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Many ML-based
optimization methods use
some form of embedding
(or encoding) of data into
vector spaces.
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This workshop will apply deep learning methods to combinatorial
optimization problems that typically emerge in finance and revenue
management, transportation, manufacturing, supply chain, public
policy, hardware design, computing and information technology. Given
its high flexibility, approximate nature, and self-learning paradigm,
deep learning is particularly attractive to address combinatorial
optimization problems. Preliminary but promising advances have
already emerged in the Traveling Salesman Problem, MaxCut,
Minimum Vertex Cover, Knapsack, Quadratic Assignment Problem and
Vehicle Routing Problems. Synergies between the two fields could also
lead to the development of new algorithms, especially relevant for
applied problems. The workshop will bring together experts in
mathematics (optimization, graph theory, sparsity, combinatorics,
statistics), combinatorial optimization (assignment problems, routing,
planning, Bayesian search, scheduling), machine learning (deep
learning, supervised, self-supervised and reinforcement learning) and
specific applicative domains (e.g. finance, transportation, hardware
design, computing and information technology) to establish the
current state of these emerging techniques and discuss the next
directions.

Participation

Additional information about this workshop including links to register
and to apply for funding, can be found on the webpage listed below.
Encouraging the careers of women and minority mathematicians and

scientists is an important component of IPAM’s mission, and we welcome

their applications.
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s N— partially observed. Downstream learning tasks on these incomplete networks can pro-

is available at the end of the duce low quality results. In addition, reducing the incompleteness of the network can
article be costly and nontrivial. As a result, network discovery algorithms optimized for specific
downstream learning tasks given resource collection constraints are of great interest.
In this paper, we formulate the task-specific network discovery problem as a sequential
decision-making problem. Our downstream task is selective harvesting, the optimal
collection of vertices with a particular attribute. We propose a framework, called net-
work actor critic (NAC), which learns a policy and notion of future reward in an offline
setting via a deep reinforcement learning algorithm. The NAC paradigm utilizes a task-
specific network embedding to reduce the state space complexity. A detailed com-
parative analysis of popular network embeddings is presented with respect to their
role in supporting offline planning. Furthermore, a quantitative study is presented on
various synthetic and real benchmarks using NAC and several baselines. We show that
offline models of reward and network discovery policies lead to significantly improved
performance when compared to competitive online discovery algorithms. Finally, we
outline learning regimes where planning is critical in addressing sparse and changing
reward signals.

Keywords: Incomplete networks, Reinforcement learning, Network embedding

Introduction
Complex networks are critical to many applications such as those in the social, cyber,
and bio domains. We commonly have access to partially observed data. The challenge is
to discover enough of the complex network so that we can perform a learning task well.
The network discovery step is especially critical in the case where the learning task has
the characteristics of the “needle in a haystack” problem. If the discovery process is not
carefully tuned, the noise introduced, almost always, overwhelms the signal. This pre-
sents an optimization problem: how should we grow an incomplete network to achieve
a learning objective on the network, while at the same time minimize the cost of observ-
ing new data?

In this work, we view the network discovery problem from a decision-theoretic lens,

where notions of utility and resource cost are naturally defined and jointly leveraged in

5 ©The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
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party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the -
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://

creativecommons.org/licenses/by/4.0/.
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Background: Node embedding
* For a graph G = (V, E), represent every node in R% where d < |V|

 Common uses of node embeddings

Node Classification Link Prediction Clustering




How sensitive are node embeddings
to graph perturbations?

T. Eliassi-Rad. STABLE: Identifying and Mitigating Instability in Embeddings of the Degenerate Core.

D. Liu, !
In Proceedings of the 2023 SIAM International Conference on Data Mining (SDM), April 2023. David Liu



Motivation

* Real-world graphs are incomplete and noisy.

A common approach to understanding stability is to measure changes
to algorithmic output due to input perturbations.



Original question: How sensitive are node
< embeddings to graph perturbations?

Modified question: How does the embedding
of the degenerate core change as nodes in
the periphery are removed and the graph is

re-embedded?




Background: k-core and the degenerate core

e kK-core: maximal subgraph of nodes with degree > k

* Degenerate core: the k-core with max k




Why should you care about the degenerate
core and its embedding stability?

* Shin et al. [IEEE ICDM 2016] show that while degenerate cores are dense, they are
generally not cligues. Instead, they contain community structure.

* Liu et al. [Scientific Reports 2015] and Laishram et al. [SDM 2020] show that in
marketing applications, the removal of a node in a dense subgraph can trigger a
cascade of node removals.

* Barbera et al [PLOS ONE 2015] show that in online activism, core nodes rely on
periphery nodes to amplify messages that originated from core nodes.



Method for evaluating stability

Shave and Re-embed
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Method for evaluating stability

Shave and Re-embed
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Method for evaluating stability

Shave and Re-embed
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Method for evaluating stability

Shave and Re-embed
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Method for evaluating stability

Shave and Re-embed
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Measure of (peeling) instability

* We compute the Degenerate-Core Pairwise Distribution, D, for each

k-shell: {||f (v) — f(v;)|| Vi,j € Gp}

* This captures the relative geometric relationships among the
embeddings of the nodes

. Embeddings Pairwise Distribution
1N the degenerate core. ] et e e & .

