Learning to Untangle Genome Assembly
with Graph Convolutional Networks

Xavier Bresson

BE & N U S https://twitter.com/xbresson

National University

of Singapore Department of Computer Science

National University of Singapore (NUS)

Joint work with L. Vréek (GIS), T. Laurent (LMU)
M. Schmitz (GIS) and M. Siki¢ (GIS)

IPAM Workshop on]
Artificial Intelligence and Imm

Discrete Optimization
Feb 27th 2023

Xavier Bresson

https://twitter.com/xbresson

Xavier Bresson

Genome Assembly
Assembly Graphs

Path Assembly

Our Contribution
Dataset

Edge Prediction

Graph Neural Networks
Graph Decoding
Numerical Experiments

Conclusion

Outline

Xavier Bresson

Genome Assembly

Outline

Genome Assembly

@ What is the task?

Biological Genome
S ample i [Assemb].y

Human , \ TGACATGGGTACACATGACGGG
[— — L]
ACTGTACCCATGTGTACTGCCC

3 billion of base pairs
(A-T, C-G)

ATGGGTAC

TACCCATG

Covid-19 virus

30 thousand of base pairs

Human, animals, plants, Genome Sequencing Genome sequence
mushroom, microbes Machine (both strands)

(almost all living organisms)

Xavier Bresson

Genome Assembly

@ Why is this problem important?
@ Genome is the molecular code of life.
@ It is a set of instructions for the organism to develop, function and sustain.
@ Understanding the genome is critical to fight diseases.
@ A quest to construct the first complete human genome started in 1990.
@ First result in 2001 but =210 gapsl!l.
e In 2022, 32 years later, the quest was finally achieved/?l.

.‘.‘.;‘ﬁ'&m," ‘ and relapse 7p.33456 ml ‘Inanmw;lvln
Scien
Science:
/11173 FILLING
i I | T“clEngﬁAB)&
NN\
/ e]
INSE '
~ -
~ "
[1] Lander et-al, Initial sequencing and analysis of the human genome, Nature 2001
[2] Nurk et-al, The complete sequence of a human genome, Science 2022 2 02 2

ot

Xavier Bresson

Genome Sequencing Machine

No machine can copy the complete genome sequence in one-shot (genome breaks).
Machines produce a collection of genome sub-sequences called reads.
Modern machines aims at getting long reads with minimum base pair errors (A-T, G-C).
o PacBio HiFi reads!! : 15,000-25,000 base pairs in average with 0.5% error (=100 errors/read)

@ Oxford Nanopore readsl? : 50,000-100,000 base pairs in average with 5% error (=4000 errors/read).

Coverage depth : Each base is covered by a number of reads (typically 30 reads).

Genome [mm —

Reads —— s

[1] Eid et-al, Real-time DNA sequencing from single polymerase molecules, Science 2009
[2] Clarke et-al, Continuous base identification for single-molecule nanopore DNA sequencing, Nature nanotechnology 2009

Xavier Bresson

6

Genome Assembly Problem

@ Combinatorial problem : Re-order overlapping reads to form the longest sequence.

@ This problem is NP-hard because complexity is O(n!), n being the number of reads.
@ n = 3B(genome len) / 20k(read len) . 30(depth) . 2(strands) . 2(haploids)

= 18M reads
e L ——
Reads = j; m
Q§" =
:—
\U/ Genome Assembly Task
Genome [— —]

Xavier Bresson

Outline

@ Assembly Graphs

Xavier Bresson

Assembly Graphs

@ Reducing complexity : Only assemble from overlapping reads.
@ Overlapping reads form a graph called the assembly graph.

@ The construction of the assembly graph is called the overlap phase in genomics.

Genome L —

(Unordered) reads o=

——
Overlapping reads @ S —
Com——

Graph construction \U/
(Overlap phase)

Assembly graph
(directed graph)

Xavier Bresson

Challenges

@ Interspersed regions
@ Far away reads on the genome can still overlap.

@ Reads on different strands/chromosomes/haploids can overlap.

