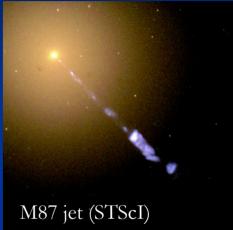
Imaging the Sky Above 30 MeV with GLAST

Spectrum Astro

Mathematical Challenges in Astronomical Imaging S. W. Digel (HEPL/Stanford) IPAM, UCLA, 29 January 2004

Outline

Introduction

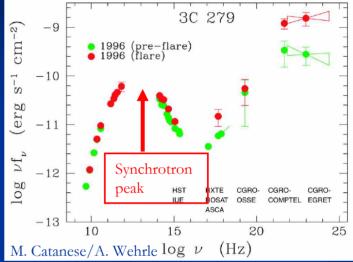

Why bother? Celestial high-energy gamma rays Detecting gamma rays in space □ GLAST^{*} mission LAT^{**} instrument design Nature of the data and performance of the LAT Analysis from low to high level Imaging the sky Approaches for source detection & characterization

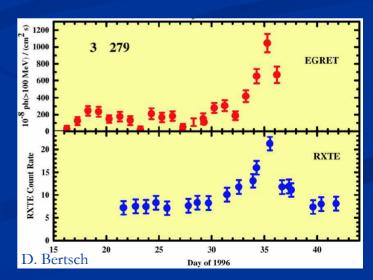
Motivation: Wealth of Astro- and Astroparticle Physics

Extragalactic

- Blazars most of their luminosity is in gamma rays
- Other active galaxies Centaurus A
- Normal galaxies Large Magellanic Cloud + starburst
- Galaxy clusters
- Isotropic emission
- Gamma-ray bursts
- In the Milky Way
 - Pulsars, binary pulsars, millisecond pulsars, plerions
 - Supernova remnants, OB/WR associations, black holes?
 - Microquasars, microblazars?
 - Diffuse cosmic rays interacting with interstellar gas and photons
 - WIMP annihilation?
- Solar flares
- Moon...

Common theme (except for WIMPS): Nonthermal emission, particle acceleration (e.g., in jets and shocks); γ-ray emission from Bremsstrahlung, inverse Compton, pion decay, curvature radiation

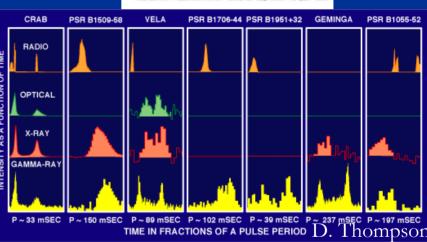


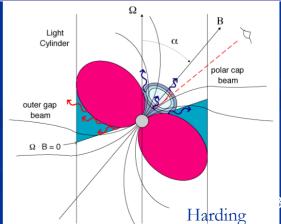


Crab pulsar & nebula (CXC)

More About Classes of Sources: Blazars

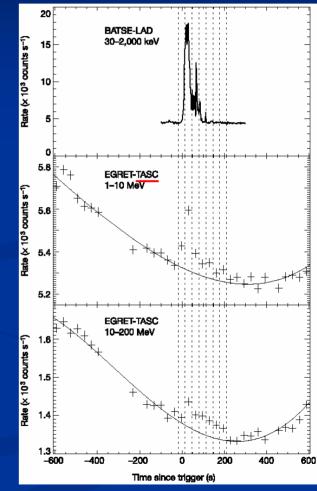
- Active galaxies with beamed jets associated with accreting massive BHs in active galaxies
- EGRET discovery: Tremendous γ-ray luminosities (beamed) 10⁴⁸⁻⁴⁹ erg s⁻¹
 - Bulk Lorentz factors $\Gamma \sim>$ 5-10
- Strongly variable, timescale of <hours</p>
- ~70 strong IDs from EGRET, ~30 suspected
- *z* ~ 0 − 2.5
 - Potential probe of extragalactic background light





