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The impact of cancer
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One person is diagnosed with cancer every 
3 minutes in Canada, 20 seconds in USA.

One person dies from cancer every 
7 minutes in Canada, 1 minute in USA.

First cause of mortality in Canada (30%):
45% of Canadian will develop cancer
5 year survivability 66%

Ever increasing of new cancer cases:
12% within 4 years 
Aging of population;
Demographic growth. How to treat all these patients 

while keeping excellent care ?



What are your treatment options ?
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Spread of disease

Local Locally advanced Metastatic

Surgery

Radiotherapy

Chemotherapy

About 50% of cancer patients will receive radiotherapy



Radiation Therapy
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Teams
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Chemotherapy Radiotherapy

Prescribes Oncologist Radiation Oncologist

Prepares Pharmacist Physicist

Delivers Nurse Therapist

Care Trajectory

Referral NP 
appointment CT SIM Planning Treatment FUP



Care Trajectory in details
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CT SIMNP
appointment

TreatmentPlanning



Important steps
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Simulation:
• Uses: CT, MRI, PET-CT
• Used for treatment planning purposes
• 3D model of the human body

Treatment Planning
• Calculates radiation deposition in the human body
• Multi-criteria optimization solver
• Server farm, GPU calculations, etc.

Plan approval

Linear accelerator
• mm accuracy
• 100x more powerful than a radiology X-ray



Outline

• Dynamic Radiation Therapy Patient Booking
• Online stochastic combinatorial optimization
• Prediction-based scheduling

• Radiation Therapy Treatment Planning
• Unsupervised learning to reduce problem size
• Trajectory optimization for Cyberknife
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When to book a patient ?
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Palliative 
(P2)

Curative 1
(P3)

Curative 2
(P4)

< 3 days < 14 days < 28 days

Patient diagnosed Patient is treated
how much time ?

Considering existing calendar…
... and patient priorities



Different possible approaches 
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Stochastic Optimization

Markov Decision Process

Online Optimization



RT cancer patient booking
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• Online stochastic combinatorial optimization:
1. For each solution, we compute :

1. A utilization cost (by day and by linac) for a time slot;

2. We choose the appointment of minimum cost:
1. Waiting time cost (depending of the priority) ;
2. Expected utilization cost.

• Booking model -> Dantzig-Wolfe decomposition;

• Uncertainties -> Benders decomposition.



Structure of the model
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Pattern 1

dj = Maximum delay = 14rj = 7

Pattern  0 coj = 8*1

c1j = 16*1+2*50

Patient j

temps

Treatment planning fix to 7 days



Stochastic Programming Model
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Approximated utilization cost of 
a given initial treatment time slot

= dual variable of this constraint

Choose greedily 
the pattern 
with the best 
reduced cost



Initial Results – Regional Hospital 
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Due date violations Average waiting time Utilization Overtime

>3 >14 >28 Palliative Curative 1 Curative 2

CICL 14 16 0 2,07 14,38 12,98 88,3% 44

OSCO - 1 9 6 0 1,05 10,57 15,98 88,0% 6

CICL real data: 
• 170 patients ;
• 120 days;
• 2 linacs with 23 slots. 

Legrain A, Fortin MA, Lahrichi N, Rousseau L-M (2015) “Online Stochastic Optimization of 
Radiotherapy Patient Scheduling”, Healthcare Management Science, 18, 110-123.

Very small and simple 
with homogenous

appointement times



Outline

• Dynamic Radiation Therapy Patient Booking
• Online stochastic combinatorial optimization
• Prediction-based scheduling

• Radiation Therapy Treatment Planning
• Unsupervised learning to reduce problem size
• Trajectory optimization for Cyberknife
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UNIVERSITY OF MONTRÉAL HOSPTITAL CENTER (CHUM)
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4400 consultations

3500 new patients

40.000 fractions

25 to 50 minutes apt.