Genome (positive strand) I S I
[e
)

Far away but overlap

Different strands but overlap

U, Assembly graph

Xavier Bresson

Genome (negative strand)

10

Challenges

@ Major challenge : Segment duplication
® Some genome regions contain (lots of) repetitive patterns that are not covered by a single read.
@ These regions produce complex genome regions which are (very) hard to disentangle.
@ To this date, no genome assemblers can solve this issue.
@ We are left with fragments of genome, called contigs.

@ Solutions can come either from longer reads (better sequencing machines) or better algorithms.

Genome 5 e D N S e
I T —— Assembly graph
Reads _:==:=_:l i
(Many reads are omitted) _:=:=_:l

Xavier Bresson 11

Approximate Assembly Graphs

@ Exact construction of assembly graph has O(n2d?) complexity with n number of reads and d
dimension of reads.

e For n=18M, d=20k, it would take with a GPU = 3 hours(convolution) + 3 months(transfer).
@ Approximation of assembly graphs is required.

@ There are as many approximations as the number of genome assemblers.

@ Genome assembler usually designs a graph constructer for each specific type of reads.

@ In summary : Sequencing errors + interspersed/duplicated regions + approximate graph construction
make the topology of the assembly graph challenging with multiple disconnected components, cycles,
dead-ends, bubbles, transitive edges and tangles.

Xavier Bresson 12

Xavier Bresson

Path Assembly

Outline

13

Path Assembly

@ Extracting the genome on the assembly graph reduces to solve a path routing problem on graph.

The problem is equivalent to the longest path problem on graphs, i.e. finding the longest path
that visits each node at most once (avoiding cycles).

Once the longest path is found, the genome sequence is reconstructed by collating the
overlapping reads along the path.

This decoding step is called the layout phase in genomics.

@ Besides, assembly graphs are also composed of disconnected components due to approximated/error
constructions.

Xavier Bresson

This makes impossible the reconstruction of the whole genome with a single path.
There exist paths that reconstruct fragments of genome (contigs).

Existing assemblers aims at extracting the best set of paths in terms of length and
reconstruction quality of contigs.

Longest path

Assembly graph

Ravenl!! Genome Assembler

@ Genome assemblers rely on human engineered heuristics that aim at simplifying the assembly
graph into a set of paths representing the contigs.

@ Raven’s heuristics :

@ Remove transitive edges —>(§4C}»(}4(}4
Remove dead-ends e

Remove bubbles

Collapse sequences into unitigs

Remove long connections using force directed field

(FDL), a dimensionality reduction technique @@

@ Cut tangles and get contigs

—

~O-
contig contig
tangle

[1] Vaser, Sikic, Time-and memory-efficient genome assembly with raven, Nature Computational Science 2021

Xavier Bresson 15

Xavier Bresson

Our Contribution

Outline

16

State-of-the-Artl!

@ In 2022, the first gapless compete human genome sequence was achieved.

zzzz

@ What enabled this success? SCience —
@ Modern sequencing machines with longer and more accurate reads : Fllul:;
(PacBio/Nanopore). { ke

@ Combination of multiple genome assemblers (w/ human engineered heuristics). \\ N _=_-j

@ Experts perform manual inspection to resolve tangles and assemble the contigs. \ = -_

@ Limitation
@ Time and resource consuming (1.5 years and a large team of scientists)

@ Not generalizable

@ What do we propose?

@ ML paradigm : Use deep learning to reduce/replace human heuristics
= Al-based genome assembler

@ Advantage : Solve genome assembly independently of any type of sequencing
machine and no hand-crafting of genome assemblers.

[1] Nurk et-al, The complete sequence of a human genome, Science 2022

Xavier Bresson 17

Scope of our Work

@ In this work, we focus on the layout part (path extraction) of the genome assembly problem.

@ In other words, we use an existing graph assembler (computed in this project by Raven’s
overlap phaselll), learn to extract long fractions of the genome, i.e. the contigs.

@ We do not consider the task of graph construction which quality is obviously critical to extract
the longest possible contigs.

e Exiting graph constructers are hand-engineered for different types of reads.

