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Conventional Phase-Diversity Imaging
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Model for Image Formation
d=s*f +h
qf 1(x,y) = |[F{p(x, y)&" 0 ff

f = unknown object
s = unknown point spread function
h = unknown noise

p = aperture function (pre-determined by the
telescope’s primary mirror)

f = phase characterizing the medium through
which light travels

F = Fourler transform operator



Object and Phase Reconstruction Model

e Measurements:
d=df]* f +h

d'=df +g]* f +h'

g: known phase perturbation

e Model: (Vogel, C. and Plemmons ‘98; Gonsalves '82)

nfnn{”d S 1% £ +[d- of +q]* £

T gJobject: f ] +aJ phase[f ]}
] ]

quadratic A priori statistics




Numerical Methods

1. Reduce the objective J[f,f] to J'[f |=J[f ,f[f ]]
-- Possible because f is quadratic

2. Derive gradient and Hessian*vector for J
-- Involve FFTs and inverse FFTs

3. Minimize using:
1. Finite difference Newton (quadratic convergence, need
Inversion of Hessian; needs good initial guess)

2. Gauss-Newton + Trust Region + CG (for nonlinear least
squares, robust; linear convergence, small #iterations)

3. BFGS (needs only gradients; superlinear convergence,
fast per step; often most efficient)
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Object Pupil Function
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Figure 2. Negative grayscale plot of simulated object f(w1,%2) at upper left; image di = s[¢] * f +m at lower
left; and diversity image dz = s[¢p + 8] * f + 72 at lower right. At the upper right is a grayscale plot of the pupil, or
aperture, function.



Reconstructed Phase and Object

Projected True Phase Diffraction Limited True Object
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Figure 3. True and reconstructed phases and objects.
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Performance of Various Methods for
the Bmary Star Test Problem
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g=10"" 0: Gauss-Newton method (linear convergence, robust to initial guess)

a =10"° *:finite difference Newton's method with line search (quadratic convergence)

+: BFGS method with line search (linear convergence, lowest cost per iteration)



Remarks on Phase Diversity

 Multiple (>2) diversity images

— Vogel et al; Lofdahl ’02

— Effect of #frames on image quality?
e Optimal choice of phase shift?

o Better optimization techniques designed
for PD?
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Part |l
High-resolution Image
Reconstruction with Multi-sensors

Joint work with Raymond Chan, Michael
Ng, Wun-Cheung Tang, Chiu-Kwong
Wong and Andy M. Yip ("98, 2000)
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Images at Different Resolutions

Resolution = 64~ 64 Resolution = 256 © 256
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The Reconstruction Process

L~ L Low-Resolution
Frames

(L~ L frames, eachhasm”™ m
pixels, shifted by sub-pixel length)

Interlaced High-
resolution

(A single image with
Lm "~ Lm pixels)

Reconstructed
High-resolution

(A single image with

Lm”~ Lm pixels!




High-Resolution Camera Configuration

Boo and Bose (1JIST, 97):
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Construction of the Interlaced High

Resolution Image
Four 2° 2 images merged into one 4~ 4 image:

A A b, b,
s a, b, b,
G C; d; d,
Cs Cy d; d,

Four low resolution images
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Interlaced high-
resolution image
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Four 64" 64 images merged into one by interlacing:

Observed high-
resolution image
by interlacing
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a b
> a low-resolution pixel
C d given intensity = (a+b+c+d)/4
_/
— sensor 1
a high-resolution pixel \

Modeling of High Resolution Images

Sensor 2

4 low-resolution images
merge into 1

sensor 4



The Blurring Matrix
Let f be the true image, g the interlaced HR image, then
Lf = (LXA Ly)f = 0.

f involves information of true image outside the field of view.

Sensor 2
sensor 1

\
éé\ \
6 | nformation outside
d field of view

sensor 4 21



Boundary Conditions

Matrix is fat and long: F—n
L f = g
Ny

Assume something about the image outside the field of view
(boundary conditions).