1111111111



Measure of (peeling) instability

* We compute the Degenerate-Core Pairwise Distribution, D, for each

k-shell: {||f (v) — f(v;)|| Vi,j € Gp}

* We define instability at the k™" core as EMD(Dy,, Dy _4)

* How much does the degenerate core’s pairwise distribution change between
the kt" and (k — 1)t shells?

EMD = Wasserstein metric



Peeling instability of real and synthetic
networks

Data Algorithms
Graph n m | kmax | %D | Gp D
Wikipedia 48K | 185K | 49 | 3.1 | 0.526
Facebook 4.0K 88K 115 | 3.9 | 0.898 1. Ho pe
PPII{ - 3-9§ 72% ;i’ gg 0-41061 2. Laplacian Eigenmap
ca-Hep 9.9 2 : .
LastFM 76K | 28K | 20| 0.6 | 0.614 3. Node2Vec (N2V)
AS 23K | 48K | 25| 0.3 | 0.545
ER (p=.002) | 5K | 25K 71 67 | 0.002 4. SDNE |
ER (p=.004) | 5K | 50K | 14 | 87 | 0.004 5. Hyperbolic GCN
BA (m = 5) 5K | 25K 5| 100 | 0.002 6 PCA
BA (m=10) | 5K | 50K | 10| 100 | 0.004 :
BTER (PA) 5K | 25K 1] 15| 0.234
BTER (Arb.) | 48K | 35K | 51| 3.3 | 0.445

For references, see paper at https://dliul8.github.io/publication/stable 18
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We chose graph datasets that have diverse
k-core structures
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Maximum Core Link Entropy
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We chose graph datasets that have diverse
k-core structures
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Maximum Core Link Entropy The degenerate core is well-

The degenerate core is not well-
connected to the outer shells.

connected to the outer shells.
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We chose our algorithms

based on the taxonomy
of graph representation
learning methods

ar1V > cs > arXivi2005.03675

Computer Science > Machine Learning

[Submitted on 7 May 2020 (v1), last revised 12 Apr 2022 (this version, v3)]
Machine Learning on Graphs: A Model and Comprehensive Taxonomy

Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, Kevin Murphy

There has been a surge of recent interest in learning representations for graph-structured data. Graph representation learning
methods have generally fallen into three main categories, based on the availability of labeled data. The first, network
embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsupervised representations of
relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a
regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions
over discrete topologies with arbitrary structure. However, despite the popularity of these areas there has been surprisingly
little work on unifying the three paradigms. Here, we aim to bridge the gap between graph neural networks, network
embedding and graph regularization models. We propose a comprehensive taxonomy of representation learning methods for
graph-structured data, aiming to unify several disparate bodies of work. Specifically, we propose a Graph Encoder Decoder
Model (GRAPHEDM), which generalizes popular algorithms for semi-supervised learning on graphs (e.g. GraphSage, Graph
Convolutional Networks, Graph Attention Networks), and unsupervised learning of graph representations (e.g. DeepWalk,
node2vec, etc) into a single consistent approach. To illustrate the generality of this approach, we fit over thirty existing
methods into this framework. We believe that this unifying view both provides a solid foundation for understanding the
intuition behind these methods, and enables future research in the area.

Figure 3 from https://arxiv.org/abs/2005.03675
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There has been a surge of recent interest in learning representations for graph-structured data. Graph representation learning
methods have generally fallen into three main categories, based on the availability of labeled data. The first, network
embedding (such as shallow graph embedding or graph auto-encoders), focuses on learning unsupervised representations of
relational structure. The second, graph regularized neural networks, leverages graphs to augment neural network losses with a
regularization objective for semi-supervised learning. The third, graph neural networks, aims to learn differentiable functions
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graph-structured data, aiming to unify several disparate bodies of work. Specifically, we propose a Graph Encoder Decoder
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We found three patterns

1. Degenerate-core embeddings are sensitive to the removal of
specific k-shells.
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We found three patterns

1. Degenerate-core embeddings are sensitive to the removal of
specific k-shells.

2. Degenerate-core embeddings for Erdds-Rényi (ER) and Barabasi-
Albert (BA) random graphs are stable.
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We found three patterns

1. Degenerate-core embeddings are sensitive to the removal of
specific k-shells.

2. Degenerate-core embeddings for Erdds-Rényi (ER) and Barabasi-
Albert (BA) random graphs are stable.

3. Asthe periphery is removed, the degenerate-core pairwise
distribution becomes smoother.

25



Pattern 1: Point of instability

A)
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Degenerate-core embeddings are sensitive
to the removal of specific k-shells.
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Pattern 2: Stable ER and BA graphs

Degenerate-core embeddings for Erdds-Renyi (ER) and
Barabasi-Albert (BA) random graphs are stable.

