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Introduction
What is the SDSS?
Deblending

How should we handle overlapping objects, while not shred-
ding NGC galaxies into multiple pieces?

Galaxy Fluxes

How should we measure galaxies’ fluxes?

Coloured Images

How should we make coloured pictures, and should we bother?
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What is the Sloan Digital Sky Survey?

e A telescope (with a 2.5m diameter primary mirror) at
Apache Point, New Mexico

e A camera containing

— 30 2048 x 2048 photometric CCDs;
ugrizfilters

— 24 2048 x 400 astrometric and focus CCDs

— Lots of Electronics, Quartz, Liquid Nitrogen, and Vac-
uum

e LOts of software
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The problem of deblending stars is well defined; the image
IS made up of a set of o-functions convolved with a known
PSF, ¢:
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All that we have to do is solve a minimisation problem in
3r unknowns.



The problem of deblending stars is well defined; the image
IS made up of a set of o-functions convolved with a known

PSF, ¢:

I=84> Fé(x—xr)®¢+n
r

(I : observed intensity; S : sky level; §: delta-function;
F: flux in vt star; ¢ : PSF; n : noise)

All that we have to do is solve a minimisation problem in
3r unknowns.

Writing efficient, robust, accurate code may not be trivial.
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" Galaxies are. harder.

Something that looks like the superposition of three galax—
ies may well be just that, but without extra information (e.g.
redshifts) we.cannot be sure that it isn't simply a messy

~ blobby irregular galaxy that happens to have three peaks —
or even a-large elliptical galaxy that's being viewed through‘
e B partlcularlly perverse dust cloud. -
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A 1-D Toy Problem

Let us consider a simple 1-dimensional problem, a ‘star’
and two ‘galaxies’.
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e Find all the peaks in the image I. Each is associated with
a ‘child’ object.
e Define a ‘template’ T, from each peak. This is the image

formed by comparing pairs of pixels symmetrically placed

about the peak of the rth object, and replacing both by
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e Assume that we can write I = ) w1, and solve for the
weights in a least-squares sense.

e For each pixel with intensity I;, share the flux between the

children: e
Cri T

A > wedy

I;
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Have you told us everything?



Have you told us everything?

For NGC galaxies, the fractions of various outcomes were:
very good 210 49.4%

good 146 34.4%
fair 50 11.8%
bad 7 1.6%

shredded 12 2.8%
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T his algorithm is simple but unfortunately the real sky isn't.
Complexities include:

e SDSS takes data in 5 bands, and they need to be handled
consistently

e [ he algorithm is based on peaks. This is tricky:
— Finding close pairs of peaks
— Rejecting non-significant peaks
— Matching peaks in different bands

e Star/Galaxy separation

e Moving objects

e Degenerate templates

e Multi-peaked template
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How should we measure Objects’
Brighthesses?

Stellar Photometry

Measuring an isolated star’s brightness is reasonably easy;

we can write down a model and find the ML estimate of the
total flux:

I=S+F5Q@¢+n

(I : observed intensity; S : sky level; §: delta-function;
F: flux in star; ¢ : PSF; n : noise)

As an alternative, we can measure the total flux contained
within some aperture of radius R; as R is increased the de-
tails of the PSF matter less, but the noise in the measure-

ments increase, and so does the importance of accurate an
measurement of the sky level, S.



Sky Determination

What is meant by the sky level? It's the mean value of the
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Sky Determination

What is meant by the sky level? It's the mean value of the
contribution of everything that we haven't explicitly allowed
for: atmospheric emission, zodiacal dust, CCD dark current,
and unresolved sources.

It isn’'t clear how to measure this, and simply making a
robust estimate of the mode or median of the intensity dis-
tribution is certainly not correct — although it may be good
enough.



Galaxy Photometry

Unfortunately, Galaxies belong to no such 1-parameter fam-
Iy: the simplest even plausibly appropriate model would be:

I =S+ F[fpD(Iep,rep,abp,ap) +
(1 — fD)E(IeE, reg,abp, OéE)] RO+ n

where D and E are a pure deVaucouleurs bulge and a pure
exponential disk respectively.



