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Reinforcement Learning 

Big Success in Games

DoTA 2 StarCraft II

Go Chess Shogi Poker



ELF OpenGo

[ELF OpenGo: An Analysis and Open Reimplementation of AlphaZero, Y. Tian et al, ICML 2019]

Name (rank) ELO (world rank) Result

Kim Ji-seok 3590 (#3) 5-0

Shin Jin-seo 3570 (#5) 5-0

Park Yeonghun 3481 (#23) 5-0

Choi Cheolhan 3466 (#30) 5-0

Single GPU, 80k rollouts, 50 seconds
Offer unlimited thinking time for the players

Vs top professional players



What’s Beyond Games?



Several weeks with human experts in the loop 

à

Fully automatic design in 6 hours

Chip Design (Google)

[A. Mirhoseini, A. Goldie, et al, A graph placement methodology for fast chip design, Nature’21]



Optimization Problems

Travel Salesman Problem Job Scheduling Vehicle Routing

Bin Packing Protein Folding Model-Search

𝑥∗ = argmax
"∈$

𝑓(𝑥)



Wait…What?

• Many problems are NP-hard problems.
• No good algorithm unless P = NP

• These guarantees are worst-case ones.
• To prove a lower-bound, construct an adversarial example to fail the algorithm

• For specific distribution, there might be better heuristics.
• Human heuristics are good but may not be suitable for everything



Efficient Search for Games

ChessGo

Human Knowledge
Machine learned models



Efficient Search for Optimization

Human Knowledge

Exhaustive search to get a good solution



More Efficient Search for Optimization

Human Knowledge

Exhaustive search to get a good solution

Can we use 
Machine Learning?



Components of Search 

Design of 
State/Action Space

State 
RepresentationSearch Heuristics

Design Surrogate 
Models



Components of Search 

Search Heuristics

[X. Chen and Y. Tian, Learning to Perform Local Rewriting for Combinatorial Optimization, NeurIPS’19]
[H. Shi et al, Deep Symbolic Superoptimization Without Human Knowledge, ICLR’20]
[H. Zhu et al, Network planning with deep reinforcement learning, SIGCOMM’21]
[T. Huang et al, Local Branching Relaxation Heuristics for Integer Linear Programs, CPAIOR’23]
[T. Huang et al, Searching Large Neighborhoods for Integer Linear Programs with Contrastive Learning, 
arXiv’23]

Initial solution à Improved solution1 à
Improved solution2 à …



Components of Search 

Design of 
State/Action Space

[L. Wang, et al, Learning Search Space Partition for Black-box Optimization using MCTS, NeurIPS’20]
[L. Wang, et al, Sample-Efficient Neural Architecture Search by Learning Action Space, T-PAMI’21]
[K. Yang, et al, Learning Space Partitions for Path Planning, NeurIPS’21]
[Y. Zhao, et al, Multi-objective Optimization by Learning Space Partitions, ICLR’22]
[Y. Liang, et al, Learning Compiler Pass Orders using Coreset and Normalized Value Prediction, arXiv’23]

Action that 
doesn’t matter
(you can choose 
any of them)

Action that 
really matters

If useful actions only happen after 50 binary moves, then we will waste our efforts in this 250 possibilities.  



Components of Search 

State 
Representation

[X. Chen et al, Latent Execution for Neural Program Synthesis Beyond Domain-Specific 
Languages, NeurIPS’21]
[T. Wang et al, Denoised MDPs: Learning World Models Better Than the World Itself, ICML’22]
[Z. Jiang et al, Efficient Planning in a Compact Latent Action Space, ICLR’23]

GOAL: Letting in as much sunlight as possible

Controllable

Uncontrollable

Reward-relevant Reward-irrelevant



Components of Search 

Design Surrogate 
Models

[Y. Zhao, et al, Few-shot neural architecture search, ICML’21]
[D. Zha, et al, DreamShard: Generalizable Embedding Table Placement for Recommender Systems, 
NeurIPS’22]
[A. Ferber, et al, SurCo: Learning Linear Surrogates For Combinatorial Nonlinear Optimization 
Problems, arXiv’22]
[A. Cohen, et al, Modeling Scattering Coefficients using Self-Attentive Complex Polynomials with 
Image-based Representation, arXiv’23]



