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Deblending

How should we handle overlapping objects, while not shred-
ding NGC galaxies into multiple pieces?

Galaxy Fluxes

How should we measure galaxies’ fluxes?

Coloured Images

How should we make coloured pictures, and should we bother?
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What is the Sloan Digital Sky Survey?

•A telescope (with a 2.5m diameter primary mirror) at
Apache Point, New Mexico

•A camera containing

– 30 2048× 2048 photometric CCDs;
u g r i z filters

– 24 2048× 400 astrometric and focus CCDs

–Lots of Electronics, Quartz, Liquid Nitrogen, and Vac-
uum

•Lots of software
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The problem of deblending stars is well defined; the image
is made up of a set of δ-functions convolved with a known
PSF, φ:

I = S +
∑
r

Frδ(x− xr)⊗ φ + n

(I : observed intensity; S : sky level; δ: delta-function;
Fr: flux in rth star; φ : PSF; n : noise)

All that we have to do is solve a minimisation problem in
3r unknowns.

Writing efficient, robust, accurate code may not be trivial.
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Something that looks like the superposition of three galax-
ies may well be just that, but without extra information (e.g.
redshifts) we cannot be sure that it isn’t simply a messy
blobby irregular galaxy that happens to have three peaks —
or even a large elliptical galaxy that’s being viewed through
a particularily perverse dust cloud.
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Let us consider a simple 1-dimensional problem, a ‘star’
and two ‘galaxies’.
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For NGC galaxies, the fractions of various outcomes were:

very good 210 49.4%
good 146 34.4%
fair 50 11.8%
bad 7 1.6%
shredded 12 2.8%
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This algorithm is simple but unfortunately the real sky isn’t.

Complexities include:

•SDSS takes data in 5 bands, and they need to be handled
consistently

•The algorithm is based on peaks. This is tricky:

–Finding close pairs of peaks

–Rejecting non-significant peaks

–Matching peaks in different bands

•Star/Galaxy separation

•Moving objects

•Degenerate templates

•Multi-peaked template
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Stellar Photometry

Measuring an isolated star’s brightness is reasonably easy;
we can write down a model and find the ML estimate of the
total flux:

I = S + Fδ ⊗ φ + n

(I : observed intensity; S : sky level; δ: delta-function;
F : flux in star; φ : PSF; n : noise)

As an alternative, we can measure the total flux contained
within some aperture of radius R; as R is increased the de-
tails of the PSF matter less, but the noise in the measure-
ments increase, and so does the importance of accurate an
measurement of the sky level, S.
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Sky Determination

What is meant by the sky level? It’s the mean value of the
contribution of everything that we haven’t explicitly allowed
for: atmospheric emission, zodiacal dust, CCD dark current,
and unresolved sources.

It isn’t clear how to measure this, and simply making a
robust estimate of the mode or median of the intensity dis-
tribution is certainly not correct — although it may be good
enough.
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Unfortunately, Galaxies belong to no such 1-parameter fam-
ily; the simplest even plausibly appropriate model would be:

I = S + F [fDD(IeD, reD, abD, αD) +

(1− fD)E(IeE, reE, abE, αE)]⊗ φ + n

where D and E are a pure deVaucouleurs bulge and a pure
exponential disk respectively.



Galaxy Photometry

Unfortunately, Galaxies belong to no such 1-parameter fam-
ily; the simplest even plausibly appropriate model would be:

I = S + F [fDD(IeD, reD, abD, αD) +

(1− fD)E(IeE, reE, abE, αE)]⊗ φ + n

where D and E are a pure deVaucouleurs bulge and a pure
exponential disk respectively.

Rather than face this difficulty, astronomers have tradition-
ally defined a number of less-efficient measures that include
some well-understood fraction of the total flux.
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Isophotal flux

The flux enclosed within a aperture defined by I > I0.
An aperture measure; dependent on (1 + z)4 dimming and
(weakly) on seeing

Kron flux

The flux enclosed within a aperture of radius αrK where

rK ≡
∫
∈A rI 2πr dr∫
∈A I 2πr dr

for some choice of A

An aperture measure; dependent on seeing and A (the
noise diverges as A →∞)

Petrosian flux

The flux enclosed within a aperture of radius f2rP where

f1 =

∫ RP
0 I 2πr dr

πRP
2

An aperture measure; weakly dependent on seeing.



