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Part I:
Phase Diversity-Based Blind 

Deconvolution

Joint work with 
Curt Vogel and 

Robert Plemmons
SPIE, 1998
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Conventional Phase-Diversity Imaging

Unknown 
object

Unknown 
turbulence

Beam splitter

Focal-plane 
image (d)

Diversity image (d’)

Known 
defocus
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Model for Image Formation

• f = unknown object
• s = unknown point spread function
• η = unknown noise
• p = aperture function (pre-determined by the 

telescope’s primary mirror)
• φ = phase characterizing the medium through 

which light travels
• F = Fourier transform operator

η+∗= fsd
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Object and Phase Reconstruction Model

• Measurements:
ηφ +∗= fsd ][

'][' ηθφ +∗+= fsd
θ: known phase perturbation

• Model: 
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(Vogel, C. and Plemmons ‘98; Gonsalves ’82) 

quadratic A priori statistics
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Numerical Methods

1. Reduce the objective J[φ,f] to J’[φ]=J[φ,f[φ]]
-- Possible because f is quadratic

2. Derive gradient and Hessian*vector for J
-- Involve FFTs and inverse FFTs

3. Minimize using: 
1. Finite difference Newton (quadratic convergence, need 

inversion of Hessian; needs good initial guess)
2. Gauss-Newton + Trust Region + CG (for nonlinear least 

squares, robust; linear convergence, small #iterations)
3. BFGS (needs only gradients; superlinear convergence; 

fast per step; often most efficient)
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SimulationsPhase and its 
corresponding PSF

Phase diversity and 
its corresponding 

PSF
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Reconstructed Phase and Object
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Performance of Various Methods for 
the Binary Star Test Problem

o: Gauss-Newton method (linear convergence, robust to initial guess)

∗: finite difference Newton’s method with line search (quadratic convergence)

+: BFGS method with line search (linear convergence, lowest cost per iteration)

γ = 10−7

α = 10−5
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Remarks on Phase Diversity

• Multiple (>2) diversity images
– Vogel et al; Löfdahl ’02
– Effect of #frames on image quality?

• Optimal choice of phase shift?
• Better optimization techniques designed 

for PD?
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Part II:
High-resolution Image 

Reconstruction with Multi-sensors

Joint work with Raymond Chan, Michael 
Ng, Wun-Cheung Tang, Chiu-Kwong
Wong and Andy M. Yip (’98, 2000)
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Images at Different Resolutions

Resolution = 64 × 64 Resolution = 256 × 256
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The Reconstruction Process

Interlaced High-
resolution

(A single image with 
Lm × Lm pixels)

L × L Low-Resolution 
Frames

(L × L frames, each has m × m
pixels, shifted by sub-pixel length)

Reconstructed 
High-resolution
(A single image with 

Lm × Lm pixels)
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High-Resolution Camera Configuration

#2

#N

#1

taking lens

CCD sensor arrayrelay 
lenses

partially silvered 
mirrors

Boo and Bose (IJIST, 97):
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Construction of the Interlaced High 
Resolution Image

Four  2 × 2 images merged into one 4 × 4 image:

a1 a2

a3 a4

b1 b2

b3 b4

c1 c2

c3 c4

d1 d2

d3 d4

Four low resolution images 

Interlaced high-
resolution image 

a1 b1 a2 b2

c1 d1 c2 d2

a3 b3 a4 b4

c3 d3 c4 d4

By interlacing
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Four 64× 64 images merged into one by interlacing:

Observed high-
resolution image 

by interlacing
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Modeling of High Resolution Images

a  low-resolution pixel

a b

c d given intensity = (a+b+c+d)/4

a  high-resolution pixel

4 low-resolution images 
merge into 1

sensor 1

d

sensor 2

sensor 3 sensor 4

d           
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.)( gff =⊗= yx LLL

The Blurring Matrix
Let f be the true image, g the interlaced HR image, then

f involves information of true image outside the field of view.  

d

sensor 1 sensor 2

sensor 3 sensor 4

d
fiel

d o
f v

iew

Information outside 
field of view



22

Boundary Conditions

Assume something about the image outside the field of view
(boundary conditions).

L                      f       =     g    .

L              f = g .  

After adding boundary condition:

Matrix is fat and long:

N2 ×N2      N2 ×1            N2 ×1
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Periodic Boundary Condition
(Gonzalez and Woods, 93)

Assume data are periodic near the boundary.
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Dirichlet (Zero) BC
(Boo and Bose, IJIST 97)
Assume data zeros outside boundary
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Neumann Boundary Condition
(Ng, Chan & Tang (SISC 00))

Assume data are reflective near boundary.
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Boundary Conditions and Ringing Effects
original image

observed high-resolution image

Periodic B.C.

(ringing effect 
is prominent)

Dirichlet B.C.

(ringing effect is 
still prominent)

Neumann B.C.

(ringing effect is 
smaller)
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Calibration Errors

Ideal pixel positions Pixels with displacement errors

Calibration error
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Dirichlet B.C. Neumann B.C.

Ringing effects are more prominent in the presence of 
calibration errors!
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Regularization
The problem L f = g is ill-conditioned.

g*1* ) ( LRLL −+ βg g*1* )( LLL −

.) ( ** gf LRLL =+ β

Here R can be I,  ∆, or the TV norm operator. 

