Democratizing Optimization
Modeling: Status, Challenges

Segev Wasserkrug,
Senior Technical Staff Member, IBM Research - Israel

Research Associate, Faculty of Decision and Data Sciences,
Technion, Israel Institute of Technology

and Future Directions ?

IBM Research



IBM does not endorse any third parties referenced in the
presentation

IBM Research / February 28,2022 / © 2022 IBM Corporation 2




Mathematical optimization can provide significant
benefits in many use cases and industries

Well-Documented Optimization ROl Cases

2 Chilean Forestry firms*

Timber Harvesting

$20M/yr + 30% fewer trucks

UPS*

Air Network Design

$40M/yr + 10% fewer planes

South African Defense*

Force/Equip Planning

$1.1Blyr

Motorola*

Procurement Mgmt

$100M-150M/yr

Samsung Electronics*

Semiconductor Mfg

50% reduction in cycle times

SNCF (French RR)*

Scheduling & Pricing

$16M/yr rev + 2% lower op ex

Continental Airlines*

Crew Re-scheduling

$40M/yr

AT&T*

Network Recovery

35% reduction spare capacity

Grant Mayo van Otterloo*

Portfolio Optimization

$aMiyr

Pepsi Bottling Group

Production Sourcing

$6M inv reduction + 2% fewer miles

Fonterra

Dairy Distribution

$15M annual savings

NA Brewing Company

Mfg Sourcing + Distribution

$150M/yr transportation savings

US Water Products Mfg

Inventory Optimization

$6.2M working capital reduction

*Franz Edelman Competition Finalists, Science of Better, http://www.scienceofbetter.org , Published Case Studies

IBM Research / February 28,2022 / © 2022 IBM Corporation




Requires creating an optimization model for the
business problem

This model is to determine the order of a set of custom computers to
be processed on an assembly line. Once the order is assigned, it is
kept from start to finish. The custom computers have different lists
of components to be contained, which are given in the array "computer”.

The ordering of the computers is constrained by the following assembly
rules for each component:

1) There must be a minimum number of computers in a row that need this
component ("minSeq");

2) There 1is an upper bound on the number of computers in a row that can
have that component;

3) Each component also has a list of illegal followers
("illegalFollowers") so that the next computer cannot have a
component which appears in the illegal followers list for this
component.

“Natural Language” Description

IBM Research / February 28, 2022 / © 2022 IBM Corporation




Model in modeling Language

dvar int order[AllComputers] in AllComputers;

subject to

{

allDifferent(order);

// Min/Max sequences
forall (c in UsedComponentTypes) {
forall ( p in 1..nComputers - components[c].maxSeq )

// If there are maxSeq # of component c in a row starting from position p to p+maxSeq-1,
// => the (p+ maxSeq)th computer must not contain component c.
(sum(s in p..p+components[c].maxSeq-1) (order[s] in componentInComputer[c]) == components[c].maxSeq)
=>
//not (order[p+components[c].maxSeq] in componentInComputer[c]);
order[p+components[c].maxSeq] not in componentInComputer[c];

// The components in the 1st computer must appear at least minSeq # of times in a row.

(order[1] in componentInComputer[c])

=>

((sum( s in 1..components[c].minSeq) (order[s] in componentInComputer[c])) >= components[c].minSeq);

forall ( p in 1..nComputers-components[c].minSeq )
// Every component that is not in computer p but appears in computer p+1
// must appear minSeq # of times in a row from p+1 to p+minSeq.
(((order[p] not in componentInComputer[c])
8& (order[p+1] in componentInComputer{c])) =>
(sum(s in p+1..p+components[c].minSeq) (order[s] in componentInComputer[c]))
== components[c].minSeq);

b

forall (c in HasIllegalFollowers) // for component ¢ that has an illegal follower,
forall( p in 1..nComputers-1) // for computer p
forall( c2 in UsedComponentTvpbes : c¢2 in componentslcl.illeealFollowers)

IBM Research / February 28, 2022 / © 2022 IBM Corporation




Mathematically

X" = arg miny cynaep)f (X, p)