ER BA
Algorithm: HOPEd = 10 Algorithm: HOPE d = 10
60 — k=1 — k=1
— k=3 80 —_— k=2
—_— k=6 —_— k=3
50 — k=9 70 — k=4
— k=12 — k=5
k=14 60 k=5
40
z 20
30
8 g 40
20 | 30
20
10
10
J - J ,
0 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 0.00 0.02 0.04 0.06 0.08 0.10
Pairwise Distance Pairwise Distance

The degenerate core constitutes a large proportion of the entire graph.
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Pattern 3: Smoother pairwise distribution

As the periphery is removed, the degenerate-core
pairwise distribution becomes smoother.

A) Wikipedia B)
: Algorithm: HOPE d = 10 Modality of the Degenerate-Core Pairwise Distribution
— k=1 005 Wikipedia Graph d = 10
6 L\ T ' - PCA
— k=30 B Laplacian Eigenmap
5 — k=40 0.04 B HOPE
‘ My BN Node2Vec
M HGCN
4 U
w o
g ©
o3 ‘U']‘
Q.
£0.02
2.
1 - ”III
0.0 0.2 0.4 056 0.8 U e s
Pairwise Distance - ~ r': N M m s

28
Hartigan’s Dip static: a value close to zero suggests unimodality



Maximum instability of embeddings is correlated
with increases in edge density

The degenerate core
is colored red.
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Increases in subgraph edge density are correlated
with peeling instability

AEMD = ,80 + ,81 ASize + ,82 Aedge density + 183 Aclustering + ,B4 Atran.s*itim'ty

Edge Density Size
+J
G 3
O o 05
&= =
S 5l T 00t
o £
o g 0.5
O | O
2 i V) -1.0
@ O
Sol-MEL_ . f . g 151
n
§, -2.0
“Y PCA LE HOPE n2v SDNE HGCN PCA LE HOPE n2v SDNE HGCN
Embedding Algorithm Embedding Algorithm

Graph size = # of nodes in the subgraph / # of nodes in G. The error bars report 95% confidence intervals.
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For ER graphs embedded with Laplacian Eigenmaps, the best
and worst possible embeddings become less distinguishable as
edge density increases.

THEOREM 3.1. Let G be an FErdos-Rény: graph with
n nodes and edge probability p, and let lg(X) be the
Laplacian Eigenmap loss for a set of embeddings X €
R™*4 ith embedding dimension d. Then, almost surely,
the gap between the best set of embeddings and the worst
set decreases as a function of p, where the ratio is lower-
bounded as:

minxle(X) _ vV (n—1)p—o(1)
mazxla(X) — v (n—1)p+o(1)

See supplementary material for proof: https://dliul8.github.io/files/papers/stable/stable-Supplemental-SDM-23.gdf



https://dliu18.github.io/files/papers/stable/stable-Supplemental-SDM-23.pdf

STABLE: Our algorithm for peeling stability

Augment an existing loss function

Y* = argmin L, (Y W)+ als (Y, W D)

Y ERnxd
Original loss Penalize unstable
function. Embed embeddings of the
similar nodes close degenerate core

to each other.



Define Instability Loss

First-order Proximity

1
p(uiuj) = ——=—
1+e “i™
Larger p implies greater similarity u ﬁ

Li= D |p (wiu)) - p (@)
i,jeD

If i and j are similar in U , then embed them similarly in u.
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STABLE's embeddings preserve AUC on link
prediction

Laplacian Eigenmaps AUC LINE AUC
Graph Base STABLE Base STABLE
Facebook 0.982 + 0.000 0.924 + 0.047 | 0.971 £ 0.001 0.933 + 0.001
LastFM 0.910 £+ 0.001 0.785 £+ 0.001 | 0.914 £+ 0.001 0.895 #+ 0.002
ca-HepTh 0.811 £ 0.008 0.811 £+ 0.008 | 0.893 £+ 0.003 0.890 + 0.001
Protein-Protein 0.770 & 0.016 0.761 4 0.008 0.638 & 0.036 0.660 £ 0.022
Autonomous Systems 0.693 £+ 0.002 0.699 4+ 0.020 | 0.693 + 0.007 0.672 £+ 0.004
Wikipedia 0.614 4+ 0.001 0.615 4+ 0.001 | 0.458 4+ 0.008 0.499 + 0.003
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We found ...

1. Degenerate core embeddings of real-world networks are unstable to periphery
perturbations.

* Significant because real networks are noisy / incomplete and embeddings are
used in downstream tasks.

2. Instability spikes when edge density increases.

3. We present a generic algorithm, STABLE, that augments existing graph
embedding algorithms to produce more stable embeddings.

Project page: https://dliul8.github.io/publication/stable
Code at: https://github.com/dliu18/stable

35
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There are other forms of instability

* How does negative sampling affect the stability of node embeddings?

