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Many ML-based 
optimization methods use 
some form of embedding 
(or encoding) of data into 

vector spaces.
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Background: Node embedding

• For a graph 𝐺 = (𝑉, 𝐸), represent every node in ℝ! where 𝑑 ≪ 𝑉

• Common uses of node embeddings

Node Classification Link Prediction Clustering

?
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Question

How sensitive are node embeddings 
to graph perturbations?

D. Liu, T. Eliassi-Rad. STABLE: Identifying and Mitigating Instability in Embeddings of the Degenerate Core. 
In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), April 2023. Will Fleisher Scott AlfeldDavid Liu Zohair ShafiDavid Liu 6



Motivation

• Real-world graphs are incomplete and noisy.

• A common approach to understanding stability is to measure changes 
to algorithmic output due to input perturbations. 
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Original question: How sensitive are node 
embeddings to graph perturbations?

Modified question: How does the embedding 
of the degenerate core change as nodes in 
the periphery are removed and the graph is 
re-embedded?
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Background: k-core and the degenerate core

• k-core: maximal subgraph of nodes with degree ≥ k

• Degenerate core: the k-core with max k

1-Core

2-Core

9



Why should you care about the degenerate 
core and its embedding stability?
• Shin et al. [IEEE ICDM 2016] show that while degenerate cores are dense, they are 

generally not cliques. Instead, they contain community structure.

• Liu et al. [Scientific Reports 2015] and Laishram et al. [SDM 2020] show that in 
marketing applications, the removal of a node in a dense subgraph can trigger a 
cascade of node removals.

• Barbera et al [PLOS ONE 2015] show that in online activism, core nodes rely on 
periphery nodes to amplify messages that originated from core nodes. 
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Method for evaluating stability

Shave and Re-embed
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Method for evaluating stability
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Measure of (peeling) instability

• We compute the Degenerate-Core Pairwise Distribution, 𝐷!, for each 
k-shell: 𝑓 𝑣" − 𝑓 𝑣# ∀𝑖, 𝑗 ∈ 𝐺$

• This captures the relative geometric relationships among the 
embeddings of the nodes
in the degenerate core. Embeddings Pairwise DistributionEmbeddings Pairwise Distribution

16



Measure of (peeling) instability

• We compute the Degenerate-Core Pairwise Distribution, 𝐷!, for each 
k-shell: 𝑓 𝑣" − 𝑓 𝑣# ∀𝑖, 𝑗 ∈ 𝐺$

• We define instability at the kth core as 𝐸𝑀𝐷 𝐷! , 𝐷!%&
• How much does the degenerate core’s pairwise distribution change between 

the 𝑘th and (𝑘 − 1)th shells?

EMD = Wasserstein metric 17



Peeling instability of real and synthetic 
networks

Data Algorithms

1. Hope
2. Laplacian Eigenmap
3. Node2Vec (N2V)
4. SDNE
5. Hyperbolic GCN
6. PCA

For references, see paper at https://dliu18.github.io/publication/stable 18
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We chose graph datasets that have diverse 
k-core structures
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We chose graph datasets that have diverse 
k-core structures

The degenerate core is well-
connected to the outer shells.

The degenerate core is not well-
connected to the outer shells. 20



We chose our algorithms
based on the taxonomy 
of graph representation 
learning methods 

Figure 3 from https://arxiv.org/abs/2005.03675
21
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Figure 3 from https://arxiv.org/abs/2005.03675

We chose our algorithms
based on the taxonomy 
of graph representation 
learning methods 
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We found three patterns

1. Degenerate-core embeddings are sensitive to the removal of 
specific k-shells.
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2. Degenerate-core embeddings for Erdős-Rényi (ER) and Barabási-
Albert (BA) random graphs are stable.

24



We found three patterns

1. Degenerate-core embeddings are sensitive to the removal of 
specific k-shells.

2. Degenerate-core embeddings for Erdős-Rényi (ER) and Barabási-
Albert (BA) random graphs are stable.

3. As the periphery is removed, the degenerate-core pairwise 
distribution becomes smoother. 
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Pattern 1: Point of instability
Degenerate-core embeddings are sensitive 

to the removal of specific k-shells.
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Pattern 2: Stable ER and BA graphs
Degenerate-core embeddings for Erdős-Rényi (ER) and 

Barabási-Albert (BA) random graphs are stable.

The degenerate core constitutes a large proportion of the entire graph. 27



Pattern 3: Smoother pairwise distribution
As the periphery is removed, the degenerate-core 

pairwise distribution becomes smoother. 