[1] Vaser, Sikic, Time-and memory-efficient genome assembly with raven, Nature Computational Science 2021

Xavier Bresson

Machine Learning Framework

@ We propose to learn to untangle assembly graphs and reconstruct genome sequences.

enomlc Data \’ - \
5 - - o’°“§°/°

I— \ \ -y
.’ ‘\ - O‘O&V
Simulated reads 4 Raven

(Multiple sets per chromosome) Training Set

vy — -

\ A
CHM13 -
Human genome Real PacBio \—
reference HiFi-reads Create assembly graph Test Set /
\L y
Model Tralnlng Binary cross-entropy loss \
ﬁ .
Overview of our
D D framework
Assembly graph from

synthetic dataset

redlcted probabilities Ground-truth edges)

Gated GCN

Reconstruct /—\\
chromosome

Genome Decoding Cﬁo from walks

Q Extract walks in graph with

Assembly graph from greedy selection and initial edges

real dataset sampled with Bernoulli Compare to reference j

Xavier Bresson

Xavier Bresson

Dataset

Outline

20

Human Genomic Dataset

@ We use the 2022 CHM13 human genome sequencelll (one female haploid, 23 chromosomes, two
strands) of 3.3 billion base pairs length and a set of 5.6 million PacBio HiFi reads.

@ We contribute to the dataset in two ways.
@ We correct the read errors from sequencing with hifiasm/2l.

@ We map the reads to the genome sequence with minimap2[l and resolves any gap by re-assigning
similar reads while preserving the sequence.

@ In this first approach, we work with individual chromosomes, not the whole genome, as there exists
so far only one clean reconstructed human genome.

[1] Nurk et-al, The complete sequence of a human genome, Science 2022
[2] Cheng et-al, Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm, Nature methods 2021
[3] Li, Minimap2: pairwise alignment for nucleotide sequences, Bioinformatics 2018

Xavier Bresson

Data Augmentation

@ Data augmentation is critical to reduce overfitting and better generalization.

@ We use a simulatorlll of reads with the constraint that the distribution of synthetic read lengths
follows the distribution of real read lengths.

@ This allows us to simulate an arbitrary number of train/validation assembly graphs.

@ We label the reads with a positional information corresponding to the ordering of the reads on the
genome sequence.

@ Read positions serve as labels to train a network to reconstruct the genome exactly.

@ In this work, we simulate individual chromosomes (not the whole genome).

Genomic Data N \/ =~
4
Genome EE— — l—' \N ~ -y
) . o\
[E— -3] I -] _ 1
Reads = Simulated reads s
5) E— ————— 1 (Multiple sets per chromosome)
(k) corresponds to the position of the l %y
read on the genome sequence. CHM13 N -
Human genome Real PacBio
reference HiFi-reads

[1] Maryland Bioinformatics Labs, seqrequester

Xavier Bresson 22

Assembly Graph Construction

@ Raven’s overlap phaselll will be used to compute assembly graphs.
@ It is composed of two steps :

@ Dimensionality reduction step : From 20k-dim reads to 512-dim “words” (hand-crafted process
that identifies “words”, repetitive patterns of “character” bases).

@ Pairwise matching step : Use the longest common subsequence algorithm with dynamic
programming to compute the length of overlap between two reads.

@ Computational time : For n=>50k reads, it takes 20min with Intel 6226R CPU and 30 threads.

enomlc Data \/~ \
L 4

._\ < -,) > ar°\°%°)
2 =
v
Simulated reads Raven

(Multiple sets per chromosome) Training Set

vy EE— —
CHM13 N W

Human genome Real PacBio
reference HiFi-reads Create assembly graph Test Set /

[1] Vaser, Sikic, Time-and memory-efficient genome assembly with raven, Nature Computational Science 2021

Xavier Bresson

Xavier Bresson

Edge Prediction

Outline

Edge Labeling

@ Decoding is carried out by a path routing algorithm that follows edges that reconstruct exactly
(fractions of) the genome (contigs).

@ How do we get these edges?