SurCo: Learning Linear Surrogates for 
Combinatorial Nonlinear Optimization

Aaron Ferber1, Taoan Huang1, Daochen Zha2, Martin Schubert3, Benoit Steiner4, Bistra Dilkina1, Yuandong Tian4

1University of Southern California, 2Rice University, 3Reality Lab Display, 4Meta AI (FAIR)

https://arxiv.org/abs/2210.12547

https://arxiv.org/abs/2210.12547


Optimizing Nonlinear Functions over 
Combinatorial Regions
• Nonlinear + differentiable objective
• Combinatorial feasible region
• Real-world domains:
• Computer system planning
• Designing photonic devices
• Throughput optimization
• Antenna design
• Energy grid



Example: Embedding Table Placement

Given:
• 𝑘 tables
• 𝑛 identical devices
• Table 𝑖 has memory requirement 𝑚!
• Device 𝑗 has memory capacity 𝑀"

Find
• Allocation of tables to devices observing device memory limits
• Minimize latency which is estimated by a neural network (capturing nonlinear 

interactions)



Example: Embedding Table Placement

Given:
• 𝑘 tables
• 𝑛 identical devices
• Table 𝑖 has memory requirement 𝑚!
• Device 𝑗 has memory capacity 𝑀"

Min! 𝑳 {𝑥"#} s.t. ∑! 𝑥!"𝑚! ≤ 𝑀" , ∑" 𝑥!" = 1 , 𝑥!" ∈ {0,1}

Formulation

𝑳 is nonlinear due to system issues (e.g., batching, communication, etc)



Nonlinear Optimization is Hard

• Specific domains have specialized solvers

• General solvers are often slow (without very careful modeling)

• Genetic algorithms or gradient-based methods may not find feasible 
solutions



Linear Optimization is Easy(ish)

• MILP solvers (CPLEX, Gurobi, SCIP) easily handle industry-scale 
problems
• Plus other solvers for linear settings
• Greedy
• LP + total unimodularity



Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the nonlinear 
problem

Originally Now

min
𝒙
𝑓(𝒙; 𝒚)

s. t 𝒙 ∈ Ω =

Nonlinear optimization with 
combinatorial constraints

Predict surrogate cost 𝒄 = 𝒄(𝒚)
𝒙∗ 𝒚 = argmin

𝒙
𝒄(𝒚)𝑻𝒙

s. t 𝒙 ∈ Ω

𝒙∗ 𝒚 optimizes 𝑓(𝒙; 𝒚) as much as possible

Surrogate optimization 

combinatorial 
constraints

solved by existing combinatorial solvers



Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the nonlinear 
problem

min! $(&; ()
s. t & ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost " = "(%)
&∗ ( = argmin

!
3(()(&

s. t & ∈ Ω

!∗ % optimizes )(!; %) as much as possible

Surrogate optimization 

combinatorial 
constraints

solved by existing combinatorial solvers

Originally Now

Challenge: how to find the right objective?



Idea: Find a Linear Surrogate

• Learn a MILP objective whose optimal solution x* solves the nonlinear 
problem

min! $(&; ()
s. t & ∈ Ω =

Nonlinear optimization with
combinatorial constraints

Predict surrogate cost " = "(%)
&∗ ( = argmin

!
3(()(&

s. t & ∈ Ω

!∗ % optimizes )(!; %) as much as possible

Surrogate optimization 

combinatorial 
constraints

solved by existing combinatorial solvers

Originally Now

Proposal: gradient-based optimization



Proposal: surrogate learning

• Use surrogate MILP to solve original problem
• Find linear coefficients c such that argmin

#∈%
𝑓(𝑥) ≈ argmin

#∈%
𝑐&𝑥

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate 
Coefficients 𝑐



SurCo-zero: gradient-based optimization

• Iterative solver based on linear surrogate guided by gradient updates
• Update linear coefficients 𝑐 such that 𝑥∗ 𝑐 improves objective 𝑓 𝑥∗(𝑐)