Galaxy Photometry

Unfortunately, Galaxies belong to no such 1-parameter fam-
Iy: the simplest even plausibly appropriate model would be:

I =S+ F[fpD(Iep,rep,abp,ap) +
(1 — fD)E(IeE, reg,abp, OéE)] RO+ n

where D and E are a pure deVaucouleurs bulge and a pure
exponential disk respectively.

Rather than face this difficulty, astronomers have tradition-
ally defined a number of less-efficient measures that include
some well-understood fraction of the total flux.
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Isophotal flux

The flux enclosed within a aperture defined by I > Ij.

An aperture measure; dependent on (1 + z)* dimming and
(weakly) on seeing

Kron flux
T he flux enclosed within a aperture of radius aryg where
. feA rl 27r dr

for some choice of A

'K = feAIQW'rdr
An aperture measure; dependent on seeing and A (the
noise diverges as A — oo)

Petrosian flux

T he flux enclosed within a aperture of radius forp where

£ = fORPIQT('Td?“
1 — 7TRP2

An aperture measure; weakly dependent on seeing.
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But are Model Fluxes Totally Impractical?

I claimed that the simplest plausible model was:
I =S+ F[fpD(lep,rep,abp,ap) +
(1 - fp)E(leg,reg,abg, ap)| @ ¢ +n

But what if I ignore this claim in the interest of computa-
tional efficiency?

The entire per-band processing for an object in the SDSS
takes about 15ms on a 1GHz processor.

So let us consider a one-component model:
I =S+ F[M(Ieps,reps,abyr,apng)] @ ¢ +n

M = D (deVaucouleurs profile: I ~ ea:p(—r—l/4)) or £ (ex-
ponential: I ~ exp(—r))
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Solving for the model parameters is a three-dimensional
non-linear optimisation problem. Each function evaluation
requires

e building a model galaxy;

e convolving with the PSF at that point in the frame;

e and finally determining the value of X2 for that model by
summing over all the pixels in the object.

Fitting these models is a straightforward X2 minimisation
problem, which I solve using the standard Levenberg-Marquardt
algorithm.

A naive implementation is impractically slow:; but tricks can
be invented (basically, pre-compute everything).

Using a continuum method for data given on a grid may
not be a smart idea. I'll take suggestions from the audience.
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Model Magnitudes

Once I know (Ip,re,a/b) for a model of a given class (ex-
ponential or deVaucouleurs) I can easily calculate the total
flux.

The meaning of the ‘total flux’ isn't entirely clear; for de-
Vaucouleurs profiles ten percent of the flux can be so far
out that the enclosed signal-to-noise is less than unity.

If the object is a starI'd like the ‘model’ magnitude to equal
that measured in any other way, which implies that I need
an aperture correction.

I calculate this by fitting our galaxy models to the known
(KL) PSF at various places across the field, and estimating
an appropriate aperture correction. These are (now) small
(1.016 + —0.007).
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red objects have u — r < 2.2 (Strateva et al.).
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But do Galaxies really have pure deVaucouleurs or
Exponential profiles?

...but I have less than 15ms available



But do Galaxies really have pure deVaucouleurs or
Exponential profiles?

So fit a linear combination of the best (non-linear) deV and
exp models; I refer to this as a composite-model (cmodel)
magnitude:

Femodel = fdevFdev + (1 — fexp) Fexp



T he comparison between Petrosian and Composite-Model
magnitudes; red objects have u —r < 2.2 (Strateva et al.).



T he comparison between Petrosian and Model magnitudes;
red objects have u —r < 2.2 (Strateva et al.).
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racdev[3]
0.6 08 1.0

1 2 3 4 5 060 02 04 06 08 1.
n[3] fracdev|3]

Galaxies with r < 18; values shown are for ¢ band.
‘fracdev’ is what I have called fp,; n is the Sersic index.

(Plot courtesy of Michael Blanton)
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Preparing RGB Images from CCD Data
I want a mapping to the range |0, 1] for each of three colors
red (R), green (G), and blue (B).
T he usual algorithm is:

R=f(r); G = f(g); B = f(b)

where

0, r<m,
f(a:):{F(a:—m)/F(M—m) m<x < M;
1 M < x.
andm Is the minimum value to display, and M the maximum.

Note that there is no unique mapping from (r/g,i/g) to
(R/G,1/G).