@ They are obtained by running a depth-first search (DFS) algorithm with positional
information of reads on the genome. The labeling algorithm identifies all paths/edges that
lead to an optimal genome reconstruction.

@ Correct edges are labeled with value 1 and incorrect edges s.a. long-distance overlapping reads
or dead-ends are assigned with value 0.

@ Note that the set of labels is unbalanced with a majority of one-value, i.e. most edges are
correct but wrong edges significantly shortcut the extracted path.

Genome e —

Edge label 1

Assembly graph

Edge label 0 95

Xavier Bresson

Edge Prediction

@ How to predict edges that lead to optimal decoding of the genome?
@ Which network architecture do we need?

@ Observe that the assembly problem is fundamentally a graph problem (overlaps of reads form a
graph and decoding looks for a path in a graph).

@ Can we use CNNsll, RNNsl? or TransformersBl?

@ CNNs only work for grids, not for graphs. +

|

@ RNNs only work for sequences, not for graphs.

@ Transformers only work for fully-connected graphs,
not for sparse graphs s.a. assembly graphs.

@ We need graph neural networksl/456 (GNNs).

[1] LeCun, Bottou, Bengio, Haffner, Gradient-based learning applied to document recognition, 1998

[2] Hochreiter, Schmidhuber, Long short-term memory, 1997

[3] Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin, Attention is all you need, NeurIPS 2017

[4] Scarselli, Gori, Tsoi, Chung, Hagenbuchner, Monfardini, The Graph Neural Network Model, IEEE Transactions on Neural Networks 2009
[5] Bruna, Zaremba, Szlam, LeCun, Spectral Networks and Locally Connected Networks on Graphs, ICLR 2014

[6] Defferrard, Bresson, Vandergheynst, Convolutional neural networks on graphs with fast localized spectral filtering, NeurIPS 2016

Xavier Bresson

Xavier Bresson

Graph Neural Networks

Outline

27

Designing GNNs for Assembly Graphs

@ What network properties?

Xavier Bresson

Invariant /equivariant layers
Independent of the size of neighborhoods and graphs
Anisotropic convolution on graphs
Directed local reception field
Deep architecture

Break node anonymity of assembly graphs

layer ¢ + 1

h£+1 = fnode(A, he, 66) Node features

6£+1 — fedge(Aa h“_l, eg) Edge features

A is the adjacency matrix

GatedGCNsll for Assembly Graphs

@ We propose the following graph network to learn expressive representation of the graph assembly :

h,lL.H _ hé ReLU (BN (Aﬁhvl, n Z n;‘i,l—i—l o Alzhé n Z ngl;url o Aéhi;)) e R?

J—>1 1—k Y
. hg y Yk
el — ¢l 1L ReLU(BN(B'el + BLhl + BLhl)) € R? '
pqg ~ Tpq 1%pq 2'%p 3'%q
. th th d " d d ¢ . Incoming edges/ OuZiZICI;iSi(:_feS/
w1 e 1Irecte e ge ga. €es . predecessors
l l N4
f,l _ g (631) Rd b,l o o (ezk> Rd (2 hz
Disk O (eik:’) €

Zj/_mo- (6§,i> —|_ €

where all A, B € Rd x4 are learnable parameters, BN for batch normalization,
© for Hadamard product and o is the sigmoid function.

@ Anisotropic diffusion process (Perona-Malik’s anisotropic PDEI?! generalized to graphs).

@ Directed edge gates can be seen as dense attention operators on graphs (actually dense attention
can perform better on graphs than sparse attentionl3).

[1] Bresson, Laurent, Residual gated graph convnets, ICLR 2017
[2] Perona, Malik, Scale-space and edge detection using anisotropic diffusion, 1987
[3] Dwivedi, Bresson, A generalization of transformer networks to graphs, AAAT 2021

Xavier Bresson 29

GatedGCNsll for Assembly Graphs

@ This model is permutation equivariant (invariant by node re-indexing).

fnode(PA7Pha Pe) — anode<Aa ha 6)
fedge(PA7Ph7 P@) — Pfedge(Aa h7 6)

where P is a permutation matrix.