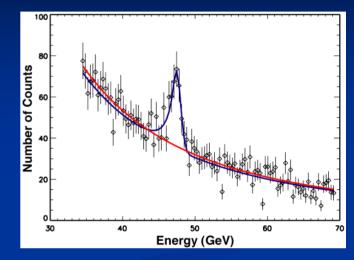
More: Rotation-Powered Pulsars

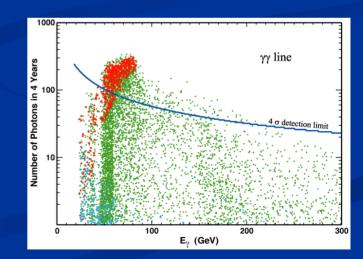
- Rapidly rotating magnetized neutron stars (and *B* not parallel to *Ω*)
- ~8 detected pulsating by EGRET
 - Steady (averaged over a period) sources, and not necessarily seen pulsating at other wavelengths
- Acceleration mechanisms are well understood (Polar Cap and Outer Gap models)
- ~10³⁵⁻³⁶ erg s⁻¹ luminosities means can see them for a few kpc



More: Gamma-ray bursts

- Something bad (hypernova?) happens at cosmological distances
 - Internal shocks and external shocks → pulses and afterglows
- Primarily hard X-ray, although several have been seen at high energies (~100 MeV) with EGRET
 - Recent result shows high-energy component may trace a different particle population, or indicate a proton component

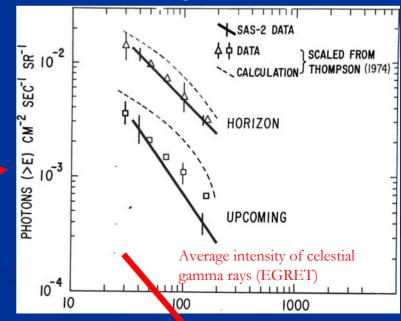

GRB940217



González et al. (2003)

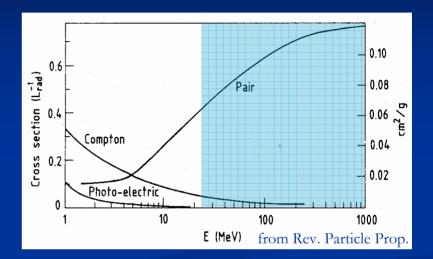
More: Particle Dark Matter

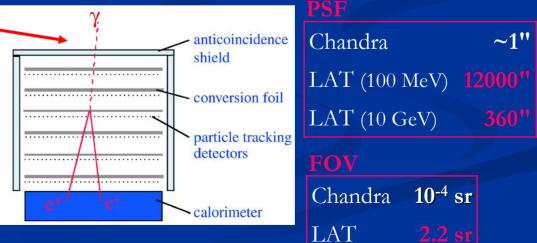
- Some N-body simulations of dark matter in the halo of the Milky Way predict a very cuspy distribution (e.g., Navarro et al. 1996)
- If the dark matter is the Lightest Supersymmetric Particle, χ, the mass range currently allowed is 30 GeV-10 TeV.
- Annihilation processes $\chi\chi \rightarrow \gamma\gamma$ and $\chi\chi \rightarrow \gamma Z$ are potentially detectable by GLAST (e.g., Bergström & Ullio 1998)
 - LAT observations can apparently cover an interesting range of the 7-dimensional parameter space for MSSM.
- EGRET apparently didn't see a source coincident with the Galactic center, but also is not very sensitive in the >10 GeV range


D. Engovatov

Important Points About Detecting High-Energy Gamma Rays

- In the range up to ~50 GeV, the detector must be in space
- Charged-particle background is intense
 - Background rejection is vital
- Earth's limb and the nadir are an intense source of albedo gamma rays
 - So albedo suppression is important, too

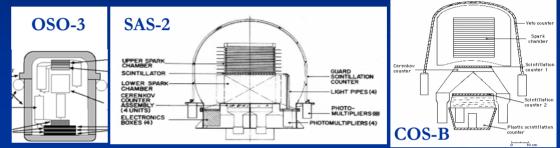

Trigger rates in LATBright γ pt. src.1/minuteAvg. γ, entire FOV2 HzCosmic Rays~3 kHzAlbedo γ rate*~100 Hz