IBM Research / February 28,2022 / © 2022 IBM Corporation




Current Optimization Modeling Process

—— —

(& f= . ."] What-if analysis | _
T | |

MATHEMATICAL
MODEL(S) ?
Using one or many SCHEDULE [/ .,
= OR PLAN

*
‘-' Collaboration
D=

Understand Create formal Translate into Validate the
: . ... Tune for C. .
—>  business —> model of business —— optimization — optimization —

Efficiency

problem problem model model

IBM Research / Doc ID / Month XX, 2020 / © 2020 IBM Corporation 7




Comparing optimization modeling paradigms

Approach

Custom algorithm

Provides best solution for specific problem

Most difficult to create
Very difficult to customize with new
constratints.

Mathematical Programming (e.g. MILP)

Provides optimality gap
Extremely efficient when modelled
correctly and tuned

Requires rare optimization modeling
expertise to model and tune

Metaheuristics

Easy to create running model
Can be significantly more efficient than
MILP for some problem types (e.g., VRP)

Requires deep understanding of
specific algorithm to provide good
solution

No theoretical optimality gap
Often less suitable for continuous
decision variables

Markov Decision
Processes/Reinforcement Learning

IBM Research © 2020 IBM Corporation

Higher level abstraction
(states/actions/rewards)
Inherent handling of uncertainty

Curse of dimensionality/extensive
hyperparameter and algorithm tuning
Incorporating constraints

Inherent uncertainty makes
explainability more difficult




AI Can Signiticantly
Simplify Model
Creation but
Introduces new




Constraint Learning — learning difficult to model constraints
from data (subramanian et. al. 2019, Maragno et. al. 2021,...,)

s N
iy i .7 m = Qutflow rate
——| min o
xin, ee X T (yL) .
sty = fi(x1),
yi = filz-1,%1), VI=2,...,L,

D= {(xir pi:zi).} . \\ /’. Ay + Bz < by,
* x; - historical decision T

. . EESX]EXL VI—lL
* p;- h.ISTOI‘.Ical un.con.trollable Y, <<y, Vi=1,... L,
» z; - historical objective and 2, < 7 <7,

constraints outcome

Outflow Rate

Introduces maccu racies dlfferent from the one in traditional ML which need to be

accounted for

IBM Research / February 28, 2022 / © 2022 IBM Corporation




Example Problem — World Food Palatability [Peters et. al. 2021]

- Provide optimal food basket to developing countries
Objective: Minimize costs
Explicit constraints: Nutritional composition
Hard to model constraints: Palatability

» Create regression function using data from historical baskets to

palatability score h(x)

* Add constraint: h(x) = pthres

IBM Research / February 28, 2022 / © 2022 IBM Corporation 11




Problem formulation 5

”Actual” Feasibility set Feasibility set Q' Data driven

oJolilnlr4=\S[eIsMM Objcctive function f Objective function f’ optimization

formulation formulation

p p
* L] 1E3 L] 14 l
X = arg miny exnﬂ(p)f(xr p) X = arg miny e)(ﬂﬂl(p)f (x,p)

Desired outcome Obtainable outcome

How can we ensure that x'* is a good solution for the actual problem?

IBM Research / February 28, 2022 / © 2022 IBM Corporation v




Please create an OPL optimization model for

vehicle routing

Here is a simple OPL optimization model for a

vehicle routing problem:

IBM Research / February 28, 2022 / © 2022 IBM Corporation

This model uses binary decision variables

“y[i]" to represent whether customer ~i- is

visited and integer decision variables ~x[ij[j1°

to represent the order in which customers are
visited. The constraints ensure that each
customer is visited at most once, customers
with demand are visited, and the total demand
served by each vehicle does not exceed its
capacity. The objective is to minimize the

number of customers visited.