@ Independent of the size of neighborhoods and graphs (distributed computing).
@ GNN libraries s.a. DGLI2l or PyGll D@L . PyTorch

geometric

[1] Bresson, Laurent, Residual gated graph convnets, ICLR 2017
[2] Wang-etal, Deep graph library: Towards efficient and scalable deep learning on graphs, 2019
[3] Fey, Lenssen, Fast graph representation learning with pytorch geometric, 2019

Xavier Bresson

GatedGCNsl! for Assembly Graphs

@ Directed local reception fields (allow to extend the
reception fields for both the node predecessors and the
node successors)

@ Deep architecture with Batch Normalization and
Residual Connection. Incoming edges/

predecessors

@ Node anonymity can be broken with graph positional
encoding (next slide).

[1] Bresson, Laurent, Residual gated graph convnets, ICLR 2017

Xavier Bresson

Outgoing edges/
successors

Input Features

o Edge features : z;; € R”
@ Length and quality of the overlap between two reads and normalized by z-scoring.

o Node features : z; € R
@ In this work, we do not use any node features coming from the raw reads (future work).
@ In this case, GNNs perform poorly or fail in the absence of node identityl-2l.

@ This issue can be overcome with graph positional encoding (PE) s.t. Laplacian eigenvectors/34
for undirected graphs.

@ For directed graphs like assembly graphs, we use a k-step PageRank/56l diffusion vector, along
with the in-degree and out-degree, which are features invariant by re-indexing permutation
(essential for generalization). In summary, we have

z; =d™ || dS || pi |- || pE € R*TE | where || is concatenation
1 _ 1
PPl =a(D AT+ (1 —a) 2 eR?, pF=0="cR"” a=095
n n

A is the adjacency matrix and

[1] Murphy, Srinivasan, Rao, Ribeiro, Relational pooling for graph representations, ICML 2019 D is the out-degree matrix.

[2] Loukas, What graph neural networks cannot learn: depth vs width, ICLR, 2020

[3] Belkin, Niyogi, Laplacian eigenmaps for dimensionality reduction and data representation, Neural computation 2003

[4] Dwivedi, Joshi, Laurent, Bengio, Bresson, Benchmarking graph neural networks, 2020

[5] Page, Brin, Motwani, Winograd, The pagerank citation ranking: Bringing order to the web, 1999

[6] Dwivedi, Luu, Laurent, Bengio, Bresson, Graph neural networks with learnable structural and positional representations, 2021

Xavier Bresson

(V]
[\]

Graph Convolutional Layers

@ Input features are projected into a higher d-dimensional space with a standard MLP :

h) = MLP;(z;) € R?
e;; = MLPy(z;;) € R?

@ The initial node/edge features are then passed to L convolutional layers :

for ¢ =0,1,....,L —1
R = foode(A, A, ef) € RY
eﬁ—i_l - fedge(A7 he—i_la eﬁ) < Rd

Xavier Bresson

33

Edge Prediction Layer

@ We use a MLP to predict whether a directed edge i—k can lead to an optimal decoding of the
genome :

pir = Sigmoid (MLP (! || hi || ef)) € [0,1]

with the node representations of nodes i and k, the edge representation of the directed edge i—k
and L is the last GatedGCN layer.

Predicted probabilities

Xavier Bresson

Network Training

@ Network size is 6.5M parameters with L=16 layers and d=256 hidden dimensions.

@ Loss function is the binary cross-entropy using edge labels :

1 . R
L= I XG:E wij (Pij log pij + (1 — piz) log(1 — pij))
ij

where E is the set of edges, p;; the ground-truth label, p;; the predicted probability and w;; a weight
value that balances equally the number of ones and zeros in the label set.

@ Optimization is done by SGD with Adam optimizerlll.