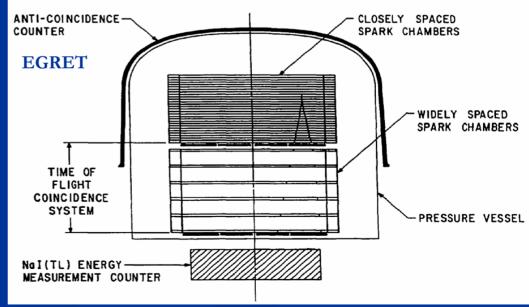

* If pointed at the horizon

Important points (2)

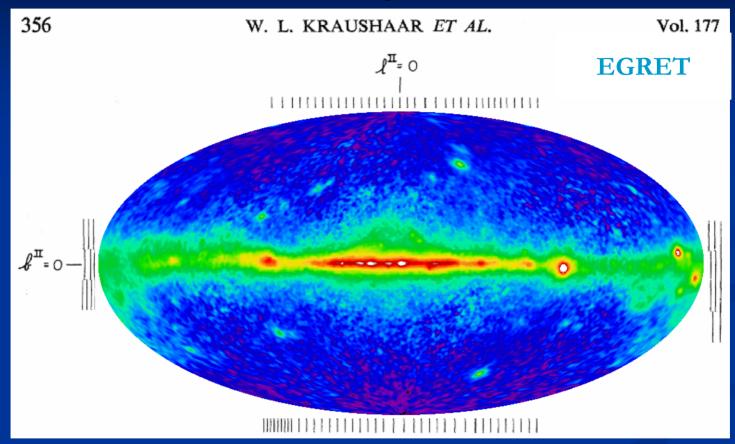
■ Above ~few MeV pair conversion is the dominant interaction process with matter • Can't focus these γ -rays Schematic pair conversion 'telescope' \square PSF is poor □ FOV is enormous

Important points (3)

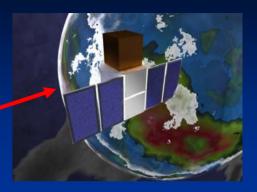

Celestial fluxes are low (except for GRBs, which are impulsive) Photon number fluxes typically $\sim E^{-2}$ The Milky Way is a relatively bright, structured, foreground $\blacksquare \sim 10\%$ of flux at low latitudes is from point sources


γ-ray rates in LAT

Bright pt. src.	1/minute
Avg., entire FOV	


Brief History of Detectors

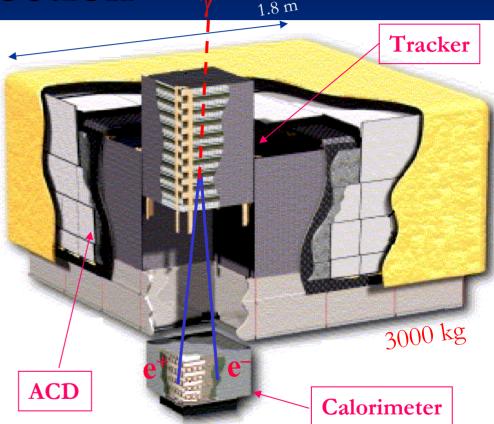
- 1967-1968, OSO-3 detected Milky Way as an extended γray source
- 1972-1973, SAS-2, isotropic extragalactic emission
- 1975-1982, COS-B, ~25 point sources, 1st extragalactic point source.
- 1991-2000, EGRET, large effective area, good PSF, long mission life, excellent background rejection, ~300 point sources


History cont.

~1.4 Mγ, ~60% interstellar emission from the MW
 ~10% are cataloged (3EG) point sources

Future Missions

- AGILE (Astro-rivelatore Gamma a Immagini LEggero)
 - ASI small mission, mid 2005 launch, good PSF, large FOV, short deadtime, very limited energy resolution
- AMS (Alpha Magnetic Spectrometer)
 - International, cosmic-ray experiment for ISS, will have sensitivity to >1 GeV gamma rays, scheduled for 16th shuttle launch once launches resume
- **GLAST...**