// Data Declarations

intn=..; // number of customers

intm=..; // number of vehicles

intQ=..; /[ capacity of each vehicle

int demand[1..n] = ...; // demand for each customer

int x[1..n][1..n] = ...; // x[i][]] = 1if customer i is served before customer |
inty[1..n] = ...; //yl[i] = 1if customer i is visited

// Decision Variables
dvar boolean y[1..n];
dvar int x[1..n][1..n];

// Constraints
subject to {
// At most one customer is served before another customer
forall (iin 1..n)
sum(jin 1..n) x[il[j] + sum(jin 1..n) x[j1[i] == 1;

// Only customers with demand are visited
forall (iin 1..n)
y[i] <= demand(i];

// Total demand served by each vehicle does not exceed its capacity

forall (iin1..n,jin1.n)
sum(k in 1.m) x[[j] * v[i] <= Q;

// Objective
minimize
sum(i in 1..n) y[il;




W Data Declarations

intn=...; // number of customers
iNEME .8 // number of vehicles
Can you add a constraint saying that all routes intQs=.. J/ capacity of each vehicle
should begin and end in a given location? int demand[1..n] = ...; // demand for each customer
intstart = ...; //starting location
intend = ...; // ending location
int x[1..n]{1..n] = ...; // x[i][j] = 1if customer i is served before customer |
inty[1.n] =...; //y[i] = 1if customer i is visited

// Decision Variables
Yes, to add a constraint that all routes should dvar boolean y[1..n];

begin and end at a given location, you can use dvar int x[1..n][1..n};

the following code: /| Constraints

subject to {
// At most one customer is served before another customer
forall (i in 1..n)

end at the same location (specified by ~start" sum(jin 1..n) x[iI[] + sum(jin 1.n) x[1[i] == 1;

This constraint ensures that all routes start and

and “end"). The “x[start][i] + x[i][end]" // Only customers with demand are visited

expression represents the total number of times forall (iin1..n)
yli] <= demand(i];

customer ~i- is served (as either the first or

last customer on a route), and the ~y[i]" // Total demand served by each vehicle does not exceed its capacity
forall (iin1..n, jin 1..n)

represents the binary decision of whether : P _
sum(k in 1..m) x[i1[j] * y[i] <= Q;

customer ~i- is visited. The constraint

// All routes start and end at the same location

forall (iin1..n)
a customer ~i* is only visited if it is either the x[start][i] + x[i][end] == y[il;

“x[start][i] + x[i][end] == y[i]  says that

first or last customer on a route. }

// Objective

IBM Research / February 28, 2022 / © 2022 IBM Corporation minimize
sum(i in 1..n) y[i];




Can you give me a version where also the fuel is

minimised?

IBM Research / February 28, 2022 / © 2022 IBM Corporation

Sure! Here's a version of the optimization model

that also minimizes the fuel consumption: T

This model minimizes the fuel consumption,

which is represented by the total distance

traveled between all pairs of customers ~i~ and
“5° (tdist[i][j1°) that are visited in the
specified order (*x[i113j1°). The other
constraints from the previous model are
unchanged, ensuring that only customers with
demand are visited, that the total demand
served by each vehicle does not exceed its
capacity, and that all routes start and end at the

same location.

P/ Data Declarations

intn=..,; // number of customers

intm = ...; // number of vehicles

intQ=..; /[ capacity of each vehicle

int demand[1..n] = ...; // demand for each customer

intstart=...; //starting location

intend=...; // ending location

int dist[1..n][1..n] = ...; // distance between each pair of customers

int x[1..n][1..n] = ...; // x[i][j] = 1if customer i is served before customer j
inty[1..n] = ...; //yli] = 1if customer i is visited

// Decision Variables
dvar boolean y[1..n];
dvar int x[1..n][1..n];

// Constraints
subject to {
// At most one customer is served before another customer
forall (iin1..n)
sum(jin 1..n) x[i]{j] + sum(j in 1..n) x[j1[i] == 1;

// Only customers with demand are visited
forall (iin1..n)
y[i] <= demand(il;

// Total demand served by each vehicle does not exceed its capacity
forall (iin1..n, jin 1..n)
sum(k in 1.m) x[i][j] * y[i] <= Q;

// All routes start and end at the same location
forall (iin1..n)
x[start][i] + x[i][end] == y[i];
}

/] Objective
minimize
sum(iin 1..n) sum(j in 1..n) dist[i] [j] * x[i][j];



Can you remove the constraint that only

customers with demand are visited?