N

Model Tralnlng [Binary cross-entropy loss
?\(} |:> Gated GCN |:>
Assembly graph from Predicted probabilities Ground-truth edges
synthetic dataset

[1] Kingma, Ba, Adam: A Method for Stochastic Optimization, 2014
Xavier Bresson

Training with Large Graphs

@ Size of graphs (chromosomes) is [32k,184k| nodes.
@ They are too large to fit into the GPU memory.
@ Graph partitioning is required.

@ We use Metisl!l clustering algorithm with a number of clusters randomly chosen in
[400,600] to force different partitioning at each epoch and reduce over-fitting.

[1] Karypis, Kumar, A fast and high quality multilevel scheme for partitioning irregular graphs, scientific Computing, 1998

Xavier Bresson 36

Xavier Bresson

Graph Decoding

Outline

37

Greedy Decoding

@ We aim at solving the combinatorial path routing problem auto-regressively, i.e. selecting one node
at a time (by factorizing the probability with the chain rule) :

max P(seq, G)

seq,, ={%1,...,in }

P(’l:l,...,’l:n,G) — H?:l P(itlit—lait—Qy---ilaG)

where the conditional probability is estimated by the graph network.
@ In this work, we decode with a greedy search algorithm (O(n) complexity).
@ At each node, we select the edge i, ;—i with the highest probability :

it = arg max P(’I;"l:t_l,’it_Q, ’Ll,G) = P(’l:”l;t_l,G)

Genome Decoding
51: E O |:> Gated GCN D w

Extract walks in graph with
Assembly graph from greedy selection
real dataset

Xavier Bresson

38

Iterative Greedy Decoding

@ Graph assembly is noisy (multiple connected components, dead-ends, cycles) and GNN edge-
predictions are not perfect.

@ We sample k paths from k initial edges selected by Bernoulli sampling and decode a path forward
and path backward on the genome graph.

@ We select the path with the longest sequence/contig length and marked the nodes as visited.
@ We iterate the path extraction phase until the length of the extracted path is below a threshold.

Reconstruct \
chromosome [\

Genome Decoding from walks
5’ E @) D Gated GCN |:> W >

Extract walks in graph with
Assembly graph from greedy selection and initial edges

real dataset sampled with Bernoulli \COfnpare to reference /j

Xavier Bresson 39

Xavier Bresson

Numerical Experiments

Outline

Experimental Setting

@ Evaluation

@ In this work, we do not evaluate our technique on the whole genome, but on individual
chromosomes.

@ Training

@ We use one chromosome (chr19) for training and the remaining chromosomes for testing,.
We generate 15 synthetic train graphs and 3 validation graphs.
We select the network for inference with the checkpoint having the lowest validation loss.

Training took 53min on Nvidia A100 GPU.

Note that we tried training with chromosomes 9, 19, and 22 and got slightly but not statistically
better results.

@ Inference

@ Forward pass + greedy decoding on the real assembly graphs of the test chromosomes

Xavier Bresson 11

Evaluation

@ Quality measures for genome assembly

Number of contigs : Gives an insight into how fragmented the reconstruction is (lower is better).
Longest contig : The length of the longest contig (higher is better).

Genome fraction : Fraction of the genome which is reconstructed (higher is better).

NG50 : Length of the contig that covers 50% of the reference genome (higher is better).

NGAJ5O0 : Calculated the same way as NG50, but after alignments between contigs and the
reference (higher is better).

Base error : Number of mismatches and indels (insertions and deletions) per 100,000 base pairs
(lower is better).

Xavier Bresson

50% 50% (iinome
[]
1l] E 1 — S | —
NG50 NGAS50

Experimental Results

@ Evaluation of the network on assembly graphs of real human HiFi data.