A common negative sampling method is to sample from a Zipf
distribution with % as the value of the exponent characterizing the
distribution

* This value (%) produces good results, but why?
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The impossibility of low-rank representations for
triangle-rich complex networks

C. Seshadhri®', Aneesh Sharma®, Andrew Stolman?, and Ashish Goel
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The study of complex networks is a significant development in
modern science, and has enriched the social sciences, biology,
physics, and computer science. Models and algorithms for such
networks are pervasive in our society, and impact human behavior
via social networks, search engines, and recommender systems,
to name a few. A widely used algorithmic technique for mod-
eling such complex networks is to construct a low-dimensional
Euclidean embedding of the vertices of the network, where prox-
imity of vertices is interpreted as the likelihood of an edge.
Contrary to the common view, we argue that such graph embed-
dings do not capture salient properties of complex networks. The
two properties we focus on are low degree and large clustering
coefficients, which have been widely established to be empirically
true for real-world networks. We mathematically prove that any
embedding (that uses dot products to measure similarity) that can
successfully create these two properties must have a rank that is
nearly linear in the number of vertices. Among other implications,
this i that popular embeddi such as singu-
lar value decomposition and node2vec fail to capture significant
structural aspects of real-world complex networks. Furthermore,
we empirically study a number of different embedding techniques
based on dot product, and show that they all fail to capture the
triangle structure.

graph ings | graph rep fons | |
ings | low-rank ions | singular value decomposition

Complex networks (or graphs) are a fundamental object of
study in modern science, across domains as diverse as the
social sciences, biology, physics, computer science, and engi-
neering (1-3). Designing good models for these networks is a
crucial area of research, and also affects society at large, given
the role of online social networks in modern human interaction
(4-6). Complex networks are massive, high-dimensional, discrete
objects, and are challenging to work with in a modeling context.
A common method of dea.lmg with thls challenge is to construct
alow-di B b g that tries to capture the
structure of the network (see ref. 7 for a recent survey). For-
mally, we think of the n vertices as vectors v, ¥a, ..., U, € RY,
where d is typically constant (or very slowly growing in n).
The likelihood of an edge (i,7) is proportional to (usually a
nonnegative monotone function in) @ - ; (8, 9). This gives a
graph distribution that the observed network is d to be

To what extent do such low-dimensional embeddings actually
capture the structure of a complex network?

These models are often justified by treating the (few) dimen-
sions as “interests” of individuals, and using similarity of interests
(dot product) to form edges. Contrary to the dominant view, we
argue that low-dimensional embeddings are not good represen-
tations of complex networks. We demonstrate mathematically
and empirically that they lose local structure, one of the hall-
marks of complex networks. This runs counter to the ubiquitous
use of SVD in data analysis. The weaknesses of SVD have been
empirically observed in recommendation tasks (14-16), and our
result provides a mathematical validation of these findings.

Let us define the setting formally. Consider a set of vectors
@, B, ..., U, € R? (denoted by the d x n matrix V) used to rep-
resent the n vertices in a network. Let Gy denote the following
distribution of graphs over the vertex set [n]. For each index
pair 4, j, ind dently msert( i d) edge (i, ) with prob-
ability max(O mm(v, - 4, 1)). (If @ - ; is negative, (1, ) is never
inserted. If %; - 4 > 1, (i, ) is always inserted.) We will refer to
this model as the “embedding” of a graph G, and focus on this
formulation in our theoretical results. This is a standard model in
the literature, and subsumes the classic Stochastic Block Model
(17) and Random Dot Product Model (18, 19). There are alter-
nate models that use different functions of the dot product for

Significance

Our maln message is that the popular method of low-
beddi ly cannot capture important

propemes of real-world :omplex networks. A widely used
for deling these ks is to

(onstruct al | Euclidean embedding of the ver-
tices of the network, where proximity of vertices is inter-
preted as the likelihood of an edge. Contrary to common
wisdom, we argue that such graph embeddings do not
capture salient properties of complex networks. We math-
ematically prove that low-dimensional embeddings cannot
generate graphs with both low average degree and large
clustering coefficients, which have been widely established
to be empirically true for real-world networks This estab—
lishes that popular | i
fail to capture significant structural aspects of real-world

generated from.

The most important method to get such embeddings is the
singular value decomposition (SVD) or other matrix factoriza-
tions of the adjacency matrix (8). Recently, there has also been
an explosion of interest in using methods from deep neural
networks to learn such graph embeddings (9-12) (refer to ref.
7 for more references). Regardless of the specific method, a
key goal in building an embedding is to keep the dimension d
small—while trying to preserve the network structure—as the
embeddings are used in a variety of downstream modeling tasks
such as graph clustering, nearest-neighbor search, and link pre-
diction (13). Yet a fundamental question remains unanswered:

www.pnas.org/cgi/doi/10.1073/pnas. 1911030117
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Classic Graph Structural Features Outperform Factorization-Based Graph
Embedding Methods on Community Labeling