Hartigan’s Dip static: a value close to zero suggests unimodality
28



Maximum instability of embeddings is correlated 
with increases in edge density

The degenerate core 
is colored red.
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Increases in subgraph edge density are correlated 
with peeling instability
Δ𝐸𝑀𝐷 = 𝛽! + 𝛽" Δ#$%& + 𝛽' Δ&()& (&*#$+,+ 𝛽- Δ./0#+&1$*) + 𝛽2 Δ+13*#$+$4$+,

Edge Density Size

Graph size = # of nodes in the subgraph /  # of nodes in G. The error bars report 95% confidence intervals. 
30



For ER graphs embedded with Laplacian Eigenmaps, the best 
and worst possible embeddings become less distinguishable as 
edge density increases.

See supplementary material for proof: https://dliu18.github.io/files/papers/stable/stable-Supplemental-SDM-23.pdf31

https://dliu18.github.io/files/papers/stable/stable-Supplemental-SDM-23.pdf


STABLE: Our algorithm for peeling stability

Augment an existing loss function

Original	loss	
function.	Embed	
similar	nodes	close	
to	each	other.

Penalize	unstable	
embeddings	of	the	
degenerate	core

32



Define Instability Loss

First-order Proximity

𝒖 5𝒖Larger p implies greater similarity

If i and j are similar in 5𝒖 , then embed them similarly in 𝒖.
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STABLE’s embeddings preserve AUC on link 
prediction
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We found …

1. Degenerate core embeddings of real-world networks are unstable to periphery 
perturbations. 
• Significant because real networks are noisy / incomplete and embeddings are 

used in downstream tasks.

2. Instability spikes when edge density increases. 

3. We present a generic algorithm, STABLE, that augments existing graph 
embedding algorithms to produce more stable embeddings. 

Project page: https://dliu18.github.io/publication/stable
Code at: https://github.com/dliu18/stable 35
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There are other forms of instability

• How does negative sampling affect the stability of node embeddings?
• A common negative sampling method is to sample from a Zipf

distribution with ¾ as the value of the exponent characterizing the 
distribution
• This value (¾) produces good results, but why? 
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https://www.pnas.org/content/early/2020/02/26/1911030117

C. “Sesh” Seshadhri
(UCSC)

https://arxiv.org/pdf/2201.08481.pdf 37
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• There is a bijection between undirected graphs on 𝑛 nodes and 𝑛 − 1
dimensional simplices.

• We can encode graph structure in geometric terms using the simplex 
geometry of the Laplacian.

• Some of the most popular graph embedding methods (that rely on 
distance minimization) perform well only when clustering coefficient is 
high.

Find an embedding with geometric properties 
instead of spectral ones

38Leo Torres
NortheasternLeo Torres

L. Torres, K.S. Chan, T. Eliassi-Rad. GLEE: Geometric Laplacian Eigenmap Embedding. 
Journal of Complex Networks, 8(2), cnaa007, 2020.
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what the model learns 
≠

what you think the 
model learns
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An old example of what the model learns ≠
what you think the model learns
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How did we discover the 
emergence of 

topological shortcuts?
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A. Chatterjee, O. Shafi Ahmed, R. Walters, Z. Shafi, D. Gysi, R. Yu, T. Eliassi-Rad, A.-L. Barabási, G. Menichetti. AI-Bind:
Improving Binding Predictions for Novel Protein Targets and Ligands. Nature Communications, 2023 (forthcoming).

AI-Bind: Predicting bindings 
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Ayan Chatterjee



Three experimental settings
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Experimental results

45
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Configuration model performs well under transductive and semi-inductive settings.

* A. Chatterjee, O. Shafi Ahmed, R. Walters, Z. Shafi, D. Gysi, R. Yu, T. Eliassi-Rad, A.-L. Barabási, G. Menichetti. AI-Bind: Improving Binding
Predictions for Novel Protein Targets and Ligands. Nature Communications, 2023 (forthcoming).

* K. Huang, et al. DeepPurpose: A Deep Learning Library for Drug–target Interaction Prediction. Bioinformatics (2020). 



Question

When do topological shortcuts occur?
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We found …

Topological shortcuts occur when 
annotation imbalance prompts the 
ML models to leverage degree 
information (+ and − annotations)
in making binding prediction instead 
of learning binding patterns from 
the molecular structures.
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Protein-ligands bipartite network and its 
degree distributions

Network consists of  only binding (positive) 
annotations for drugs and natural compounds. 

Degree distributions of ligands 
and proteins are fat-tailed in nature. 
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Network-derived negatives

Shortest-path length distribution capturing
all possible protein-ligand pairs. 

Average experimental kinetic constant
as a function of the shortest path distance.
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Network-derived negatives
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An example of a protein-ligand pair which is 7 hops apart 
and is used as a negative sample in the AI-Bind training set.