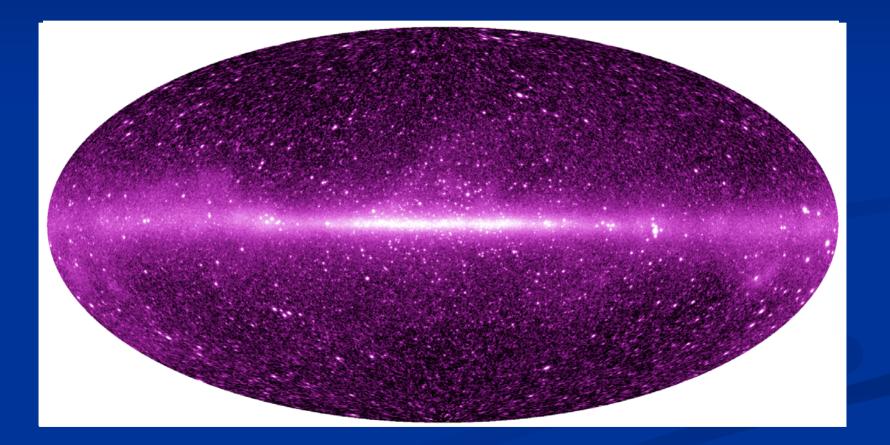

Design of the LAT for gamma-ray detection

Tracker 18 XY tracking planes with interleaved W conversion foils. Single-sided silicon strip detectors (228 µm pitch). Measure the photon direction; gamma ID.

 12 'Front' (3.5% RL), 4 'Back' (25% RL)

Calorimeter 1536 CsI(Tl) crystals in 8 layers (8.5 RL); PIN photodiode readouts. Image the shower to measure the photon energy.

 Anticoincidence Detector (ACD) 89 plastic scintillator tiles. Signals passage of cosmic rays; segmentation limits self-veto at high energy.


 Electronics System Includes flexible, robust hardware trigger and software filters. ~800k channels, 600 W

LAT in perspective

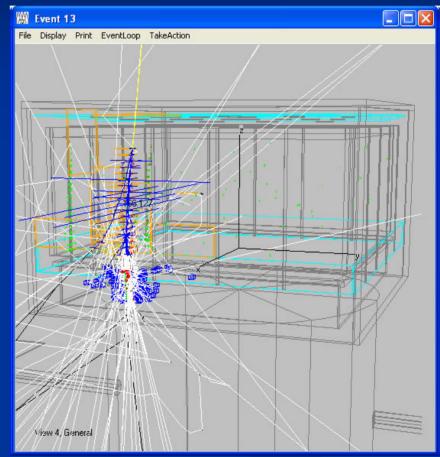
Within its first few weeks, the LAT will double the number of celestial gamma rays ever detected

Instrument	Years	Ang. Res. (100 MeV)	Ang. Res. (10 GeV)	Energy Range (GeV)	$A_{eff} \mathcal{Q}$ (cm ² sr)	# Gamma Rays
OSO-3	1967–68	18°	—	>0.05	1.9	621
SAS-2	1972–73	7	-	0.03–10	40	~10,000
COS-B	1975–82	7		0.03–10	40	$\sim 2 \times 10^{5}$
EGRET	1991–00	5.8	0.5°	0.03–10	750	1.4×10^{6}
AGILE	2005–	4.7	0.2	0.03–50	1500	$4 \times 10^6/\mathrm{yr}$
AMS	2005+-	—	0.1	1–300	500	$\sim 2 \times 10^5/\mathrm{yr}$
GLAST LAT	2007–	3.5	0.1	0.02–300	25,000	1 × 10 ⁸ /yr

The Gamma-Ray Sky

Simulated LAT (>1 GeV, 1 yr)

Maximizing Return

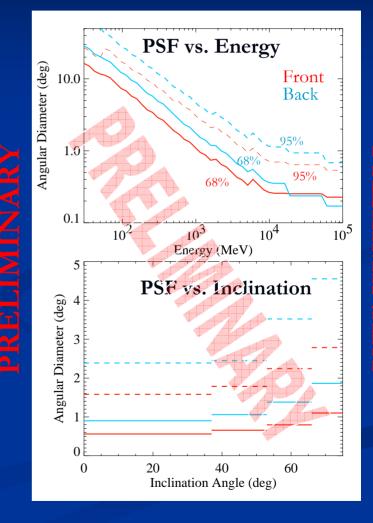

GLAST is the last large high-energy gamma-ray telescope that can be expected for a decade or more, depending on what it discovers
Even for GLAST, the cost per celestial gamma ray will remain fairly high, ~40 ¢ each

