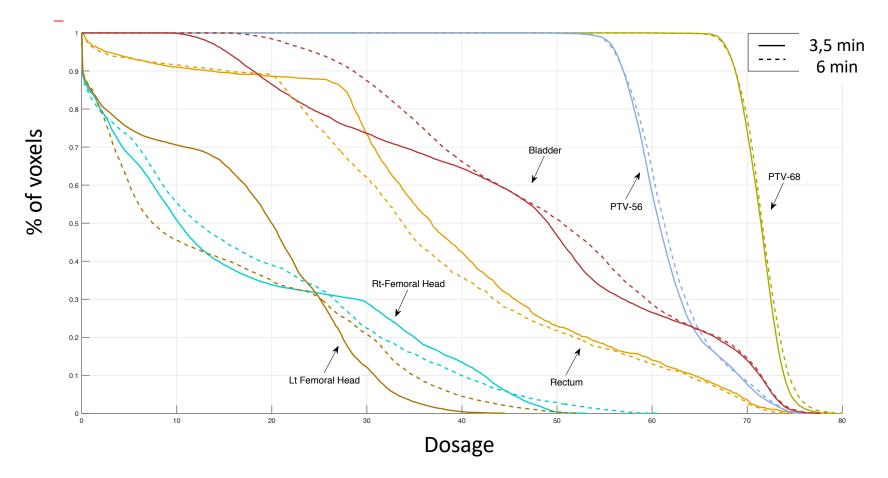
- CORT dataset (Craft et al, 2014)
- 180 equispaced sectors
- Algorithm is implemented in C++/CPLEX



Effect of ML-based aggregation



Effect of delivery time

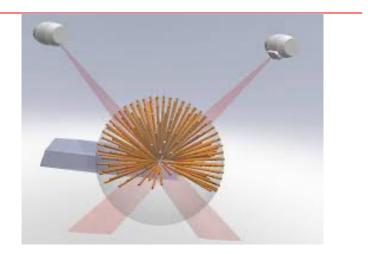


30

Outline

- Dynamic Radiation Therapy Patient Booking
 - Online stochastic combinatorial optimization
 - Prediction-based scheduling
- Radiation Therapy Treatment Planning
 - Unsupervised learning to reduce problem size
 - Trajectory optimization for Cyberknife

Cyberknife (SBRT)



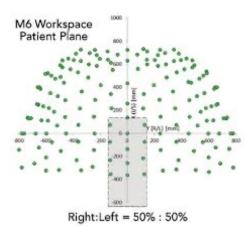
- High quality beam in terms of dose conformity
- BUT Long treatment time (1 hour)
- Up to 70% of treatment time corresponds to the robotic arm movement between nodes

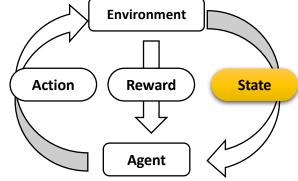
Objectives

- 1. Minimize the distance covered by the robotic arm
- 2. Maximize the conformity of delivered dose to the prescribed dose
- 3. Scatter the beams around the patient to avoid clusters

Kafaei, P., Cappart, Q., Renaud, M. A., Chapados, N., & Rousseau, L. M. (2021). Graph neural networks and deep reinforcement learning for simultaneous beam orientation and trajectory optimization of Cyberknife. Physics in Medicine & Biology, 66(21), 215002.

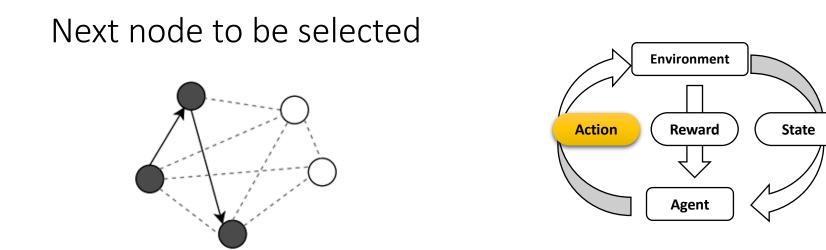
A complete acyclic graph between each shooting position (nodes)