IBM Research / February 28, 2022 / © 2022 IBM Corporation

Sure! Here's a version of the optimization model
where the constraint that only customers with

demand are visited is removed:

In this model, the constraint ~y[ij <=
demand[i]"~ has been removed, so all
customers can potentially be visited, regardless
of whether they have demand or not. The other
constraints from the previous models are
unchanged, ensuring that the total demand
served by each vehicle does not exceed its
capacity, and that all routes start and end at the

same location.

// Data Declarations

intn=...; /[ number of customers

intm=...; // number of vehicles

intQ =..; // capacity of each vehicle

int demand[1..n] = ...; // demand for each customer

intstart = ...; //starting location

intend = ..., // ending location

int dist[1..n][1..n] = ...; // distance between each pair of customers

int x[1..n1[1..n] = ...; // x[i1[j] = 1if customer i is served before customer j
inty[1..n] = ...; //y[i] = 1if customer i is visited

// Decision Variables
dvar boolean y[1..n];
dvar int x[1..n][1..n];

// Constraints
subject to {
/] At most one customer is served before another customer
forall (iin1..n)
sum(jin 1..n) x[i][j] + sum(jin 1..n) x[j][i] == 1;

// Total demand served by each vehicle does not exceed its capacity
forall (iin1..n,jin1..n)
sum(k in 1.m) x[i][j] * v[i] <= Q;

/] All routes start and end at the same location
forall (i in 1..n)
x[start][i] + x[il[end] == y[i];
}

/] Objective
minimize
sum(iin 1..n) sum(j in 1..n) dist[i][j] * x[i][j];



Shift in Problem Focus

Understand Create formal Translate into
—» business — model of business —» optimization —»
problem problem model

Tune for
Efficiency

Validate the
— optimization
model

IBM Researc h/ DocID / Month XX, 2020 / © 2020 IBM Corporation




Tune for efficiency - Learning to optimize

Optimization
Model

Optimization

Model Instance / l \

Optimization
Model Instance J
Optimization

Solution \ Learning-Offline J

Classical Solution Process Learning to Optimize

Classic
Optimizers

Trained
Optimizer

Trainable
Optimizer

Optimization
Solution

(Adapted from “Learning to Optimize: A Primer and A Benchmark” Chen et. al 2022)

Node selection [He et al., 2014], [Song, Lanka, Zhao, et al., 2018], Variable selection [Nair et al.,
2020], [Nair et al., 2020], Cutting planes selection [Baltean-Lugojan et al., 2018], [Tang et al.,
2019], Primal heuristic selection [Khalil, Dilkina, et al., 2017], [Khalil, Dilkina, et al., 2017],...
ECOLE - Extensible Combinatorial Optimization Learning Environments : https://www.ecole.ai/

IBM Research / February 28,2022 / © 2022 IBM Corporation 18




Model Verification
for Constraint
Learning

Joint work with Orit Davidovich, Parikshit Ram and Dharmashankar Subramanian

IBM Research / February 28, 2022 / © 2022 IBM Corporation 19




Problem formulation 5

”Actual” Feasibility set Feasibility set Q' Data driven

optimization Objective function f Objective function f’ optimization

formulation formulation

p p
* L] 1E3 L] 14 l
X = arg miny exnﬂ(p)f(xr p) X = arg miny e)(ﬂﬂl(p)f (x,p)

Desired outcome Obtainable outcome

How can we ensure that x'* is a good solution for the actual problem?

IBM Research / February 28, 2022 / © 2022 IBM Corporation 20




Ensuring improvements of generated models

Measure quality of
generated optimization
solution

f’D! 'Q', >

|

Augment optimization
model so as to meet
required quality threshold

_’le, Q”

IBM Research / February 28,2022 / © 2022 IBM Corporation

*x" (p)



Approach

What we want:

Pr(x™ € Q'(p)) = (1 - 6,) Pr(f(x™,p) — f(x",p) <€) = (1 - 6,)

Instead:

Pr(f(xo,p) — f(x",p) 2 &) 2 (1 - &)

Generate Model Use model to Gather data
from Data generate improving resulting from
decisions improved decisions