Regularization is required:
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Regularization Systems

• No calibration errors
(L*L + βR) f = L*g

– Structured, easily invertible

• With calibration errors ε
(L(ε)*L(ε) + βR) f = L(ε)*g

– Spatially variant, difficult to invert
– Preconditioning (fast transforms):

(L*L + βR)−1 (L(ε)*L(ε) + βR) f = (L*L + βR)−1 L(ε)*g
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Reconstruction Results

ReconstructedInterlaced HR

Original LR Frame
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(0,0)

(1,1)

(0,2)

(1,3)

(2,0)

(3,1)

(2,2)

(3,3)

(0,1) (0,3)

(1,0)

(2,1)

(1,2)

(2,3)

(3,0) (3,2)

Example: 4 × 4 sensor with missing frames:

Super-Resolution: not enough frames
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(0,1) (0,3)

(1,0)

(2,1)

(1,2)

(2,3)

(3,0) (3,2)

Example: 4 × 4 sensor with missing frames:

Super-Resolution: not enough frames
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i. Apply an interpolatory subdivision scheme to obtain the 
missing frames.

ii. Generate the interlaced high-resolution image w.

iii. Solve for the high-resolution image u.

iv. From u, generate the missing low-resolution frames.

v. Then generate a new interlaced high-resolution image g.

vi. Solve for the final high-resolution image f.

Super-Resolution
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Reconstruction Results

Observed LR                                     Final Solution

PSNR Rel. Error
27.44 0.0787
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Part III:
Total Variation Blind Deconvolution

Joint work with 
Frederick Park, 

Chiu-Kwong Wong 
and Andy M. Yip
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Blind Deconvolution Problem

= ∗ +
Observed 

image
Unknown 

true image
Unknown point 
spread function

Unknown 
noise

Goal: Given uobs, recover both uorig and k

obsu origu ηk
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Typical PSFs
Blur w/ sharp 

edges

Blur w/ smooth 
transitions
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H1 Blind Deconvolution Model

2
2

2
1

2),( kuukukuF obs ∇+∇+−∗= αα

),(min
,

kuF
ku

Objective: (You and Kaveh ‘98)

• Simultaneous recovery of both u and k
• ill-posed --- the need of regularization on u and k
• Sharp edges in u and k are smeared as H1-norm 

penalizes against discontinuities
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Total Variation Regularization

• TV measures jump * length of level sets of u
• TV norm can capture sharp edges as observed in 

motion or out-of-focus blurs
• TV norm does not penalize smooth transitions as 

observed in Gaussian or scatter blurs
• Same properties are true for the recovery of 

images

dxxuuTV ∫ ∇= )()(

• Image deconvolution problems are ill-posed
• Total variation Regularization:

dxxkkTV ∫ ∇= )()(

(Rudin, Osher, Fatemi ’93; C & Wong ‘98)
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TV Blind Deconvolution Model

TVTVobs kuukukuF 21
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Subject to:

Objective: (C. and Wong (IEEE TIP, 1998))
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Alternating Minimization Algorithm

• Variational Model:

• Alternating Minimization Algorithm:

• α1 determined by signal-to-noise ratio
• α2 determined by focal length    
• Globally convergent with H-1 regularization (C & Wong 

’00).  

}),({min 21
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Data for Simulations

Satellite Image Out-of-focus Blur

Blurred Image Blurred and Noisy 
Image

127-by-127 
Pixels
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Blind v.s. non-Blind Deconvolution

Observed Image

SNR = ∞ dB

• Recovered images from blind deconvolution are almost 
as good as those recovered with the exact PSF

• Edges in both image and PSF are well-recovered

n
o

n
-B

lin
d

Recovered Image PSF

B
lin

d

α1 = 2×10−6, α2 = 1.5×10−5



46

Blind v.s. non-Blind Deconvolution

Observed Image

SNR = 5 dB

• Even in the presence of high noise level, recovered 
images from blind deconvolution are almost as good as 
those recovered with the exact PSF

n
o

n
-B

lin
d

Recovered Image PSF

B
lin

d

α1 = 2×10−5, α2 = 1.5×10−5
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Controlling Focal-Length
Recovered Images

Recovered Blurring Functions
(α1 = 2×10−6)

0 1×10−7 1×10−5 1×10−4α2:

The parameter α2 controls the focal-length
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Auto-Focusing (on-going research)

Clean image Noisy image (SNR=15dB)

Data for Simulations:

63-by-63 pixels
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Rel. Error of u v.s. α2

Rel. Error of k v.s. α2

α1 = 0.2 (optimal)

Measuring Image Sharpness

Sharpness (TV-norm) v.s. α2

The minimum of the 
sharpness function agrees 

with that of the rel. errors of u
and k
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Optimal Restored Image 
(minimizer of rel. error in u)

Auto-focused Image 
(minimizer of sharpness func.)

Preliminary TV-based sharpness func. yields 
reasonably focused results
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Generalizations to Multi-Channel Images

• E.g. Color images compose of red, blue
and green channels

• In practice, inter-channel interference 
often exists
– Total blur = intra-channel blur + inter-channel blur
– Multi-channel TV regularization for both the image 

and PSF is used
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Model for the Multi-channel Case
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Color image (Katsaggelos et al, SPIE 1994):
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Original image

Out-of-focus blurred                       blind                       non-blind

Gaussian blurred                          blind                 non-blind

Examples of Multi-Channel Blind 
Deconvolution

(C. and Wong (SPIE, 1997))
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TV Blind Deconvolution Patented!
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Potential Applications to Astronomical Imaging

• Phase Diversity
– Computational speed important?
– Optimal phase shift?

• High/Super Resolution
– Applicable in astronomy?
– Auto calibrate?

• TV Blind Deconvolution
– TV/Sharp edges useful?
– Spatially varying blur?
– Auto-focus: appropriate objective function?
– How to incorporate a priori knowledge?