10 LINACS 
5 generics

4 specialized
1 cyberknife

Pham T-S, Legrain A, De Causmaecker P, Rousseau L-M, (2023), A prediction-based approach for online dynamic
appointment scheduling: a case study in radiotherapy treatment. Informs Journal of Computing.

Prediction-based Scheduling for Online RT Scheduling



CHUM - 2019
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Objective: minimizing overdue treatment
and waiting time

Category
Treatment 
deadline 

(days)

Percentage of 
overdue 

treatment (%)

Average 
waiting time 

(days)

P1 1 14.29 1.09

P2 3 79.89 6.91

P3 14 74.55 18.11

P4 28 29.89 22.59

Palliative

Curative



Online Scheduling with a Greedy Heuristic
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0 1 ... 10 11 12 13 14 ...

Start looking at 
one/two weeks 
after admission

day index

Patient 
admitted

Looking for the first eligible date that can 
accommodate the whole treatment

3 5 15 8 11 18 20 35Remaining 
linac capacity

The first eligible date

● 1 linac, capacity 120 time slots
● a curative patient (P4) with 3 

fractions of 10 time slots each

1 8 10 After insertion



Batch Scheduling
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0 1 2 3 4 5 6 7 8 9 ...

number of days of simulation l = 10

Curative Patients 
Scheduling decision

day index

9 7 5 8 10 12 4 7 10 6#patients
admitted

Palliative patients: schedule at arrival

Curative Patients 
Scheduling decision



Offline Scheduling – with Perfect Information
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0 1 2 3 4 5 6 7 8 9 ...

number of days of simulation l = 10

All Patients 
Scheduling decision

day index

9 7 5 8 10 12 4 7 10 6

All future arrivals are known in advance

#patients
admitted



A MIP Model for Batch\Offline Scheduling
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waiting time

overdue time
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ready date

assignment constraint

capacity constraints

reserved capacity 

WARNING: CURRENTLY IGNORES INTRA-DAY SCHEDULING

A MIP Model for Batch\Offline Scheduling



Prediction-based Scheduling
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How do we predict a “good” starting date for a patient?

0 1 ... 10 11 12 13 14 ...

Predicted starting date given 
by the regression model

day index

Patient 
admitted

Looking for the first eligible date that can 
accommodate the whole treatment

3 5 15 8 11 18 20 35Remaining 
linac capacity

● 1 linac, capacity 120 time slots
● a curative patient with 3 fractions 

of 10 time slots each



Training the Regression Model for Scheduling
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Start End

Training data

● Features: patients + present 
allocation profile

● Labels: patients’ waiting times in 
the offline solutions

Problem 
instances

Offline 
scheduling

Training the regression 
model

Trained 
regression model

Offline 
solutions

Generating 
training data



Constructing Training data from an Offline Solution
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MIP as a 
?   Labelling

Machine
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STATE ?

MIP as a Episode Builder ?  

ACTION ?

Constructing Training data from an Offline Solution



Data Generation
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Patient arrivals: Poisson distribution

Treatment plans: based on historical data

Instance setting
• Number of linacs
• Arrival rate (average daily number of patients)

For each instance setting: 500 instances
• 400 for training the regression model
• 100 for testing



PREDICTIVE MODELS
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Training time
Training Testing

MSE MAE MSE MAE
MLP 116.19 3.45 1.32 3.33 1.29

SGD 0.35 6.06 1.84 5.61 1.77

Lasso 0.44 5.97 1.81 5.52 1.74

ElasticNet 0.25 6.26 1.85 5.83 1.8

SVR 43.16 3.19 1.07 3.12 1.07

Decision Tree 0.84 2.41 0.48 6.59 1.4

Random forest 51 0.38 0.39 2.64 1.03

XGBoost 7.71 0.96 0.66 2.44 0.97



DYNAMIC SCHEDULING STRATEGIES
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Scheduling 
strategy Scheduling palliative patients Scheduling curative 

patients

Offline Scheduling once with all future arrivals known in advance

Daily Every day Every day

Weekly Every day Every Friday

Daily greedy Every day Every day

Greedy At admission At admission

Prediction-based At admission At admission

Batch
scheduling

Online 
scheduling



8 LINACS
Arrival rate of 12.0

P4 patients are slightly 
delayed to create enough 

room for P1 & P2  
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Experiment on a real CHUM data
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• 7 linacs operating 8 hours/day
• High fluctuation in arrival rate
• Instance setting for training: arrival rate of 10.1 patients/day