∇"𝑓(𝑥)∇&𝑥∗(𝑐)
Assumed differentiableRecent work on differentiable optimization

Differentation of blackbox optimizers
CVXPYLayers
MIPaaL
... more in related work

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate 
Coefficients 𝑐



SurCo-prior: distributional learning

• One pass solver based on model learned offline
• Use neural model based on problem features to predict linear coefficients

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate Coefficients
𝑐

∇"𝑓(𝑥)
Assumed differentiable

∇&𝑥∗(𝑐)
Recent work on differentiable optimization

Differentation of blackbox optimizers
CVXPYLayers
MIPaaL
... more in related work

Neural Network
𝑐 = 𝑁𝑁 𝑦; 𝜃

𝜃
Model parameters

Problem features
𝑦

∇'𝑁𝑁 𝑦; 𝜃
Standard NN autograd

Pytorch
Tensorflow
JAX etc…



SurCo-prior: distributional learning

• Update neural network parameters from training dataset

Train Model 
parameters 𝜽

Solution
𝑥∗ 𝑐()*(

Surrogate Coefficients 
𝑐!"#! = 𝑁𝑁(𝑦!"#!; 𝜃)

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥



SurCo-hybrid: fine-tuning 
from trained model

Update neural network parameters 
from training dataset Fine-tune surrogate on-the-fly

Train Model 
parameters 𝜽

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Initial Surrogate Coefficients 
𝑐$ = 𝑁𝑁(𝑦!"#!; 𝜃)

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗



SurCo-zero

No offline training data, just solve a single problem instance on-the-fly

∇"𝑓(𝑥)∇&𝑥∗(𝑐)

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗

Surrogate 
Coefficients 𝑐



SurCo-prior

Uses offline training data to quickly solve problems at test time with just one solver call

Train Model 
parameters 𝜽

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐()*(

Surrogate Coefficients 
𝑐!"#! = 𝑁𝑁(𝑦!"#!; 𝜃)

𝑐+ = 𝑁𝑁 𝑦+; 𝜃



SurCo-hybrid

Offline train + on-the-fly fine-tuning the surrogate

Train Model 
parameters 𝜽

𝑐+ = 𝑁𝑁 𝑦+; 𝜃

Initial Surrogate Coefficients 
𝑐$ = 𝑁𝑁(𝑦!"#!; 𝜃)

Objective
𝑓 𝑥∗

Solver
𝑥∗ 𝑐 = argmin

"∈$
𝑐%𝑥

Solution
𝑥∗ 𝑐

Loss
𝑓 𝑥∗



Related Work
Differentiable optimization: backprop through 
solvers

Amos et al. OptNet: Differentiable optimization as a layer in 
neural networks. ICML 2017
Agrawal et al. Differentiable Convex Optimization Layers. 
NeurIPS 2019
Berthet et al. Learning with Differentiable Perturbed 
Optimizers. NeurIPS 2020
Demirović et al. Predict+Optimise with Ranking Objectives: 
Exhaustively Learning Linear Functions. IJCAI 2019
Demirović et al. Dynamic Programming for Predict + 
Optimise. AAAI 2020
Djolonga et al. Differentiable Learning of Submodular 
Models. NeurIPS 2017
Donti et al. Task-Based End-to-End Model Learning in 
Stochastic Optimization. NeurIPS 2017
Elmachtoub et al. Smart “Predict, then Optimize”. 
Management Science 2022
Ferber et al. MIPaaL: Mixed Integer Program as a Layer. AAAI 
2020