Andrew Stolman* Caleb Levyt

Abstract

Graph representation learning (also called graph embed-
dings) is a popular technique for incorporating network
structure into machine learning models. Unsupervised
graph embedding methods aim to capture graph structure
by learning a low-dimensional vector representation (the
embedding) for each node. Despite the widespread use
of these embeddings for a variety of downstream trans-
ductive machine learning tasks, there is little principled
analysis of the effectiveness of this approach for common
tasks. In this work, we provide an empirical and theoret-
ical analysis for the performance of a class of embeddings
on the common task of pairwise community labeling. This
is a binary variant of the classic community detection
problem, which seeks to build a classifier to determine
whether a pair of vertices participate in a community. In
line with our goal of foundational understanding, we focus
on a popular class of unsupervised embedding techniques
that learn low rank factorizations of a vertex proximity
matrix (this class includes methods like GraRep, Deep-
Walk, node2vec, NetMF). We perform detailed empirical
analysis for community labeling over a variety of real and
synthetic graphs with ground truth. In all cases we stud-
ied, the models trained from embedding features perform
poorly on community labeling. In constrast, a simple lo-
gistic model with classic graph structural features handily
outperforms the embedding models. For a more prin-
cipled understanding, we provide a theoretical analysis
for the (in)effectiveness of these embeddings in capturing
the community structure. We formally prove that popu-
lar low-dimensional factorization methods either cannot
produce community structure, or can only produce “un-
stable” communities. These communities are inherently
unstable under small perturbations. This theoretical re-
sult suggests that even though “good” factorizations ex-

~ *University of California, Santa Cruz. astolmanQucsc.edu
TUniversity of California, Santa Cruz. cclevyQucsc.edu
tUniversity of California, Santa Cruz. sesh@ucsc.edu. Sup-
ported by NSF DMS-2023495, CCF-1740850, CCF-1813165,
CCF-1839317, CCF-1908384, CCF-1909790, and ARO Award
W911NF1910294.
§Google. aneesh@google.com

C. Seshadhrit Aneesh Sharma

ist, they are unlikely to be found by computational meth-
ods.

1 Introduction

Graph structured data is ubiquitous. Capturing
the graph structure is important for a wide variety
of machine learning tasks, such as ranking in so-
cial networks, content recommendations, and clus-
tering [EK10]. A long-studied challenge for build-
ing such machine learned models has been to cap-
ture the graph structure for use in a variety of mod-
eling tasks. Graph representation learning, or low-
dimensional graph embeddings, provide a convenient
solution to this problem. Given a graph G on n
vertices, these methods map each vertex to a vec-
tor in RY, where d < 7, in an unsupervised or a
self-supervised manner (it is also sometimes referred
to as a pre-training procedure). Typically, the goal
of the embedding is to represent graph proximity by
(a function of) the dot product of vectors, thereby
implicitly giving a geometric representation of the
graphm The dot product formulation provides a con-
venient form for building a models (e.g. using deep
learning). Moreover, the geometry of the embedding
allows efficient reverse-index lookups, using nearest
neighbor search [CAS16, Twil8].

The study of low-dimensional graph embed-
dings is an incredibly popular research area, and
has generated many exciting results over the past
few years (see surveys [HYL18, CAEHP*20] and a
Chapter 23 in [Mur21]). Nonetheless, there is lim-
ited principled understanding of the power of low-
dimensional embeddings (a few recent papers address
this topic [SSSG20;, CMST20, Lou20, GJJ20]). Our
work aims to understand the effectiveness of a class
of graph embeddings in preserving graph structure as
it manifests in performance on different downstream

TSince there is a wide range of methods for Graph repre-

sentation learning, we refer the reader to the “Shallow em-
beddings” class in a recent survey [CAEHP*20] for a more
comprehensive overview.

https://arxiv.org/pdf/2201.08481.pdf 37
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https://arxiv.org/pdf/2201.08481.pdf

Find an embedding with geometric properties
instead of spectral ones

* There is a bijection between undirected graphs onn nodesandn — 1
dimensional simplices.

* We can encode graph structure in geometric terms using the simplex
geometry of the Laplacian.

e Some of the most popular graph embedding methods (that rely on
distance minimization) perform well only when clustering coefficient is

high.

L. Torres, K.S. Chan, T. Eliassi-Rad. GLEE: Geometric Laplacian Eigenmap Embedding. g

Journal of Complex Networks, 8(2), cnaa007, 2020. Leo Torres
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what the model learns
—

what you think the

model learns



An old example of what the model learns #
what you think the model learns

Al & Soc (1992) 6: 18-26
© 1992 Springer-Verlag London Limited Al & SOCIETY

What Artificial Experts Can and Cannot Do

Hubert L. Dreyfus and Stuart E. Dreyfus
Department of Philosophy, University of California, Berkeley, USA

Abstract. One’s model of skill determines what one expects from neural network
modelling and how one proposes to go about enhancing expertise. We view skill
acquisition as a progression from acting on the basis of a rough theory of a domain in terms
of facts and rules to being able to respond appropriately to the current situation on the
basis of neuron connections changed by the results of responses to the relevant aspects of
many past situations. Viewing skill acquisition in this ways suggests how one can avoid the
problem currently facing AI of how to train a network to make human-like generali-
zations. In training a network one must progress, as the human learner does, from rules
and facts to wholistic responses. As to future work, from our perspective one should not
try to enhance expertise as in traditional Al by attempting to construct improved theories
of a domain, but rather by improving the learner’s access to the relevant aspects of a
domain so as to facilitate learning from experience.