RESULTS ON THE REAL INSTANCE
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Scheduling
strategy

Avg. 
occupancy

(%)

Waiting time (days) Overdue time (days)

overall P1 P2 P3 P4 overall P1 P2 P3 P4

online-greedy 97.45 33.02 5.14 6.13 43.67 44.02 44.02 5.14 3.91 29.74 16.18

daily-greedy 97.51 32.91 6.00 6.23 43.48 43.80 17.71 6.00 3.99 29.58 16.00

daily 97.72 33.53 9.79 9.63 42.87 43.44 18.25 9.79 7.15 28.93 15.65

weekly 97.61 33.04 7.86 7.72 42.42 44.10 17.76 7.86 5.37 28.51 16.19

prediction-based 97.14 32.93 3.29 4.05 44.21 44.94 17.69 3.29 1.99 30.22 16.96



Explainability
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Training the Regression Model for Scheduling
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Start End

Training data

● Features: patients + present 
allocation profile

● Labels: patients’ waiting times in 
the offline solutions

Problem 
instances

Offline 
scheduling

Training the regression 
model

Trained 
regression model

Offline 
solutions

Generating 
training data

Optimization:  
assumes perfect

(offline) information

ML regression : assumes labels 
are ground truth

Should we use 
Stochastic

Programming here ?

HUGE TRAINING TIME

Need for prediction-
focused optimization ?



Outline

• Dynamic Radiation Therapy Patient Booking
• Online stochastic combinatorial optimization
• Prediction-based scheduling

• Radiation Therapy Treatment Planning
• Unsupervised learning to reduce problem size
• Trajectory optimization for Cyberknife
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Planning Treatment for Radiation Therapy
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Mahnam M, Gendreau M, Lahrichi N, Rousseau L-M, (2017), “Simultaneous delivery time and aperture shape optimization for 
the volumetric-modulated arc therapy (VMAT) treatment planning problem”, Physics in Medicine and Biology, 62, 



VMAT: Delivery time & aperture shape optimization

• Vocabulary:
• Voxel: a cube in the body ( a 3D pixel)
• Sector: is a position (angle) around the body.
• Aperture: a configuration of the tungsten leafs
• Beamlet: the smallest possible beam
• Dose: the amount of energy deposited in a voxel (in Gray)

• Decisions:
• Selecting a sequence (each 2°) of apertures.
• Determining the beam energy & rotation speed.

• Objectives:
• Maximize plan quality (deposited dose match prescribed dose)
• Minimize treatment time

37



VMAT: Delivery time & aperture shape optimization

• Highly combinatorial problem:
• In a small case with (5 × 10) beams and 100 sectors,
• there are 7.1 × 10251 apertures shapes.
• Real problem is (80x80) x 180 sectors

• Using Column Generation (CG): a Mathematical Optimization 
technique for solving large-scale problems
• Exploits decomposable structures
• Handles large number of variables
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Proposed method

A column-generation-based heuristic

Column generation (CG) is a leading optimization technique

Successful in large-scale problems with decomposable structure
specially when there are a large number of variables

In addition CG is linearizing method.

In a small case with a (5⇥ 10) beam and 100 sectors, there are
7.1⇥ 10251 apertures shapes!