Lee et al. Meta-Learning with Differentiable Convex Optimization. CVPR 
2019
Mandi et al. Smart Predict-and-Optimize for Hard Combinatorial 
Optimization Problems. AAAI 2020
Niepert et al. Implicit MLE: Backpropagating Through Discrete Exponential 
Family Distributions. NeurIPS 2021
Valstelica et al. Differentiation of Blackbox Combinatorial Solvers. ICLR 
2019
Rolnínek et al. Optimizing Rank-Based Metrics with Blackbox 
Differentiation. CVPR 2020
Wang et al. Automatically Learning Compact Quality-Aware Surrogates for 
Optimization Problems. NeurIPS 2020
Wang et al. SATNet: Bridging Deep Learning and Logical Reasoning Using a 
Differentiable Satisfiability Solver. ICML 2019
Wilder et al. Melding the Data-Decisions Pipeline: Decision-focused 
Learning for Combinatorial Optimization. AAAI 2019
Wilder et al. End to End Learning and Optimization on Graphs. NeurIPS
2019



How SurCo is different from Predict+Optimise?
Predict+Optimize

Predict Optimize

• Suitable for linear optimization problems.
• Requires a ground truth linear 

coefficients 𝑐+ of the objective

SurCo

• Suitable for nonlinear objective 𝑓 𝑥; 𝑦 . 
• Unlike existing nonlinear solvers, NO analytic form 

needed. 
• Does NOT require a ground truth linear coefficients 
𝑐+. Learned surrogate coefficients by itself. 

Both requires contextual information (i.e., problem description 𝑦!)



Related Work
Mixed Integer Nonlinear Optimization: general-
purpose solvers

Burer et al. Non-Convex Mixed Integer Nonlinear 
Programming: A Survey. ORMS 2012
Belotti et al. Mixed Integer Nonlinear Optimization. Acta 
Numerica 2013

General-purpose heuristic optimizers: combinatorial 
constraints are hard

Gad et al. Pygad: An Intuitive Genetic Algorithm Python 
Library. 2021
Rapin et al. Nevergrad – A Gradient-Free Optimization 
Platform. 2018
Wang et al. Learning Search Space Partition for Black-
Box Optimization Using Monte Carlo Tree Search. 
NeurIPS 2020
Wang et al. Sample Efficient Neural Architecture Search 
by Learning Actions for Monte Carlo Tree Search. PAMI 
2021

RL for combinatorial optimization: combinatorial 
constraints are hard

Khalil et al. Learning Combinatorial Optimization Algorithms 
Over Graphs. NeurIPS 2017
Kool et al. Attention, Learn to Solve Routing Problems! ICLR 
2018
Mazyavkina et al. Reinforcement Learning for Combinatorial 
Optimization: A Survey. COR 2021
Nazari et al. Reinforcement Learning for Solving the Vehicle 
Routing Problem. NeurIPS 2018
Zhang et al. A Reinforcement Learning Approach to Job-Shop 
Scheduling. IJCAI 1995



Embedding Table Sharding
Used in large-scale deep learning systems: recommendation systems, knowledge graph

Place N “tables” (with known memory need 𝑚%) on K devices (𝑥%& = 1: table 𝑖 assigned to device 𝑗)

Min9 𝐿 {𝑥!"} s.t. ∑! 𝑥!"𝑚! ≤ 𝑀", ∑" 𝑥!" = 1 , 𝑥!" ∈ {0,1}

𝐿 : Runtime bottleneck f(x) estimated by NN (longest-running device)

𝐿 is nonlinear due to system issues 
(e.g., batching, communication, etc.)

c 𝑦; 𝜃 gives surrogate ”per-table cost” 𝑐+,
(and ∑+, 𝑐+,𝑥+, is the surrogate latency objective)



Embedding Table Sharding

• Public Deep Learning Recommendation Model (DLRM dataset) placing 
between 10 to 60 tables on 4 GPUs

• Baseline: Greedy
• SoTA: RL approach Dreamshard1

• SurCo: Surrogate NN model learned via CVXPYLayers (differentiable LP 
Solver)

1 Zha et al. NeurIPS 2022
Dataset: https://github.com/facebookresearch/dlrm_datasets

https://github.com/facebookresearch/dlrm_datasets


Results – Table Sharding



Inverse Photonic Design

• Design physically-viable devices that take light waves and routes 
different wavelengths to correct locations