How did we discover the
emergence of
topological shortcuts?



Al-Bind: Predicting bindings

R
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A. Chatterjee, O. Shafi Ahmed, R. Walters, Z. Shafi, D. Gysi, R. Yu, T. Eliassi-Rad, A-L. Barabasi, G. Menichetti. Al-Bind:
Improving Binding Predictions for Novel Protein Targets and Ligands. Nature Communications, 2023 (forthcoming).

~

~

Concatenate Dense (512) Dense (512) Dense (1) |—r+—
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Three experimental settings

Train Graph

Transductive Test

Semi-inductive Test

Inductive Test

1 OO0

Seen during training
Unseen during training
Training Edge

Test Edge
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Experimental results

Semi-Inductive Test (Drugs + Natural Compounds) Inductive Test (Drugs + Natural Compounds)

Transductive Test (Drugs + Natural Compounds) 10 10

10 AUROC mm AUROC mm AUROC
= ALPRC [ AUPRC = AUPRC
0.8 08 081
8 3
2 2
£ 061 £ 06 g 0]
g - € S
I 5 [+
o =
~ o) 1)
g S % 04
&b 4
g 04 5 04 @
> z >
< <
07 02 02
0.0 - 0.0- 0.0 -
- Configuration Model DeepPurpose VecNet Configuration Model DeepPurpose VecNet Configuration Model DeepPurpose VecNet

Configuration model performs well under transductive and semi-inductive settings.

* A. Chatterjee, O. Shafi Ahmed, R. Walters, Z. Shafi, D. Gysi, R. Yu, T. Eliassi-Rad, A-L. Barabdsi, G. Menichetti. Al-Bind: Improving Binding

Predictions for Novel Protein Targets and Ligands. Nature Communications, 2023 (forthcoming).
45
* K. Huang, et al. DeepPurpose: A Deep Learning Library for Drug—target Interaction Prediction. Bioinformatics (2020).



When do topological shortcuts occur?



We found ...

Topological shortcuts occur when
annotation imbalance prompts the
ML models to leverage degree
information (4+ and — annotations) B
in making binding prediction instead
of learning binding patterns from

the molecular structures.

PDF

v,=2.84

PDF

y,=2.94

nnotations

Nodes 11,807
Proteins 1,391

Ligands 10,416
Positive Edges 5,591

Negative Edges 31,976
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Protein-ligands bipartite network and its
degree distributions

Network consists of only binding (positive) Degree distributions of ligands
annotations for drugs and natural compounds. and proteins are fat-tailed in nature.
10“-5 . @ Protein
] ® Ligand
10t E Ge
_ .
L]
107 e
[, L]
A 10— 4 ‘
[l 3 .
N ]
104 -
]
107 A ¢
L]
lli']'u 1|;]1 1,;]2

Protein

Degree
Ligand
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Network-derived negatives

Shortest-path length distribution capturing
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Network-derived negatives

An example of a protein-ligand pair which is 7 hops apart
and is used as a negative sample in the Al-Bind training set.
Proline SLCI6A10 Serine

Tricarballylic acid ACO2 Ferrous sulfate

0 O

7-Hop Negative Sample
K;=1.3*10° nM
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Man-in-the-Middle
Attacks



Attacking shortest paths

populated area popular destination

Hw‘(- il ‘ : o "J S

(—a

LLLL

Can an adversary force a specific route to be shortest?
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Problem: Force Path Cut

traffic source

popular destination

Given:
e agraph G = (V, E)
* edge weights (distances)

ideal edge
to remove

* edge removal costs

e 3 path p* from node s to node t adversary’s T adv::zaery's
* 3 budget b e

can edges be removed with total cost less than b

such that p* is the shortest path from s to t?

B.A. Miller, Z. Shafi, W. Ruml, Y. Vorobeychik, T. Eliassi-Rad, S. Alfeld. PATHATTACK: Attacking Shortest Paths in Complex
Networks, In Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases (ECML PKDD), September 2021. Post-conference version is at https://arxiv.org/abs/2211.11141) Ben Miller



https://arxiv.org/abs/2211.11141

Metropolitan traffic systems

NS
"l/%’"ﬂ‘
Y

7
i

Fig. 2. A San Francisco experiment using UCSF Medical Center at Mission
Fig. 1. A Boston experiment using Brigham and Women’s hospital as the ~ Bay as the target destination, source was randomly selected. LENGTH is the

target destination, source was randomly selected. LENGTH is the weight type weight type and wiDTH is the cost type.
and wIDTH is the cost type.