Restricted
Master Model

Pricing ProblemModel Information

New promising
columns

(CUSM, November 2016) VMAT treatment planning 8 / 40

Proposed method

column structure

360� around the patient is covered by arcs, K, with length �
k

Each arc consists of fixed sectors determining:
the aperture shape for including sectors
gantry speed
dose rate

(CUSM, November 2016) VMAT treatment planning 9 / 40



Master Model: arc and intensity selection

Objective function
• quadratic voxel-based penalty function + delivery time

Constraints
1. Calculating the dose deviation from prescribed thresholds
2. Each sector should be covered by at most one arc
3. Restricting the change of dose rate between adjacent sectors
4. Restricting the dose rate to the max R
5. The gantry speed at each sector should be enough for leaf 

motions of the assigned arc
6. Restricting the change of sector time between adjacent sectors
7. Restricting the sector time to lower and upper bounds
8. Restricting the maximum total treatment time.

39



Master Model: arc and intensity selection
Proposed method Master Model

General Master Model

GP : min F(z) + w Tmax (1)

zj =
X

k2K

X

h2Hk

Djh(A
k

h
) yk ⇢h th 8j 2 V (2)

X

k2K
a
k

h
y
k  1 8h 2 H (3)

| ⇢h+1 � ⇢h | �⇢ 8h = 1, 2, · · · , |H|� 1 (4)

0  ⇢h  R 8h 2 H (5)
X

k2K
⌧
k

h,h+1 y
k  th 8h 2 H (6)

| th+1 � th | �t 8h = 1, 2, · · · , |H|� 1 (7)

T  th  T 8h 2 H (8)
X

h2H
th  Tmax (9)

y
k 2 {0, 1} 8k 2 K (10)

A large-scale Mixed Integer Non-Lineal Programming (MINLP) model

(CUSM, November 2016) VMAT treatment planning 11 / 40
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Weighted quality and time objective



Proposed method Pricing Model

Graph algorithm

The situation of each row in each sector is
indicated as a node (h, l, r); e.g. node
(90, 0, 4)5 is the position of leaves of row
5 in sector 90:

Notes
Maximum leaf motion constraint is considered.
The conflicting trailing and leading leaves are avoided, i.e. t+ 1  r

The cost of nodes and arcs is based on the Master Model results
(dual values)
A polynomial shortest path algorithm easily obtain the best solution.
Leaf movements between two adjacent sectors by considering the max
leaf speed, ⌫U

l
, are controlled.(CUSM, November 2016) VMAT treatment planning 22 / 40

Subproblem: building new arcs
The situation of each row in each sector is indicated as a node (h, l, r); 
• e.g. node (90, 0, 4)5 is the position of leaves of row 5 in sector 90:

Constraints include:
1. Maximum leaf motion constraint is considered. 
2. Conflicting trailing and leading leaves are avoided, i.e. t + 1 ≤ r 
3. Cost of nodes and arcs based on the Master Model (dual values)

• Polynomial shortest path algorithm easily obtain the best solution.

41



Data-drive size reduction

Random down-sampling is a usual approach (Kufer et al. 2003)

We propose an unsupervised learning method:
• Observation : similar voxels would be considered in a cluster.

• Each voxel is associated with feature tensor based the dose received from 
each beamlet, assuming fully opened aperture in all sectors.

• We then apply a variant of the K-Means algorithm.

42

Proposed method Master Model

Aggregation procedure

Advantages

Utilizing the geometric information of voxels

Considering the weight of each cluster in the objective function as the
number of voxels in the cluster; then though the voxels are down
sample but the weight of all voxels are taken into account.

(CUSM, November 2016) VMAT treatment planning 16 / 40



Reducing the problem size

Set # clusters to 5% of initial number of voxels for normal tissue 
voxels, 15% for tumor voxels

43

Results E↵ect of aggregation

E↵ect of aggregation (computational)

Normal voxels are reduced to 5% and tumor voxels to 10%.
The progress of solution quality from random sampling to the first
iteration was about 78%
The progress from the first iteration to the fifth iteration has been
only 9%

Voxel aggregation computational results.