Outline

Instability of embeddings

Emergence of topological shortcuts

Adversarial ML
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Man-in-the-Middle 
Attacks
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Attacking shortest paths

Can an adversary force a specific route to be shortest?

populated area popular destination
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Problem: Force Path Cut
Given:
• a graph G = (V, E)
• edge weights (distances)
• edge removal costs
• a path p* from node s to node t
• a budget b
can edges be removed with total cost less than b
such that p* is the shortest path from s to t?

s t

v2
v3
v4

v6v1

2
1
1

1
2
1

1

1
5

1

v5

1
1

v7

traffic source
popular destination

adversary’s 
edge

adversary’s 
node

ideal edge 
to remove

p*

B.A. Miller, Z. Shafi, W. Ruml, Y. Vorobeychik, T. Eliassi-Rad, S. Alfeld. PATHATTACK: Attacking Shortest Paths in Complex
Networks, In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD), September 2021. Post-conference version is at https://arxiv.org/abs/2211.11141) 54Ben Miller

https://arxiv.org/abs/2211.11141


S. La Fontaine, N. Muralidhar, M. Clifford, T. Eliassi-Rad, C. Nita-Rotaru. Alternative Route- Based Attacks in Metropolitan Traffic Systems, In The 
8th International Workshop on Safety and Security of Intelligent Vehicles (co-located with DSN2022: The 52nd Annual IEEE/IFIP International 
Conference on Dependable Systems and Networks), Baltimore, MD, June 2022. https://cnitarot.github.io/papers/arb_ssiv2022.pdf

Metropolitan traffic systems
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Questions

• Can an adversary efficiently find an optimal attack for a target 
path, edge, or node?

• Can approximate solutions be found more efficiently than 
optimal ones?

• Is there an observable tradeoff between time and the quality 
of the solution?
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Theorem: Force path cut is APX-hard

• The 3-Terminal Cut problem is reducible to Force Path Cut 

• 3-Terminal Cut: Given a graph and three terminal nodes, 
what is the minimum-cost set of edges whose removal 
disconnects the terminals?

• 3-Terminal Cut cannot be approximated 
in polynomial time within a factor of 1.2
(unless P=NP)

s2

G

E2

E1

G

s1 s3

E3

E. Dahlhaus et al., “The  complexity  of  multiterminal  cuts,”  SIAM  J.  Computing, vol. 23, no. 4, 1994 57



Force path cut as set cover 

s t

v2

v3

v4

v6v1

2

1

1

1

2

1

1

1 5

1

p*
v5

1

1

v7

Edges (sets)

Paths (elements)
p1=(s, v2, v7, t)

p2=(s, v3, v7, t)

p3=(s, v4, v7, t)

(s, v2): {p1}

(s, v3): {p2}

(s, v4): {p3}

(v2, v7): {p1}

(v3, v7): {p2}

(v4, v7): {p2}

(v7, t): {p1, p2, p3, p4}

p4=(s, v1, v5, v6, v7, t)
(v5, v6): {p4}

(v6, v7): {p4}

cover an element ⇔ cut a path’s edge
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Approximation algorithms for set cover

Greedy Method

• Start with no sets selected
• While not all elements are covered
• Select the set that contains the 

most uncovered elements

Linear Programming Method

• Formulate set cover as an integer 
program
• Relax integer constraints into reals
• Solve the linear program
• Obtain integer solution by randomized 

rounding

Both algorithms guarantee a solution at most a logarithmic factor larger than optimal.*

* V. V. Vazirani, Approximation Algorithms, Springer, 2003 59



PATHATTACK algorithm

s t
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Results: Unweighted Graphs

Erdős–Rényi
Barabási–Albert

Algorithms

Networks

Baseline
PATHATTACK-Greedy
PATHATTACK-LP

Autonomous System
Wikispeedia

Pennsylvania Road

Kronecker
Lattice
Completebette

r
bette

r

● Both approximation algorithms yield similar cost

● Larger running time difference in grid-like networks
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Results: Weighted Graphs

Central Chilean Power Grid
LBL Network Traffic

Algorithms

Networks

Baseline
PATHATTACK-Greedy
PATHATTACK-LP

Northeast US Road
DBLP Coauthorship

bette
r

● Use natural weights as distances (invert if similarities)

● Again, smaller improvements for lattice-like graphs
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ML-based optimization (work in progress)

• Learn a network representation
• Node embedding is not as effective as edge or path embedding in this case
• The instability issues persist

• Need constraint generation 
• Dijkstra’s algorithm
• A* (heuristic defined by embeddings)
• Neural algorithmic framework (needs tailoring)