After adding boundary condition:

4 N\ A 4 A

L f
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Periodic Boundary Condition
(Gonzalez and Woods, 93)

Assume data are periodic near the boundary.
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Dirichlet (Zero) BC
(Boo and Bose, 1JIST 97)

Assume data zeros outside boundary
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Neumann Boundary Condition
(Ng, Chan & Tang (SISC 00))

Assume data are reflective near boundary.
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Boundary Conditions and Ringing Effects

original image

Periodic B.C.

(ringing effect
IS prominent)

Dirichlet B.C.

(ringing effect is
still prominent)
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Neumann B.C.
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smaller)




Calibration Errors

Ideal pixel positions

Cdlibration error

Pixels with displacement errors
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Ringing effects are more prominent in the presence of
calibration errors!

|;||| I:|T

Dirichlet B.C. Neumann B.C.
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Regularization

The problem L f = g is ill-conditioned.
Regularization is required:
(LL+b Rf =Lag.

Here R can be |, D, or the TV norm operator.

g (LL)*'Lg (LL+b R)*L'ga2e



Regularization Systems

e No calibration errors
(L*L + bR) f = L*g
— Structured, easily invertible

 With calibration errors e
(L(e)*L(e) + bR) T = L(e)*g
— Spatially variant, difficult to invert

— Preconditioning (fast transforms):
(L*L + bR)" 1 (L(&)*L(e) + bR) f = (L*L + bR)! L(&)*g
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Reconstructlon Results

Interlaced HR Reconstructed
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(0,0 (0,1) (0,2 (0,3
(1,0 (1,1) (1,2) (1,3
(2,0) (2,1) (2,2) (2,3
(3,0) (3,1 (3,2 (3,3

Super-Resolution: not enough frames

4" 4 sensor with missing frames:
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Super-Resolution: not enough frames

4" 4 sensor with missing frames:

(0,1) (0,3

(1,0 (1,2

(2,1) (2,3)

(3,0) (3,2
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V.

VI.

Super-Resolution

Apply an interpolatory subdivision scheme to obtain the
missing frames.

Generate the interlaced high-resolution image w.
Solve for the high-resolution image u.

From u, generate the missing low-resolution frames.
Then generate a new interlaced high-resolution image g.

Solve for the final high-resolution image f.

34



Reconstruction Results

Observed LR Final Solution

PSNR Rel. Error
27.44 0.0787
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Blind Deconvolution Problem
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Typical PSFs

Blur w/ sharp

| edges

[

Motion Blur Qut of Focus Blur

7‘\ Blur w/ smooth
transitions

a5

1 -

(Gaussian Blur Scatter Blur
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H! Blind Deconvolution Model

Objective: (You and Kaveh ‘98)

mikn F(u, k)

F(UK) = k- g +a, Rl +a, [Nk

obs

e Simultaneous recovery of both u and k
* Ill-posed --- the need of regularization on u and k

e Sharp edges in u and k are smeared as H-norm
penalizes against discontinuities
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Total Variation Regularization

Image deconvolution problems are ill-posed
Total variation Regularization:

TV (u) = Nu(x)dx TV (k) = NK(X)|dx

'V measures jump * length of level sets of u

TV norm can capture sharp edges as observed In
motion or out-of-focus blurs

TV norm does not penalize smooth transitions as
observed in Gaussian or scatter blurs

Same properties are true for the recovery of

. 41
Images (Rudin, Osher, Fatemi '93; C & Wong ‘98)



TV Blind Deconvolution Model

Objective: (C. and Wong (IEEE TIP, 1998))
mikn F(u,k)
u,

P (U k) = [ur k- Ul +aul, +a, K]y,

Subject to:

uk3 0
O<(x, y)dxdy =1
K(X, y) =K(- X~ y)
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Alternating Minimization Algorithm

e Variational Model:

min{ F (u, k) = u* k- ug [ +ayful, +a,k,}

. Alternatlng Minimization Algorithm: (You and Kaveh ‘98)
F@u™, k") :rer F(u,k")