Iter # Transfer Iter Time (Sec.) Avg.Dist

0 54.27054
1 19265 0.952947 11.57258
2 2160 0.74742 10.51782
3 301 0.733188 10.44499
4 40 0.729702 10.44053
5 13 0.738105 10.43969

(CUSM, November 2016) VMAT treatment planning 29 / 40



Experimental evaluation

• CORT dataset (Craft et al, 2014) 

• 180 equispaced sectors

• Algorithm is implemented in C++/CPLEX 

44

Results Data

Prostate case

CORT dataset (Craft et al, 2014)

180 equispaced sectors

All algorithm is implemented in
C++/CPLEX and evaluated in
CERR

Case Characteristics

Total # beamlets 25,404
Beamlet size (mm) 1 ⇥ 1
Voxel resolution (mm) 3, 3, 3
# Target voxels 9491
# Body voxels 690,373

Algorithm Parameters

Max dose rate 600 MU/min
Max leaf speed 3 cm/sec
Max fluence change 2 MU/s
Max time change 2 s
Gantry speed [1 6]�/sec

(CUSM, November 2016) VMAT treatment planning 28 / 40
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Effect of ML-based aggregation 

45

Simultaneous delivery time and aperture shape optimization for VMAT 18

Table 4. Voxel aggregation results

Iter. # Transfer CPU Time (s) Avg. Dist.

0 176.99
1 37836 5.50 51.48
2 10454 1.99 42.17
3 3758 1.11 40.45
4 1755 0.86 39.94
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Figure 8. DVH curves for the aggregated plan (15%–5%; solid line) and full plan
(100%–100%; dashed line) for the prostate case using GCRGH heuristic.

computational time from 28.90 to 4.34 minutes. The aggregated plan has similar target

coverage for PTV-68 and PTV-56, even better in PTV-56, and the results for the normal

tissues are adequate. Then, the aggregation has significantly reduced the computational

time, and the quality of the resulting plan is acceptable.

4.5. Arc length

In the proposed approach, we assume that the arcs are of equal length. To evaluate the

impact of this parameter, we tested four plans with very small (length 6�), small (length

8�), medium (length 12�), large (length 20�), and very large (length 30�) arcs. Table 5

gives the delivery times and critical dosimetry measures for these five arc lengths. As

expected, using longer arcs reduces the delivery time, but also the treatment quality.

Plans with the arcs of lengths 20� and 30� are not acceptable, because of the overdose in

the normal tissues, especially in the rectum. In terms of computational time, plans with

6� and 8� arcs are more time-consuming due to more iterations of column generation.

These plans take 10.83 and 7.78 minutes, respectively, while the plan with 12� arc takes

4.34 minutes. Figures 9 and 10 show the comparison of DVH curves of these two plans.

Despite the higher computational time of the plans with 6� and 8� arcs, it resulted

Clustered: 4,5 min
Full: 29 min

Dosage

%
 o

f v
ox
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s

CPU Times



Effect of delivery time
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Simultaneous delivery time and aperture shape optimization for VMAT 17
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Figure 4. Plan-Opt (3.44 min-
utes) vs. Plan-3 (3 minutes)
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Figure 5. Plan-Opt (3.44 min-
utes) vs. Plan-4 (4 minutes)
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Figure 6. Plan-Opt (3.44 min-
utes) vs. Plan-5 (5 minutes)

0 10 20 30 40 50 60 70 80

Dose Gy

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
na

l v
ol

um
e

Plan-6
Plan-Opt

PTV-68

Rt-Femoral Head

Bladder

PTV-56

RectumLt Femoral Head

Figure 7. Plan-Opt (3.44 min-
utes) vs. Plan-6 (6 minutes)

pared Plans 4-6, respectively, to Plan-Opt in Figures 5 - 7. These treatment plans

provide enough time for treatment delivery and could meet clinical needs, as expected.