But are Model Fluxes Totally Impractical?



But are Model Fluxes Totally Impractical?

I claimed that the simplest plausible model was:

I = S + F [fDD(IeD, reD, abD, αD) +

(1− fD)E(IeE, reE, abE, αE)]⊗ φ + n

But what if I ignore this claim in the interest of computa-
tional efficiency?



But are Model Fluxes Totally Impractical?

I claimed that the simplest plausible model was:

I = S + F [fDD(IeD, reD, abD, αD) +

(1− fD)E(IeE, reE, abE, αE)]⊗ φ + n

But what if I ignore this claim in the interest of computa-
tional efficiency?

The entire per-band processing for an object in the SDSS
takes about 15ms on a 1GHz processor.



But are Model Fluxes Totally Impractical?

I claimed that the simplest plausible model was:

I = S + F [fDD(IeD, reD, abD, αD) +

(1− fD)E(IeE, reE, abE, αE)]⊗ φ + n

But what if I ignore this claim in the interest of computa-
tional efficiency?

The entire per-band processing for an object in the SDSS
takes about 15ms on a 1GHz processor.

So let us consider a one-component model:

I = S + F [M(IeM , reM , abM , αM)]⊗ φ + n

M ≡ D (deVaucouleurs profile: I ∼ exp(−r−1/4)) or E (ex-
ponential: I ∼ exp(−r))
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Solving for the model parameters is a three-dimensional
non-linear optimisation problem. Each function evaluation
requires

• building a model galaxy;

• convolving with the PSF at that point in the frame;

• and finally determining the value of χ2 for that model by
summing over all the pixels in the object.

Fitting these models is a straightforward χ2 minimisation
problem, which I solve using the standard Levenberg-Marquardt
algorithm.

A näıve implementation is impractically slow; but tricks can
be invented (basically, pre-compute everything).

Using a continuum method for data given on a grid may
not be a smart idea. I’ll take suggestions from the audience.



Model Magnitudes

Once I know (I0, re, a/b) for a model of a given class (ex-
ponential or deVaucouleurs) I can easily calculate the total
flux.



Model Magnitudes

Once I know (I0, re, a/b) for a model of a given class (ex-
ponential or deVaucouleurs) I can easily calculate the total
flux.

The meaning of the ‘total flux’ isn’t entirely clear; for de-
Vaucouleurs profiles ten percent of the flux can be so far
out that the enclosed signal-to-noise is less than unity.



Model Magnitudes

Once I know (I0, re, a/b) for a model of a given class (ex-
ponential or deVaucouleurs) I can easily calculate the total
flux.

The meaning of the ‘total flux’ isn’t entirely clear; for de-
Vaucouleurs profiles ten percent of the flux can be so far
out that the enclosed signal-to-noise is less than unity.

If the object is a star I’d like the ‘model’ magnitude to equal
that measured in any other way, which implies that I need
an aperture correction.



Model Magnitudes

Once I know (I0, re, a/b) for a model of a given class (ex-
ponential or deVaucouleurs) I can easily calculate the total
flux.

The meaning of the ‘total flux’ isn’t entirely clear; for de-
Vaucouleurs profiles ten percent of the flux can be so far
out that the enclosed signal-to-noise is less than unity.

If the object is a star I’d like the ‘model’ magnitude to equal
that measured in any other way, which implies that I need
an aperture correction.

I calculate this by fitting our galaxy models to the known
(KL) PSF at various places across the field, and estimating
an appropriate aperture correction. These are (now) small
(1.016 +−0.007).
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But do Galaxies really have pure deVaucouleurs or
Exponential profiles?

So fit a linear combination of the best (non-linear) deV and
exp models; I refer to this as a composite-model (cmodel)
magnitude:

Fcmodel = fdeV FdeV + (1− fexp)Fexp



The comparison between Petrosian and Composite-Model
magnitudes; red objects have u− r < 2.2 (Strateva et al.).



The comparison between Petrosian and Model magnitudes;
red objects have u− r < 2.2 (Strateva et al.).
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Star-Galaxy Separation
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Galaxies with r < 18; values shown are for i band.