F (U™, k™) = min F (U™, )

e a, determined by signal-to-noise ratio
e a, determined by focal length

e Globally convergent with H-1 regularization (C & Wong
'00).
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Data for Simulations

Satellite Image

Blurred Image

127-by-127
Pixels

, B & A& &
- B @ L h

Out-of-focus Blur

b b b &
|- - T " |

_ Blu_rred and Noisy 44
Image



Blind v.s. non-Blind Deconvolution

Recovered Image

Observed Image

a1—2 10°6, a2—15 10-5

 Recovered images from blind deconvolution are almost
as good as those recovered with the exact PSF

 Edges in both image and PSF are well-recovered
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Blind v.s. non-Blind Deconvolution

Recovered Image

Observed Image

a1—2 105,a2—1.5 10°5

 Even in the presence of high noise level, recovered
Images from blind deconvolution are almost as good as
those recovered with the exact PSF #0




Controlling Focal-Length

Recovered Images

Recovered Blurring Functions
(a; =2 109

110 1" 10-° 1104
The parameter a, controls the focal-length
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Auto-Focusing (on-going research)

Data for Simulations:

Clean image Noisy image (SNR=15dB)
63-by-63 pixels 48



Measuring Image Sharpness

Rel. Error of uv.s. a,

£ R £ € B & §© .

a, = 0.2 (optimal)

Sha[pness (TV-norm) v.s. a,

N

The minimum of the
sharpness function agrees
with that of the rel. errors of u

and k 49



Optimal Restored Image Auto-focused Image
(minimizer of rel. error in u) (minimizer of sharpness func.)

‘;-.

Preliminary TV-based sharpness func. yields

reasonably focused results
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Generalizations to Multi-Channel Images

e E.g. Color images compose of red, blue
and green channels

 In practice, inter-channel interference

often exists
— Total blur = intra-channel blur + inter-channel blur

— Multi-channel TV regularization for both the image
and PSF Is used

51



Model for the Multi-channel Case

Color image (Katsaggelos et al, SPIE 1994):

H, u+noise=u,,.
K,: within

R 'K
8@ H, H, 3FH, CBQ' 0 geJobso channel blur
iH, SH, iH, <qu® ++noise =cuS -
gz e 1o . kz_g . < ObS; k,: between
e7Hk2 7 sz Hk U g erbsg channel blur

Restoration Model
. 2
Min|H,u- Uy, +a,TV, (u) +a,TV, . (k)

m-channel TV-norm

WACEREANS
=1
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Examples of Multi-Channel Blind
Deconvolution

Original image

Out-of-focus blurred

Gaussian blurred




TV Blind Deconvolution Patented!

2l United States Patent: 6,470,097 - Microsoft Internet Explorer

File Edit “iew Favorites Tools  Help ﬂ
" L] = i = —
1 y ¢ o - . - ’ '-.-T’ - \, — = L
Qe - @ A B G P Jrrams @ @ 2 L IR 93
address |@ A TonyChan StufFPPT Talks\Blind-DeconvolutiontUnited States Patent 6,470,097, htm v | Go Links **
GOOSIE - | v | g% Search Web - @ magshiank - 51 21 blocked E Cpkions »
(Larl) &
United States Patent 6,470,097
Lai, etal October 22,2002

Total variational blind mage restoration from image sequences

Abstract

A blind image restoration system uses total vanational (TV) regularization to allow dizcontinuities i a true image fimchon. The system first updates mmage blur
parameters to minitmize the energy function with the motion parameters and restored image. The motion parameters between subzequent frames m the rnage
sequence are then updated to mintmize the energy finction with the blur parameters and restored unage. The restored snage 12 then updated by using a
preconditioned conjugate gradient algorithtn to mintrmize the energy function dertved from the TW regularization formulation. The TV -based energy function 15 then
computed by using the currently updated parameter values. If the relative difference between the current energy function value and the energy value computed i the
previous tteration 1s within a threshold, then 1t 15 converged and the restored mmage 15 outputted. If it has not converged, the signal flows back to update the
parameters.