• Replace optimization module with either a SL model to predict which edges 
to remove or a RL model to learn an optimal policy of removing edges
• As always, the RL model is harder to learn (has a big state space, needs lots of 

training, etc)
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We found …

1. Can we solve Force Path Cut in polynomial time? ✘ No, it’s APX-hard

2. Can we find an approximate solution more efficiently than an exact 
one?  ✔ Yes, and the linear programming method found the optimal 
solution in over 98% of our experiments

3. Is there a tradeoff between running time and performance among 
approaches?  ✔ Yes, empirically (improvement for additional time is 
reduced in lattice-like graphs)
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Targeted Diffusion
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Diffusion processes

More 
infected

Fewer 
infected
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Question

How can an attacker manipulate the 
structure of a graph to increase or 
decrease the impact of diffusion?
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Targeted diffusion
Targeted 
subgraph
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Targeted diffusion
Targeted 
subgraph

Harm

Not 
harm 69



Targeted diffusion in cybersecurity
High-profile 

targets

Harm

Not 
harm

Computers
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Targeted diffusion

A malicious actor, 😈, can modify the graph 
structure 𝐺 = (𝑉, 𝐸) to achieve two goals

1. Maximum the diffusion spread to 
a target subgraph 𝑆

2. Minimize the impact on the remaining 
graph 𝐺\𝑆

S

S. Yu, L. Torres, S. Alfeld, T. Eliassi-Rad, Y. Vorobeychik. POTION: Optimizing Graph Structure for Targeted Diffusion. 
In Proceedings of the 2021 SIAM Data Mining Conference (SDM), May 2021, pp. 154-162.

Sixie Yu Leo Torres
NortheasternLeo Torres
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Setup

• 𝐺 = 𝑉, 𝐸 is a connected, weighted or unweighted, undirected graph 
with no self-loops

• 𝑛 = 𝑉 = number of nodes in G

• A = adjacency matrix of G

• Eigenvalues of A: 𝜆& 𝐴 ≥ ⋯ ≥ 𝜆' 𝐴
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Problem definition

•😈 targets the subgraph 𝑆

• 𝐴( = adjacency matrix of 𝑆

• Let 𝑆) = 𝐺\𝑆

• Attacker modifies the structure of G, which results in 
?𝐴 = 𝐴 + 𝛥 = ?𝐴( + ?𝐴(!

S
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Attacker’s objectives

1. If the virus starts in S, it should create an epidemic. 

Increase path capacity in S
≡ increase largest eigenvalue 
of the adjacency matrix for S
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Attacker’s objectives

2. If the virus starts in G\S, it should reach S.

Increase normalized cut 
between S and G\S
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Attacker’s objectives

3. Limit the harm to G/S.

Increase the sum of 
eigenvector centralities 
of nodes inside of S.
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POTION formulation

path capacity 
in S

normalized cut 
between S and S’

eigenvector 
centrality of S

S
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POTION-ALG
Rayleigh quotient + the Power method

Intuitively, argmax approx. a sequence of diff. operations 
A differentiable function 

involving the Laplacian matrix

Power method

S
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POTION-ALG optimizes 😈’s the objective function

• Projected gradient ascent has two major issues:

1. The objective function involves terms 
that do not have an explicit functional 
representation in the decision variables

2. The projection step is quite expensive, 
as it involves projecting into a spectral 
norm ball, which entails an expensive 
SVD operation

• We leverage Rayleigh quotients and 
pseudospectrum theory to overcome these 
hurdles and have a differentiable function of 
the adjacency matrix 
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POTION effectively achieves targeted diffusion 
in GS without affecting GS’
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Diffusion dynamics: SIS
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POTION is applicable to various epidemic 
processes

• SIS

• SIR

• SEIR

• Random walk based spreading dynamics
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Necessary condition for successful attacks in the 
form of a lower bound on the attacker’s budget 𝜖

𝐼(𝐺!) = Impact on 𝐺!
𝛽 = attack probability over a communication
δ = healing probability once infected
To have epidemic spread: 𝜆 ≥ !

"
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Certified robustness results

• Dashed lines mark the lower bounds from Eq. (5.12)
• Solid lines represent infectious ratios within target subgraphs.
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We found …

• POTION: a model for targeted diffusion attack by optimizing graph 
structures

• POTION-ALG: an efficient algorithm for solving POTION by leveraging 
Rayleigh quotient and pseudospectra theory

• Provided a condition for certifying that a targeted subgraph is immune 
to such attacks

• Demonstrated effectiveness of POTION and POTION-ALG on synthetic 
and real-world networks
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Three pitfalls of using ML-based optimization

Instability of embeddings

Emergence of topological shortcuts

Adversarial ML
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Thank you!

Any questions?
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Slides at http://eliassi.org/tina-ipam-aid23.pdf