Xavier Bresson

GatedGCN Raven
chr Num Longest GF NG5S0 NGAS50 Num Longest GF NG50 NGAS50
ctg (Mbp) (%) (Mbp) (Mbp) ctg (Mbp) (%) (Mbp) (Mbp)
1 26 115.6 98.1 73.0 46.3 241 86.9 97.6 44 .4 44 .4
2 20 73.1 99.6 35.1 35.1 56 73.1 98.9 28.1 28.1
3 6 127.0 996 127.0 56.0 45 90.5 99.5 56.0 56.0
4 8 139.0 99.0 139.0 34.8 78 67.8 99.0 34.9 34.9
5 8 123.6 99.1 1236 103.5 47 103.5 99.0 103.5 103.5
6 7 101.0 989 101.0 52.8 20 110.3 98.7 110.3 259
7 17 58.6 98.1 42.6 25.7 69 29.3 98.0 25.1 17.5
8 12 68.8 98.6 339 28.5 33 31.6 98.4 28.5 28.5
9 17 67.1 95.0 319 16.1 139 38.9 90.2 19.7 15.8
10 13 47.7 99.3 36.7 36.7 43 36.7 99.2 17.2 17.2
11 7 65.4 99.9 353 23.2 31 353 99.7 32.6 23.2
12 11 57.2 99.9 31.0 31.0 33 57.2 99.8 31.0 31.0
13 13 73.0 96.1 73.0 30.1 116 47.5 95.9 25.5 25.5
14 9 82.6 97.8 82.6 82.6 32 82.6 97.2 82.6 82.6
15 19 47.1 93.6 134 10.0 157 29.0 93.5 9.0 8.5
16 28 16.0 91.6 8.7 59 164 164 90.8 59 5.7
17 11 29.9 96.4 15.7 10.2 47 12.9 96.1 9.0 9.0
18 8 44.9 97.6 44.9 17.4 45 43.5 97.9 43.5 17.4
*19 20 14.0 98.4 5.1 3.6 44 9.5 98.5 3.6 3.6
20 9 32.7 98.6 26.7 17.8 40 31.8 98.6 25.2 17.3
21 4 32.8 94.6 32.8 32.8 21 32.8 94.1 32.8 32.8
22 11 9.0 94.7 6.7 4.0 66 9.0 93.8 3.9 3.9
X 18 50.6 98.6 27.1 13.2 64 40.1 98.3 11.7 11.7

Our proposed learning
method significantly
outperforms Raven’s

heuristics!

Experimental Results

@ Evaluation of the network on assembly graphs of real human HiFi data.

GatedGCN Raven
chr Mismatch Indel Mismatch Indel

1 2.54 0.91 5.30 1.21

2 1.50 0.64 2.23 0.85

3 3.47 0.69 2.46 0.73

4 1.32 0.65 3.63 0.75

5 2.65 0.54 4.20 0.74

6 0.84 0.50 1.09 0.56 .

7 2.89 0.99 2.29 1.16 Our proposed learnlng
8 2.53 0.72 1.79 0.73 . .

9 5.22 1.94 8.98 2.59 method significantly
10 3.60 0.93 2.85 1.12 9
11 0.65 0.74 1.59 1.04 outperforms Raven’s
12 0.37 0.53 1.68 0.67 heuristics!

13 2.16 0.63 8.95 1.50

14 1.57 1.18 1.80 1.14

15 6.02 1.56 10.55 2.43

16 8.82 1.98 12.99 2.52

17 6.01 1.33 7.19 1.45

18 4.60 0.69 7.75 0.92

*19 9.45 1.84 8.48 2.09

20 4.69 0.93 9.05 1.65
21 4.46 1.52 10.00 1.82
22 24.42 2.32 27.45 4.40

X 242 0.90 342 1.18

Xavier Bresson

Xavier Bresson

Conclusion

Outline

Xavier Bresson

Conclusion

Experimental results demonstrate the potential of deep learning to solve the genome assembly
grand challenge.

Given a state-of-the-art genome assembler, we show that learned heuristics with GNN outperforms
human engineered rules.

This is a first proof-of-concept toward solving end-to-end the genome assembly task with a fast,
accurate, robust, and universal algorithm.

Dataset and Code

@ We release the genomic dataset and GitHub repository.
@ https://github.com/lvrcek/GNNome-assembly

@ Dataset (182GB)
¢ CHM13 human genome (froml/!)
@ Curated HiFi reads

@ FError-corrected reads

@ Positional information of reads on the genome
@ Graphs of all chromosomes
@ GitHub repository

@ Reproducible results

@ Promotes research between deep learning and genome assembly.