IBM Research / February 28, 2022 / © 2022 IBM Corporation 22




Probability of Improvement (POI)

Uncertainty on f represented by a Gaussian Process
f|D data ~ GP
= Value @ Point: f(x,p) ~ NV (u(x,p),02(x,p))

= Probability of Improvement: Pr[f(x,,p) — f(x’*,p) > €]

IBM Research / February 28,2022 / © 2022 IBM Corporation




Weighted Probability of Improvement

Prior beliefon f

Posterior: f | D ~ GPy|p
Marginalize = Weighted Probability of Improvement

PrlfGop) = f(x"\p) 2 el = > Prop [fGop) = f(",p) = €]

D'cDh

Similarly , probability of constraint satisfaction (PoCS): Pr[x""(p) € Q(p)]

IBM Research / February 28, 2022 / © 2022 IBM Corporation 24




Pol Experimental Results

Probability of improvement: min

Solutions [actual value]
Probahlllty of improvement

Policies [actual value]

Figure 3: Pol calculated for 5593 solution-policy pairs associated
with 1718 randomly generated triplets ( f, D, 2).

Pol > 0.5
Pol < 0.5

Table I: Pol results summary.

IBM Research / February 28, 2022 / © 2022 IBM Corporation




Model Augmentation

Data Sufficiency Model Fidelity
Optimal solution e-"close” to existing Learnt objective is §-“accurate” in
dataset vicinity of solution

e and 6 can be tuned to achieve desired Pol/PoCS

Can be used to enhance trust: user can ensure that
solution is close to previously existing solutions and
uncontrollables

IBM Research / February 28, 2022 / © 2022 IBM Corporation 26




Augmented optimization formulation

x"™ = arg min, ¢yna@p)f (x,p)
subject to:

Data Suf ficiency Constraints

Model Fidelity Constraints

Can be formulated as Mixed Integer Linear Program (MILP) when original problem is MILP

Theoretical guarantee: In some settings, can provide a bound for Pr(f(x",p) — f(x*,p) < &) = (1 - 63)

IBM Research / February 28, 2022 / © 2022 IBM Corporation 27




Results on WFP Problem

Palatability
Threshold

OptiCL w/o TR
Obj GR

OptiCL w/ TR
Obj GR

DSMF w PoCS > 0.95 (Ours)
Obj GR

0.50
0.60
0.70
0.75

3213 +1.27
3244 +19.09
3405 + 21.64
3576 £+ 75.41

0.01 = 0.0003
0.09 4+ 0.09
0.64 £ 0.02
0.68 = 0.06

3431 +0.12
3443 £+ 4.053
3535+ 11.91
3669 * 59.32

0.55 + 0.0002
0.54 + 0.02
0.69 4+ 0.01

0.7 +0.03

3296 + 23.49
3358 + 30.9
3685 = 175.96
3914 £+ 127.33

0.62 £ 0.(

)4
0.69 4+ 0.02
0.73 £+ 0.0«
0.76 = 0.0

2
l

Table 2: Objective (Obj — food basket cost, lower is better) and Ground Truth Constraint Values (GR — should be above the Palatability
Threshold) with 95% Confidence Interval for the Three Algorithms. (GR constraint-satisfying solutions in Green, the constraint-violating
solutions in Red, best constraint-satisfying objective value is in boldface.)

False Positive False Negative
9.78%

3.93%

PoCS > 0.8
PoCS > 0.5

Table 3: Accuracy of PoCs Estimate

Figure 4: Objective PoCS tradeoff for Threshold 0.5

IBM Research / February 28, 2022 / © 2022 IBM Corporation




Validation First
Simplified
Optimization




Validation first process

Understand Create Check Create Validate the
: P 2 e Tune for ..
—  business — verification - specification —> Optimization » Efficienc * optimization
problem specification validity Model y model —‘