In comparison to Plan-Opt, the rectum is protected better but the bladder receives

more dose in Plans 4-6. In general, Plan-Opt still has good enough quality and it is

not dominated for all critical measures by other plans, while delivered in less time. The

mean absolute difference between Plan-Opt and Plan-6, as the worst case, in the critical

measures is about 2.34%. Therefore, the difference between plans with more delivery

time and Plan-Opt is not meaningful and our algorithm finds a trade-o↵ between the

delivery time and the dose distribution.

4.4. Voxel aggregation

We now analyze the e�ciency of the voxel aggregation algorithm and its e↵ect in the

prostate case. Its computational time (see Table 4) is about 11 s. The number of voxel

transfers from one cluster to another has a decreasing trend. We run the algorithm for

four iterations until the total average distance of the voxels from the cluster centroids

is improved by less than one. The improvement in the solution after the first iteration

is about 6.5%, and it seems that one iteration su�ces.

Figure 8 shows the DVH curves for the full plan and the aggregated version.

The latter has 5% of the normal voxels and 15% of the tumor voxels; it reduces the

3,5 min
6 min
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Outline

• Dynamic Radiation Therapy Patient Booking
• Online stochastic combinatorial optimization
• Prediction-based scheduling

• Radiation Therapy Treatment Planning
• Unsupervised learning to reduce problem size
• Trajectory optimization for Cyberknife
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Cyberknife (SBRT)
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• High quality beam in terms of dose 
conformity

• BUT Long treatment time (1 hour)
• Up to 70% of treatment time corresponds 

to the robotic arm movement between
nodes

Kafaei, P., Cappart, Q., Renaud, M. A., Chapados, N., & Rousseau, L. M. (2021). Graph neural networks and deep reinforcement learning
for simultaneous beam orientation and trajectory optimization of Cyberknife. Physics in Medicine & Biology, 66(21), 215002.

Objectives
1. Minimize the distance covered by the 

robotic arm
2. Maximize the conformity of delivered 

dose to the prescribed dose
3. Scatter the beams around the patient to 

avoid clusters



Reinforcement Learning Framework

A complete acyclic graph between each 
shooting position (nodes)

49 / 
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Agent

Environment

Action Reward State

• 𝑥, 𝑦, 𝑧 : coordinates of the nodes
• 𝑑!"#: dose deposited in the tumor at unit intensity 
• 𝑑$"#: dose deposited in other tissues at unit intensity
• A set of the neighbors of each node

Features



Reinforcement Learning Framework

Next node to be selected

50 / 
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Agent

Environment

Action Reward State



Reinforcement Learning Framework
Non-terminal State

𝑅 𝑠!, 𝑎! = − 𝑟" + 𝑟# , 𝑠! ≠ 𝑠∅
Terminal State

𝑅 𝑠!, 𝑎! = − 𝑟" + 𝑟# + 𝑟% , 𝑠! = 𝑠∅

𝑟" → the Euclidean distance between 𝑚 and 𝑛
𝑟# →

&!"#
&$"#

for beam 𝑛 (doses are pre-computed with a MC simulation engine)

𝑟% →maximum separation between selected nodes, defined as:

-
',)∈+%

𝐾 1 − cos𝛼')
,"

𝑚: the last node added to the trajectory in state 𝑠!
𝑛: next node selected (𝑎! = 𝑛)

51 / 
60

Agent

Environment

Action Reward State



Reinforcement Learning Framework
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DEEP Q-LEARNING FOR BEAM ORIENTATION AND TRAJECTORY OPTIMIZATION FOR CYBERKNIFE
17 / 21

PROBLEM REPRESENTATION

DEEP Q-LEARNING STRUCTURE

Policy Network ! bQ(st ,at ,w⇤)



DEEP Q-LEARNING FOR BEAM ORIENTATION AND TRAJECTORY OPTIMIZATION FOR CYBERKNIFE
20 / 21

RESULTS

EXPERIMENTS

RESULTS

Experimental Results (Patient #1)
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Dosage



In conclusion

• Long waiting times make patients (very) anxious
• Making the system more efficient is thus not only important 

from a cost perspective
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Pictures generated by DAL-E