Features

- (*x*, *y*, *z*): coordinates of the nodes
- d_{tar} : dose deposited in the tumor at unit intensity
- *d_{oar}*: dose deposited in other tissues at unit intensity
- A set of the neighbors of each node

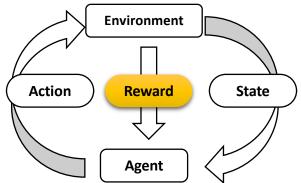


Non-terminal State

$$R(s_t, a_t) = -(r_1 + r_2), \ s_t \neq s_\emptyset$$

Terminal State

$$R(s_t, a_t) = -(r_1 + r_2 + r_3), \ s_t = s_{\emptyset}$$

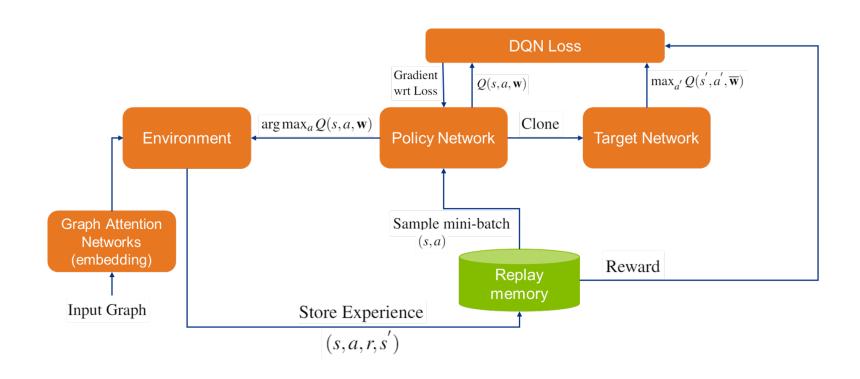


 $r_1 \rightarrow$ the Euclidean distance between m and n $r_2 \rightarrow \frac{d_{oar}}{d_{tar}}$ for beam n (doses are pre-computed with a MC simulation engine) $r_3 \rightarrow$ maximum separation between selected nodes, defined as:

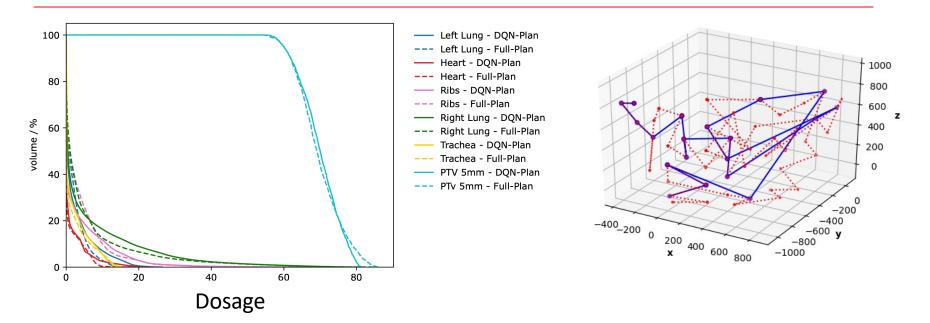
$$\sum_{i,j\in E_s} K \big(1-\cos\alpha_{ij}\big)^{-1}$$

m: the last node added to the trajectory in state s_t

n: next node selected ($a_t = n$)



Experimental Results (Patient #1)



Method	Obj.	Execution time (s)	Total arm Distance	${ m Time}\ ({ m min})$
DQN	3.53	1.09	5,529	35
Gurobi	3.27	3600.00	$6,\!350$	37
Heuristic	4.50	2.47	$5,\!494$	35
Random	4.65	0.15	$2,\!696$	31
Clinical	NA^{a}	NA^a	17,726	54

In conclusion

Pictures generated by DAL-E

- Long waiting times make patients (very) anxious
- Making the system more efficient is thus not only important from a cost perspective