• Device design misspecification loss f(x) computed by differentiable 
electromagnetic simulator
• Feasible solution: the design must be the union of brush pattern
• x = binary_opening(x, brush)
• x = ~binary_opening(~x, brush)



Inverse Photonic Design

• Dataset: Ceviche Challenges1

• Most baselines don’t work here due to combinatorial constraints
• SoTA: Brush-based algorithm 1

• SurCo: Surrogate learned via blackbox differentiation2 of brush 
solver

1Schubert et al. ACS Photonics 2022
2Vlastelica et al. ICLR 2019
Dataset: https://github.com/google/ceviche-challenges

Wavelength division multiplexer

Mode converter

Beam splitter

Waveguide bend

https://github.com/google/ceviche-challenges


Results – Inverse Photonics



Inverse photonics Convergence comparison + 
Solution example
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Inverse Photonics Loss Convergence

Method
Pass-Through

SurCo-zero

SurCo-hybrid

Takeaways:
- SurCo-Zero finds loss-0 solutions quickly
- SurCo-Hybrid uses offline training data to get a head start

Wavelength division multiplexer



Conclusion

• Handle industrial applications with differentiable optimization

• High-quality solutions to combinatorial nonlinear optimization by 
finding linear surrogates
• Sometimes we can find “easier” surrogate problems that solve much more 

difficult instances

• SurCo works in several data settings
• Zero-shot vs Offline training
• One step inference vs fine-tuning



Sample-efficient Surrogate Model for 
Frequency Response of Linear PDEs using 

Self-Attentive Complex Polynomials
Andrew Cohen1*, Weiping Dou2, Jiang Zhu2, Slawomir Koziel3, Peter Renner2,

Jan-Ove Mattson2, Xiaomeng Yang1, Beidi Chen1,4, Kevin Stone1, Yuandong Tian1*

https://arxiv.org/abs/2301.02747

1Meta AI (FAIR), 2Reality Lab Antenna (Meta), 3Reykjavik University, 4Carnegie Mellon University
* = Equal technical contribution

https://arxiv.org/abs/2301.02747


Background

Solving the linear PDE

𝜕%𝜓
𝜕𝑡%

= 𝐹(𝜓, ∇𝒙𝜓,… ; 𝒉)

𝜓 𝑥, 𝑡 is the spatial-temporal signal under time evolutions. 
𝐹 is a linear function with respect to 𝜓 and its derivatives
𝒉 is design choice.



Examples

Heat equation

𝜕𝜓
𝜕𝑡

= ∇=𝜓

Wave equation

𝜕=𝜓
𝜕𝑡=

= c=∇=𝜓

𝑖ℏ
𝜕𝜓
𝜕𝑡

= −
ℏ=

2𝑚
∇= + 𝑉 𝜓

Schrodinger’s Equation

Tricky to simulate accurately and efficiently à Can we do better?

∇ ⋅ 𝐸 =
𝜌
𝜖$
, ∇ ⋅ 𝐵 = 0

∇×𝐸 = −
𝜕𝐵
𝜕𝑡
, ∇×𝐵 = 𝜇$𝑗 +

1
𝑐'
𝜕𝐸
𝜕𝑡

Maxwell’s equation



Antenna Design problem

Design of 2D antenna

Goal: 
find the right design to achieve 
the right frequency response

𝒉 =

𝑆CC 𝜓 =



Antenna Design problem

Design of 2D antenna

Strong absorption 
at specific frequency 

Goal: 
find the right design to achieve 
the right frequency response

𝒉 =

𝑆CC 𝜓 =

Target frequency 
response



Discretization of linear PDE systems

𝜕!𝜓
𝜕𝑡!

= 𝐹(𝜓, ∇𝒙𝜓,… ; 𝒉)
𝜕𝜙
𝜕𝑡

= 𝐴(𝒉)𝜙

The matrix 𝐴 encodes the information of 𝐹

One example: 𝜕D𝜓
𝜕𝑡D

= 𝑐D∇D𝜓
𝜙 = 𝜓(𝑥>), …𝜓(𝑥?),

𝜕𝜓
𝜕𝑡
(𝑥>), … ,

𝜕𝜓
𝜕𝑡
(𝑥?)