Fig. 4. A Los Angeles experiment using LA Downtown Medical Center as
the target destination, source was randomly selected. T 1ME is the weight type
and LANES is the cost type.

Fig. 3. A Chicago experiment using Northwestern hospital as the target
destination, sources was randomly selected. LENGTH is the weight type and
UNIFORM is the cost type.

S. La Fontaine, N. Muralidhar, M. Clifford, T. Eliassi-Rad, C. Nita-Rotaru. Alternative Route- Based Attacks in Metropolitan Traffic Systems, In The
8th International Workshop on Safety and Security of Intelligent Vehicles (co-located with DSN2022: The 52nd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks), Baltimore, MD, June 2022. https://cnitarot.github.io/papers/arb ssiv2022.pdf
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Questions

* Can an adversary efficiently find an optimal attack for a target
path, edge, or node?

* Can approximate solutions be found more efficiently than
optimal ones?

* |s there an observable tradeoff between time and the quality
of the solution?



Theorem: Force path cut is APX-hard

* The 3-Terminal Cut problem is reducible to Force Path Cut

* 3-Terminal Cut: Given a graph and three terminal nodes,

what is the minimum-cost set of edges whose removal
disconnects the terminals?

* 3-Terminal Cut cannot be approximated

in polynomial time within a factor of 1.2
(unless P=NP)

E. Dahlhaus et al., “The complexity of multiterminal cuts,” SIAM J. Computing, vol. 23, no. 4, 1994



Force path cut as set cover Edges (sets)

5, VZ): {pl}
S, V3): {IDZ}
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Vo, V7): {p1}
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cover an element & cut a path’s edge
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Approximation algorithms for set cover

Greedy Method Linear Programming Method
 Start with no sets selected * Formulate set cover as an integer
* While not all elements are covered program
* Select the set that contains the * Relax integer constraints into reals
most uncovered elements « Solve the linear program

* Obtain integer solution by randomized
rounding

Both algorithms guarantee a solution at most a logarithmic factor larger than optimal.*

*V. V. Vazirani, Approximation Algorithms, Springer, 2003




PATHATTACK algorithm

Optimizer Oracle

proposed cut
new shortest path

paths to cut:

(5, Va, V7, t) Add (s, v3, v, t) to
(s, vs, vy, t) paths to cut
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Results: Unweighted Graphs

Cost Reduction Ratio from Baseline

1.1
1

0.9
0.8

0.7
0.6

0.5

0.4

0.3

1

Synthetic Networks ® Real Networks Algorithms
PN o 1 . {> Baseline
S 09 m e [ ] PATHATTACK-Greedy
e 08 () PATHATTACK-LP
S 07
o 0.6 Networks
§ 0.5 @ ErdSs—Rényi
S ' @ Barabasi—Albert
-5 =04 ® Kronecker
) 3 Lattice
(O]
L X 03 Complete
*g Wikispeedia
10 100 1000 10k O 1 10 100 1000 10k Autonomous System
Wall Clock Time (s) Wall Clock Time (s) @ Pennsylvania Road
e Both approximation algorithms yield similar cost
e Larger running time difference in grid-like networks
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Results: Weighted Graphs

Cost Reduction Ratio from Baseline

Real Weighted Networks
on “ o o

0.9 He
0.8
0.7

0.6
0.5

1.1

—

0.4

0.01 1 100 10k
Wall Clock Time (s)

Algorithms

<> Baseline

O

PATHATTACK-Greedy
PATHATTACK-LP

Networks

Central Chilean Power Grid
LBL Network Traffic
Northeast US Road
DBLP Coauthorship

e Use natural weights as distances (invert if similarities)

e Again, smaller improvements for lattice-like graphs
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ML-based optimization (work in progress)

e Learn a network representation
 Node embedding is not as effective as edge or path embedding in this case
* The instability issues persist
* Need constraint generation
 Dijkstra’s algorithm
e A* (heuristic defined by embeddings)

* Neural algorithmic framework (needs tailoring)

* Replace optimization module with either a SL model to predict which edges
to remove or a RL model to learn an optimal policy of removing edges

e As always, the RL model is harder to learn (has a big state space, needs lots of
training, etc)



We found ...

1. Can we solve Force Path Cut in polynomial time? X No, it’s APX-hard

2. Can we find an approximate solution more efficiently than an exact
one? V Yes, and the linear programming method found the optimal
solution in over 98% of our experiments

3. Is there a tradeoff between running time and performance among
approaches? V Yes, empirically (improvement for additional time is
reduced in lattice-like graphs)



Targeted Diffusion



Diffusion processes

t =0 t — o0
More
infected
Fewer
infected
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How can an attacker manipulate the

structure of a graph to increase or
decrease the impact of diffusion?