IBM Research / Doc ID / Month XX, 2020 / ® 2020 IBM Corporation 30




Supply chain inventory replenishment

« Given the demand forecast, user wants to find

MANUFACTURING DISTRIBUTION

the optimal (s,S) order policy B ]l (m]) comsumpion

kanban card (or label) returns to table
m
zone

kanban table

« Objective: Minimize lost sales and inventory

if red zone reached, then production
(e.g. reconstitution of the consumption)

holding costs

« Constraints: Quantity conservation

IBM Research / February 28, 2022 / © 2022 IBM Corporation 31




User has relevant data in spreadsheet

IBM Research / February 28, 2022 / © 2022 IBM Corporation

01/02/2020
02/02/2020
03/02/2020
04/02/2020
05/02/2020
06/02/2020
07/02/2020
08/02/2020
09/02/2020
10/02/2020
11/02/2020
12/02/2020
13/02/2020

Demand
500
300
200
600
700
100
200
100
300
400
500
100

50




User adds cells for policy, initial inventory and costs

S 350
S 450
1000

18 Inventory cost (per item) 1 Stockout Cost (per item)

IBM Research / February 28, 2022 / © 2022 IBM Corporation 33




User adds formulas for calculating objective and
Intermediate values

Stockouts: =MAX(0,B3-C3)
Remaining inventory: =MAX(C3-B3,0)
Cost per day: =G3*$B$18+$D$18*F3

Order amount based on current (s,S) values: =IF(C3<$B$19,$B%$20-C3,0)

IBM Research / February 28,2022 / © 2022 IBM Corporation




User can calculate costs with different values,
validating solution

Inventory cost (per item)
Date

07/02/2020
08/02/2020
09/02/2020
10/02/2020
11/02/2020
12/02/2020
13/

Inventory cost (peritem)

1 Stockout Cost (per item)
Demand (State) Inventory (State)

500 1000
300 500
200 200
600
700
100

100

400
500

50
1 Stockout Cost (per item)

350
450

5;
Restocking (Action)
0f
0
250
200
250
200
0
300
0

IBM Research / February 28, 2022 / © 2022 IBM Corporation

Cost rd) Stockouts Excessinventory Orderamount
500

500
200
0
0
0

150
50
50

0
0
0
400

0

0
250
200
250

Inventory cost (per item)

1

Demand (State) Inventory (State)

500
300
200
600
700
100
200
100
300
400
500
100

Stockout Cost [per item)
g (Action)
o
0
o
500
0

Stockout Cost (per item)

(Reward) Stock nventory Order amount

500 500
200
0




Spreadsheets formulas automatically translated into
optimization model

minimize E16;

subject to {

El6 == E3 + E4 + E5 + E6 + E7 + E8 + E9 + E10 + El1ll1 + El12 + E13 + El1l4 + E15;

E3 == G3 * B18 + D18 * F3;

E4 == G4 * B18 + D18 * F4;

F3 == maxl1 (0, B3 - C3);

G3 == maxl(C3 - B3, 0);

F4 == max1(0, B4 - C4);

G4 == maxl(C4 - B4, 0); =IF (C3<$B$19,$B$20-C3,0)
C4 == G3 + D3;

C5 == G4 + D4;

(C3 <= B19 - 1 => H3 == B20 - C3) && (C3 >= B19 => H3 == 0);

(C4 <= B19 - 1 => H4 == B20 - C4) && (C4 >= B19 => H4 == 0);

IBM Research / February 28, 2022 / © 2022 IBM Corporation 36




Solution Approch

Generate

Rewrite




Mathematical representation

= High expressive power
= Similar to first-order logic, or a functional programming language

» Powerful and extensible reasoning mechanisms
= Rewrite rules
» Implement transformations for specific targets
= Constraint propagation
» Discover information that is implicit in the specification
» Precise data types; decision variables; variable domains

= Multiple types of inputs: Functional Python, spreadsheet, ...

= Multiple types of outputs can be generated: OPL, docplex, OptaPlanner, ...