Discretized onto N vertices
𝐴 = 0 𝐼

𝑐=𝐵 0



Frequency Domain

Signal in the frequency domain: (𝜙 𝑥, 𝜔 = ∫𝜙 𝑥, 𝑡 𝑒$%&'d𝑡
Vector form 1𝝓 𝑡 = [ (𝜙 𝑥(, 𝜔 , … (𝜙 𝑥) , 𝜔 ]

Signal in the temporal domain: 𝜙 𝑥, 𝑡
Vector form 𝝓 𝑡 = [𝜙 𝑥(, 𝑡 , …𝜙 𝑥) , 𝑡 ]



Parametric formula for Linear PDEs

𝒃C& A𝝓(𝜔)
𝒃D& A𝝓(𝜔)

= 𝑐0(𝒉)D
EFC

G+

(𝜔 − zk 𝒉 )D
EFC

G,

𝜔 − pk 𝒉
HC

where the constant 𝑐0(𝒉), zeros 𝑧𝑘(𝒉) and poles 𝑝𝑘(𝒉)
are complex functions of the design choice 𝒉

Proof idea: Linear ODE theory gives us the analytic form of the solution 
𝝓(𝑡) = 𝑒@A𝝓(0). Fourier Transform yields Z𝝓 𝜔 as a rational function of 
complex polynomials w.r.t. frequency 𝜔.

Theorem: For any linear coefficients 𝒃1 and 𝒃2:



For Antenna Optimization

𝑆(( 𝜔 =
𝑍%* 𝜔 − 𝑍+
𝑍%* 𝜔 + 𝑍+

The Scattering Coefficients 𝑆>>(𝜔): 

𝑍BC 𝜔 : Input Impedance. Impedance  Z 𝜔 ≔ 𝑉(𝜔)/𝐼(𝜔)

Voltage
(in Fourier domain)

Current
(in Fourier domain)

Both are linear function w.r.t. signal Z𝝓(𝜔)



Parameter form of log 𝑆11(𝜔)

log 𝑆(((𝜔) = log co(𝒉) + A
,-(

.

log
𝜔 − 𝒛𝒌(𝒉)
𝜔 − 𝒑𝒌(𝒉)

where the constant 𝑐0(𝒉), zeros 𝑧𝑘(𝒉) and poles 𝑝𝑘(𝒉)
are complex functions of the design choice 𝒉. 



CZP model architecture

Predict the constant, zeros and poles from an 
image representation of an antenna 

Image-based Representation 
of design choice 𝒉

𝑐0(𝒉)

{𝑧𝑘(𝒉)}

Vertical 
boundary

Horizontal 
boundary

Interior {𝑝,(𝒉)}

Spatial Attention 
(Wu et al. 2020)

+
Transformer 

(Vaswani et al. 2017)



Data Collection
Dataset is collected from commercial simulators (e.g., CST) 
Numerical simulation of Electromagnetic wave dynamics

It takes minutes (or even hours) to get one simulation data point.
Dataset size = 48k 



Model Evaluation

• Static Evaluation
• On a held-out test set, compute the loss 
• Loss = gap between surrogate models and ground truth (commercial software)

• Dynamic Evaluation
• Use the surrogate model to search a good design
• Evaluate the design in ground truth (commercial software)
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50% error 
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Static Evaluation: Surrogate Model Test Loss
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Static Evaluation: Surrogate Model Test Loss
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Visualization
Our CZP model captures the smooth structure of scattering coefficients 𝑆11(𝜔)



Dynamic Evaluation: CZP model with Search

We use Soft Actor-Critic
as the specific search technique.

Goal: to find a solution to satisfy the 
frequency constraints (verified with CST)

Train the model with % of data

3 models trained x 3 search attempts using 
different random seed

For each attempt, check top-3 solutions
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Future Work

• The formulation applies to general linear PDEs
• Maxwell’s Equations
• Schrodinger's Equations
• Many more … 

• Test on more complicated scenarios. 
• 3D antenna 



Thanks!
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