Targeted diffusion

Targeted

subgraph
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Targeted diffusion
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Targeted diffusion in cybersecurity

Computers
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Targeted diffusion

A malicious actor, E, can modify the graph
structure G = (V, E) to achieve two goals

1. Maximum the diffusion spread to
a target subgraph S

2. Minimize the impact on the remaining
graph G\S

o

Sixie Yu

S.Yu, L. Torres, S. Alfeld, T. Eliassi-Rad, Y. Vorobeychik. POTION: Optimizing Graph Structure for Targeted Diffusion.

In Proceedings of the 2021 SIAM Data Mining Conference (SDM), May 2021, pp. 154-162.

Leo Torres
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Setup

¢ = (V,E) is a connected, weighted or unweighted, undirected graph
with no self-loops

*n = |V| =number of nodesin G
* A = adjacency matrix of G

* Eigenvalues of A: ,(4) = -+ = 1,,(4)



Problem definition

R targets the subgraph §

* A¢ = adjacency matrix of S
e letS' = G\S

e Attacker modifies the structure of G, which results in
A=A+A4=A;+ Ay



Attacker’s objectives

1. If the virus startsin S, it should create an epidemic.
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O ° e ® o
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Attacker’s objectives

2. If the virus starts in G\S, it should reach S.
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Attacker’s objectives

3. Limit the harm to G/S.
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POTION formulation

path capacity eigenvector normalized cut
inS centrality of S between S and §’

~ L =

max «@i1Ai1(As)+ a20(S) + a3¢(S)
A

—~

s.t. Aepz{/i

- -

A=A" A;=0Vi=1,...,n
where the relative importance of the terms is balanced by

the nonnegative constants a, oo, a3, and the restrictions

A=AT and Am = 0,V:=1,...,n ensure that Ais a
valid adjacency matrix.

Ni(A) — Ni(A)| <€, i=1,... ,n,}

77



POTION-ALG

Rayleigh quotient + the Power method
Intuitively, argmax approx. a sequence of diff. operations

A differentiable function
involving the Laplacian matrix

[ ~ |
max «@i1Ai1(As)+ a20(S) + a3o(S)
A

s.t. Aepz{A

Ni(A) — Ni(A)]|[< e, 1= 1,...,n,}

the nonnegatlve constants a1, o, vz, an
A=AT andAm—O Vi=1,.

., ensure t Ais a
valid adjacency matrix.

Pseudospectra theory: equivalent to compute \Al(ﬁ — A),

|
Power method




POTION-ALG optimizes W's the objective function

* Projected gradient ascent has two major issues:

1. The objective function involves terms
that do not have an explicit functional

representation in the decision variables

2. The projection step is quite expensive,

as it involves projecting into a spectral
norm ball, which entails an expensive
SVD operation

* We leverage Rayleigh quotients and
pseudospectrum theory to overcome these
hurdles and have a differentiable function of
the adjacency matrix

Algorithm 1 POTION-ALG

1:
2:

Ll

OB NST

10:
11:
12:
13:
14:

Input: A, e {n:}iz1 > {n:}i=1 is a schedule of step sizes
Initialize: 2 =1 A1 A, B, =0 p B;: the amount of
budget used just before step 7
while True do )

Set A; to the gradient of a1 A\1(As)+a20(S)+az¢(S)
w.r.t. to A;

Set the diagonal entries of A; to zeros

if ||[A;]| =0 then > a local optimum is found
return A,

end if

if Bi+ ||772-A~i||2 < € then > one-step look ahead
A1 = Ai+n:A, Bit1 = Bi+||niAi|2, 1 =1+1

else
return Ai

end if

end while
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POTION effectively achieves targeted diffusion
in G¢ without affecting G
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POTION is applicable to various epidemic
processes

SIS
SIR
SEIR

Random walk based spreading dynamics



Necessary condition for successtul attacks in the
form of a lower bound on the attacker’s budget €

ﬁ‘ HEOREM 5.1. Given an instance TargetDiff (S, G, 6)\
I[(Gs) is estimated by [(Gs) = Y ies L —0/(Bd;).
Suppose we have an upper bound |[(C3) —I(Gs)| <7,

the degrees of modes in S are increased, ti.e., d; >
d; for i € S, and 6/B < dpmin. In order to have

I[(Gs) — I(Gs) > 27, the budget € must satisfy:

S| (Zzes di  (Xies di)2

1/2
5.12 > |
K( R A T BE ) /

1(Gs) = Impact on Gg
B = attack probability over a communication
6 = healing probability once infected

To have epidemic spread: A > %
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Certified robustness results
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 Dashed lines mark the lower bounds from Eq. (5.12)

* Solid lines represent infectious ratios within target subgraphs.
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We found ...

 POTION: a model for targeted diffusion attack by optimizing graph
structures

* POTION-ALG: an efficient algorithm for solving POTION by leveraging
Rayleigh quotient and pseudospectra theory

* Provided a condition for certifying that a targeted subgraph is immune
to such attacks

 Demonstrated effectiveness of POTION and POTION-ALG on synthetic
and real-world networks
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Three pitfalls of using ML-based optimization

Instability of embeddings
Emergence of topological shortcuts

Adversarial ML
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