[1] Nurk et-al, The complete sequence of a human genome, Science 2022

Xavier Bresson

https://github.com/lvrcek/GNNome-assembly

Dataset

@ Statistics on real HiF'i reads and assembly graphs created with Ravenl!l,

chr Base Reads Nodes Edges 70000
pairs
60000

1 248,387,328 462,582 184,050 1,407,158
2 242,696,752 444,450 180,764 1,381,376 50000
3 201,105,948 366,547 149,828 1,138,668
4 193,574,945 352,056 145,702 1,115,808 50000 o
5 182,045,439 332,985 135,068 1,028,484 3
6 172,126,628 313,731 127,698 966,560 30000
7 160,567,428 291,366 120,280 890,388 40000
8 146,259,331 265,288 108,948 828,772 —
9 150,617,247 290,786 106,874 860,710

10 134,758,134 244,927 101,484 765,180 30000
11 135,127,769 246,436 100,598 757,642
12 133,324,548 241,403 99,542 750,364

10000

count

13 113,566,686 199,405 84,500 653,730 20000 0 5000 10000 15000 20000 25000 30000
14 101,161,492 182,551 73,436 541,214 Overlap Length

15 99,753,195 183,176 70,598 535,842

16 96,330,374 182,280 65,834 519,358 10000

17 84,276,897 150,066 60,498 439,416 Chromosome 2

18 80,542,538 147,509 59,868 459,356 0 J 3

20 66,210,255 120,635 48,816 366,614 Read Length

21 45,090,682 79,245 32,096 239,166 »

22 51,324,926 89,624 35,612 252,666
X 154,259,566 272,496 112,922 834,702

Coverage

[1] Vaser, Sikic, Time-and memory-efficient genome assembly with raven, Nature Computational Science 2021

20 40 60 80 100 120 140 160 180 200 220
Reference Position in Mbps

Xavier Bresson

Next Steps

@ Validate the proposed learned heuristics with other assembly graph constructers such that
hifiasm[l, HiCanul?, rust-mdbgl® and LJAI4.

Evaluate on the whole genome, not only individual chromosomes.
Evaluate on two haploids simultaneously (CMH13 is a single haploid genome).
Evaluate on other humans (different ethnicities).

Evaluate on non-human genomes.

Learn end-to-end the graph construction (overlap phase) along with the graph assembler
(layout phase).

[1] Cheng, Concepcion, Feng, Zhang, Li. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm, Nature methods 2021

[2] Nurk et-al, Hicanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads, Genome research, 2020

[3] Ekim, Berger, Chikhi, Minimizer-space de bruijn graphs: Whole genome assembly of long reads in minutes on a personal computer, Cell systems 2021

[4] Bankevich, Bzikadze, Kolmogorov, Antipov, Pevzner, Multiplex de bruijn graphs enable genome assembly from long, high-fidelity reads. Nature biotechnology 2022

Xavier Bresson

19

Xavier Bresson

’ﬁf ":j Thank you xaviercs@nus.edu.sg

¥ https://twitter.com/xbresson

® https://scholar.google.com/citations?user=9pSK04MAAAAJ

o https://www.youtube.com/channel/UCeONAtqVKCS30Xn6zylYQ g
) https://github.com/xbresson

) https://www.linkedin.com/in/xavier-bresson-738585b

] https://www.facebook.com /xavier.bresson.1
https://graphdeeplearning.github.io

@ https://www.comp.nus.edu.sg/cs/people/xaviercs

Xavier Bresson

mailto:xavier.Bresson@gmail.com
https://twitter.com/xbresson
https://scholar.google.com/citations?user=9pSK04MAAAAJ
https://www.youtube.com/channel/UCeONAtqVKCS30Xn6zy1YQ_g
https://github.com/xbresson
https://www.linkedin.com/in/xavier-bresson-738585b
https://www.facebook.com/xavier.bresson.1
https://graphdeeplearning.github.io/
https://www.comp.nus.edu.sg/cs/people/xaviercs