Inwentors: Lai; Shang-Hong (Plaisbore, I, Cw; Yuntao (Pittsburgh, PA)

Azsignes: Siemens Corporation Research, Inc. (Princeton, T

Appl Mo 235998

Filed: January 22, 1999

Chwrent TU.S. Class: 382/255; 3B2/236
Intern'l Class: GO&E 00%/36
Field of Search: 382/254-255,107,236

References Cited [Referenced By]

|£

@ B Intermet

T UCLA Mews - .. Z§ United States ... @ Inbox - Micros. ., B 7 & 40 K 1113FM
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Tou and Eaveh's regularization formulation used an Hosup. 1 norm for the smoothness constraint on the image and the blur. Thiz smoothness constraint prolubats
discontimities in the solution. Unfortunately, there usually exist sharp discontiuties m the true images. The deswable details of the true inage can be lost due to the
smoothed discontimuties. Although You and Eaveh proposed a weighted regulanization to allewiate this problem, this weighting scheme 15 somehow ad hoc and the
parameters involved in this scheme may need to be tuned in a case by case basis.

A new regulanization approach that employed the total variation (TW) norm in stead of the standard H sup. 1 norm for the image constraint was proposed by L.

Eudin, 5. Osher, and E. Fateri in "Nonhnear Total Vanation Based Moise Eemowal Algotithms", Physica D, Vol &0, pp. 259-268, 1992 for the image denoising
problem. The TV regularization has been proved to be capable of preserving discontinuities while imposing smoothness constraints and it 15 effective for recovering
blocky images. T. F. Chan and C. K. Wong in "Total Variation Blind Deconvolution”, IEEE Trans. Image Processing, Wol 7, Mo, 3, pp. 370-375, 1998 modified

Tou and Eaveh's reﬁanzatlon Tormmaton By ustng The LW IOIIN Tof HiE Smoolness constraint on the mmage as well as the blur function instead of the Hsup. 1

norm, thus preserving the discontinuities in the recowered image fiunction.
SUMMARY OF THE INWVENTION

The present invention prowdes a new formulation for blind image restoration from an image sequence. Total variational (TW) regularization iz employed to allow
discontimities in a true mage fonction. An iterative alternating algorithm using quasi-Mewton tterations iz prowided to solve an image-blur coupled nonlinear
optirmzation problemn. This forrmulation 12 then extended to the blind mmage restoration from an wmage sequence by introducing motion parameters mto a mult-Frame
data constraint.

The input to the blind image restoration system of the present invention contains an image sequence and initial values for image blur and motion parameters. Within
an image blur parameters updater, the system first updates the image blur parameters by using Cuasi-Newton iterations to minimize the energy function with the
motion parameters and restored wnage, fxed with thetr current values. After that, the sighal flows to a motion parameters updater where the motion parameters
between subsequent frames in the nage sequence are updated by using MNewton tterations to mintmize the energy function with the blur parameters and restored
wnage, fxed with thewr current values. The restored wnage 1z then updated in a restored wnage updater by using a precondiboned conugate gradient algonthm to
minimize the energy function denved from the total vanational (TV) regulanzation formulation. The TV -based energy function iz then computed in a TV -bazed
energy function computer by using the currently updated parameter values. Within a converged decider, if the relatrve difference between the current energy function
value and the energy value computed in the previous iteration is within a threshold, then it is conwverged and the restored image i3 cutputted. If'it has not converged,
the signal flows back to the image blur parameters updater to update the parameters.
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Potential Applications to Astronomical Imaging

 Phase Diversity
— Computational speed important?
— Optimal phase shift?

o High/Super Resolution

— Applicable in astronomy?
— Auto calibrate?

e TV Blind Deconvolution
— TV/Sharp edges useful?
— Spatially varying blur?
— Auto-focus: appropriate objective function?
— How to incorporate a priori knowledge?
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