‘fracdev’ is what I have called fD; n is the Sersic index.

(Plot courtesy of Michael Blanton)
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Preparing RGB Images from CCD Data

I want a mapping to the range [0, 1] for each of three colors
red (R), green (G), and blue (B).

The usual algorithm is:

R = f(r); G = f(g); B = f(b)

where

f(x) =

{
0, x < m;
F (x−m)/F (M −m) m ≤ x ≤ M ;
1 M < x.

and m is the minimum value to display, and M the maximum.

Note that there is no unique mapping from (r/g, i/g) to
(R/G, I/G).
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An (preferable) alternative is to define I ≡ (r +g + b)/3, and
set

R = r ∗ f(I)/I

G = g ∗ f(I)/I

B = b ∗ f(I)/I

Note that now r/g ≡ R/G and i/g ≡ I/G.

Additionally, it is possible to choose a more flexible func-
tional form for F ; I like to take f(x) = asinh(αQ(x −m))/Q,
which allows the user to first set Q → 0 and choose the linear
stretch α, and then adjust Q to bring out brighter features.
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Conclusions

Deblending

A peak-based deblender with a symmetry ansatz and various
tricks seems to perform well for a large range of astronom-
ical objects

Galaxy Fluxes

It is possible to use model fits that more-or-less reproduce
Petrosian magnitudes for bright galaxies, and are efficient
at faint magnitudes.

Coloured Images

There is way to uniquely map flux ratios to perceived colours;
this is valuable.



The End
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Petrosian v. Total Fluxes
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Petrosian v. Total Fluxes

f1 ≡
∫ RP
0 I 2πr dr

πRP
2 ; FP ≡

∫ f2RP
0 I 2πr dr.

I actually use deV models truncated 8re; this reduces the
flux by 0.080 magnitudes (I truncate the exp models at 4re

which reduces the flux by 0.018 magnitudes)
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Speeding up the LM Function Evaluation

•Rather that work directly in pixel space, I fit the models
to the extracted ‘cell profile’.

•The models are symmetrical, so I only need consider the
average of pairs of cells placed symmetrically about the
object’s centre.

• I model the PSF as a sum of Gaussians and a residual
table R:

PSF = αN(0, σ2) + β
(
N(0, τ2) + bN(0, (cτ)2)

)
+ R

where b and c are fixed (I adopt 0.1 and 3 respectively).



• I precompute galaxy models of each type for a range of
(re, a/b, φ), convolve each with a set of PSFs of the forms
N(0, σ2) and N(0, τ2) + bN(0, (cτ)2) for a set of values of σ
and τ , extract their profiles, and save the results to disk.



• I precompute galaxy models of each type for a range of
(re, a/b, φ), convolve each with a set of PSFs of the forms
N(0, σ2) and N(0, τ2) + bN(0, (cτ)2) for a set of values of σ
and τ , extract their profiles, and save the results to disk.

• I save the pre-extracted model profiles as Fourier series in
which only the cos(2rθ) terms are non-zero.

With this Fourier expansion in hand, the profiles are a
smooth function of φ, and I can therefore use standard
efficient techniques to solve for φ given (re, a/b); this es-
sentially reduces the dimensionality of the non-linear opti-
misation from three to two.



PSF representations

I represent the PSF at a point with a KL expansion (Lupton
et al.; ADASS X). I need the best representation of that
KL PSF as a sum of Gaussians, where the σ and τ are
restricted to the values present in the pre-computed model
tables: PSFKL = PSFtable + R.



PSF representations

I represent the PSF at a point with a KL expansion (Lupton
et al.; ADASS X). I need the best representation of that
KL PSF as a sum of Gaussians, where the σ and τ are
restricted to the values present in the pre-computed model
tables: PSFKL = PSFtable + R.

We may then write

model = model0 ⊗ PSFKL

≈ model0 ⊗ PSFtable + R

where model0 is the model galaxy above the atmosphere and
model is that model after convolution with the PSF.

The fit is regularised with a term dependent on the differ-
ence between the width of the true (actually KL) PSF, and
the best represention in terms of sums of Gaussians