An (preferable) alternative is to define I = (r+g+b)/3, and
set

R=rxf(I)/I

G=gx*f(I)/I
B =bxf(I)/I
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An (preferable) alternative is to define I = (r+g+b)/3, and
set

R=rxf(I)/I
G=gx*f(I)/1
B =bxf(I)/I

Note that now r/g = R/G and i/g = 1/G.

Additionally, it is possible to choose a more flexible func-
tional form for F; I like to take f(x) = asinh(aQ(x —m))/Q,
which allows the user to first set () — 0 and choose the linear
stretch «, and then adjust () to bring out brighter features.
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Let us apply this X-Ray data from Chandra
R: 0.3—1.55 keV; G: 1.55—-3.34 keV, B: 3.34—10.0 keV

M/S
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Conclusions

Deblending

A peak-based deblender with a symmetry ansatz and various
tricks seems to perform well for a large range of astronom-
ical objects

Galaxy Fluxes

It is possible to use model fits that more-or-less reproduce
Petrosian magnitudes for bright galaxies, and are efficient
at faint magnitudes.

Coloured Images

T here is way to uniquely map flux ratios to perceived colours;
this is valuable.
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What does the Hubble Deep Field Look like iIn
Colour?

.- "
HST WFPC2

Hubble Deep Field

ST Scl OPO January 15, 1996 R. Williams and the HDF Team (ST Scl) and NASA




What does the Hubble Deep Field Look like iIn
Colour?

.
‘ : -

H HST WFPC2 data taken and combined by R. E. Williams, the HDF team (STScl), and NASA

Hubble Deep Field color representation by N. Wherry, M. R. Blanton, D. W. Hogg (NYU), and R. H. Lupton (Princeton)
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Petrosian v. Total Fluxes
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Petrosian v. Total Fluxes

Rp
. I 27rdr _ rfoR

I actually use deVV models truncated 8r.; this reduces the
flux by 0.080 magnitudes (I truncate the exp models at 4re
which reduces the flux by 0.018 magnitudes)
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Speeding up the LM Function Evaluation

e Rather that work directly in pixel space, I fit the models
to the extracted ‘cell profile’.

e [ he models are symmetrical, so I only need consider the
average of pairs of cells placed symmetrically about the
object’s centre.

o] model the PSF as a sum of Gaussians and a residual
table R:

PSF = aN(0,02) + 3 (N(o, 72) 4+ bN (0, (CT)2>) TR

where b and c are fixed (I adopt 0.1 and 3 respectively).



o [ precompute galaxy models of each type for a range of
(re,a/b,®), convolve each with a set of PSFs of the forms
N(0,02) and N(0,72) + bN (0, (c7)?) for a set of values of o
and T, extract their profiles, and save the results to disk.



o [ precompute galaxy models of each type for a range of
(re,a/b,®), convolve each with a set of PSFs of the forms
N(0,02) and N(0,72) + bN (0, (c7)?) for a set of values of o
and T, extract their profiles, and save the results to disk.

e [ save the pre-extracted model profiles as Fourier series in
which only the cos(2rf) terms are non-zero.
With this Fourier expansion in hand, the profiles are a
smooth function of ¢, and I can therefore use standard
efficient techniques to solve for ¢ given (re,a/b); this es-
sentially reduces the dimensionality of the non-linear opti-
misation from three to two.



PSF representations

I represent the PSF at a point with a KL expansion (Lupton
et al.;, ADASS X). I need the best representation of that
KL PSF as a sum of Gaussians, where the o and T are

restricted to the values present in the pre-computed model
tables: PSFKL — PSFtab/e—l— R.



PSF representations

I represent the PSF at a point with a KL expansion (Lupton
et al.; ADASS X). I need the best representation of that
KL PSF as a sum of Gaussians, where the o and T are
restricted to the values present in the pre-computed model
tables: PSFKL — PSFtab/e"‘ R.

We may then write

model = modely ® PSFg,
- mode/o X PSFtab/e + R

where modely is the model galaxy above the atmosphere and
model is that model after convolution with the PSF.

T he fit is reqgularised with a term dependent on the differ-
ence between the width of the true (actually KL) PSF, and
the best represention in terms of sums of Gaussians