IBM Research / February 28,2022 / © 2022 IBM Corporation




Rewriting rules example: If-then-else operator

. ’ 2.
x = ifa > b then c else d OPL do.e.sn t allgw ?: operator
on decision variables

Semantics of if-then-else operator

a>=>b DOx=c¢c N a<b Dx=d OPLdoesntallow strict
comparisons on decision
variables

a, b: integer

a<b—1>2x=d

IBM Research / February 28,2022 / © 2022 IBM Corporation




Summarry

- Al can significantly simplify the creation of an optimization model, but

raises new issues in model validation and efficient model solving

- Presented works on how to validate learnt constraints, and how a
validation first approach can significantly simplify the end-to-end model

creation

IBM Research / February 28, 2022 / © 2022 IBM Corporation 40




Future work

Validation for constraint learning: More efficient model augmentation

- Validation first approach: extending mathematical representation and rewrite rules

to cover larger set of optimization problems

- Extending learning to optimize capabilities to extend efficient model solving

capabilities for meta-heuristic optimizers

« Utilizing large language models as part of an end-to-end optimization model

generation pipeline

 Utilization of transformer architecture and attention mechanism as part of decision-

making pipelines

IBM Research / February 28, 2022 / © 2022 IBM Corporation 41




Backup Slides

IBM Research / February 28, 2022 / © 2022 IBM Corporation 42




Theoretical Guarantees

Under the following assumptions

* x" € Conv(X(p)) (Where X(p) = {x;: (x;,p;, ;) € s(p)})

* V(x;,pi2;) € S(p) such that x; € X(p), |z; — f(x, p)| < €5
(Enforced by model sufficiency for ¢ = max)

« f(x,)is LE lipschitz and f(x,") is L% Lipschitz for all x € y
! f

* f(,p)is Lf lipschitzand f (-, p) is L}( Lipschitz

IBM Research / February 28, 2022 / © 2022 IBM Corporation 43




Theoretical Guarantee
Let;

X" =arg min(x E)mQ(p)nConv(X(p)))U(MF—C’)f(x’ p)

Then:
F"p) = ' p) < 2(8, (L + LF) + e (L7 + L2) A(p))
Where: A(p) = min max “xi — ]”
xi€X(p)x;j€X(p) 2

Bound could be extremely loose and may not be useful in practice
* A(p) could be very large (depending both on 6, and |X(p)|
« The smaller are §, and |X(p)|, the less likely it is that

If we can calculate probability that x* € Conv(X(p)), we can calculate
Pr(f(x",p) = f(x*,p) < 2 (65 (L5 +12) + & (L + LF) A@) )

IBM Research / February 28, 2022 / © 2022 IBM Corpor: 44




Data sufficiency

- Input p should be “close enough” to historical
unctrollables:

S(p) = {{xi,pi,x;) € D:dP(p,p;) < 6}
for some distance function d?

« Optimal decision should be “close enough” both to
historical decisions and historical uncontrollable

Q(x,p) = {{x;, pi, z;) € S(p):d*(x"*, x;) < 8x}
for some distance function d¥

- Add constraint ensuring that optimal decision and

uncontrollable “sufficiently close” to enough

points in the data % > €g

IBM Research / February 28, 2022 / © 2022 IBM Corporation

Q(x,p)

%S

dX(x’*r xi)
< Oy

I*




Model Fidelity

- Learnt objective needs to be accurate enough in region where input uncontrollable and optimal
decision are

o({|z: = fCeip)|: (xi v zi) € Q(x"*,p)}) < €y
where ¢ is some statistic (max, average, etc.)
- Better to test on the holdout dataset used to train f

» Different accuracy measures could be used

IBM Research / February 28,2022 / © 2022 IBM Corporation




Augmented optimization formulation

x"™ = arg min, ¢yna@p)f (x,p)
subject to:

|Q(x,p|
ID|

U({|Zi — f(xi»pi)|i (xi, i, 2;) € Q(x’*,p)}) = 61(4 (MF - C)

>es  (DS—C)

Parameterized by 6,,, &y, €5, €f'
Can be used to enhance trust: user can ensure that solution is close to previously existing
solutions and uncontrollables

Can be formulated as Mixed Integer Linear Program (MILP) when original problem is MILP

Theoretical guarantee: In some settings, can provide a bound for

Pr(f(x",p) = f(x",p) <€) 2 (1 = 63)

IBM Research / February 28, 2022 / © 2022 IBM Corporation 47