Reconstruction and classification of events Charged particles vs. gamma-rays Quality of reconstruction of energy, direction Detection and characterization of celestial sources of gamma rays ■ Locations, spectra, variability & transient alerts, angular extents Identification of sources & population studies

Counterparts and correlations

Nature of the LAT Data

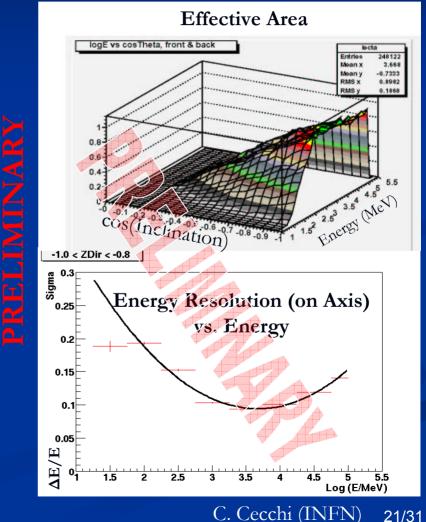
- Events are readouts of TKR hits, TOT, ACD tiles, and CAL crystal energy depositions, along with time, position, and orientation of the LAT
- Limited bandwidth for telemetry
 → data are extremely filtered
 - ~3 kHz trigger rate
 ~100 Hz filtered event rate,
 ~10 Gbyte/day raw data,
 ~2 × 10⁵ γ-rays/day
- Reconstruction finds tracks and energies; classification distinguishes γ-rays from cosmic rays – all before the astronomy


T. Usher

LAT Response Functions

- LAT response functions depend on incident direction, energy, plane of conversion, 'quality', etc.
 - Derived from detailed instrument simulation supported by beam tests

□ PSF

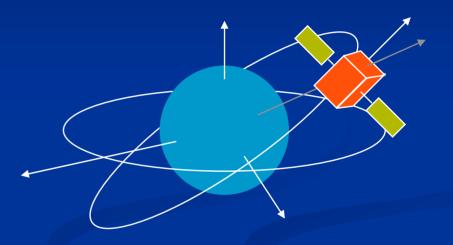

95%/68% containment ratio
 ~2.5-3 (vs. 1.6 for Gaussian)

LAT Response Functions (2)

Effective Area

- Front + Back shown combined here
- Rolloff at low energies
- Energy resolution
 - Adequate
 - Actually improves at large inclinations

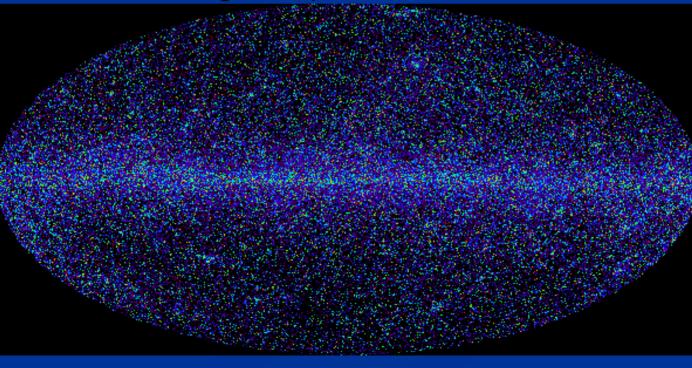
PRELIMINARY


Summing up the Analysis Issues

So we want to do astronomy with

- Low celestial fluxes, intense backgrounds from cosmic-ray and albedo γ-rays
- Bright celestial foreground emission from Milky Way
- Broad PSFs and overlapping PSFs of many sources in even a small field
- Response functions that vary strongly across the FOV, and several event classes
- Continuous scanning and rocking as the standard observing mode
- Extra credit: Lunar and solar cuts, sky is not flat, ...

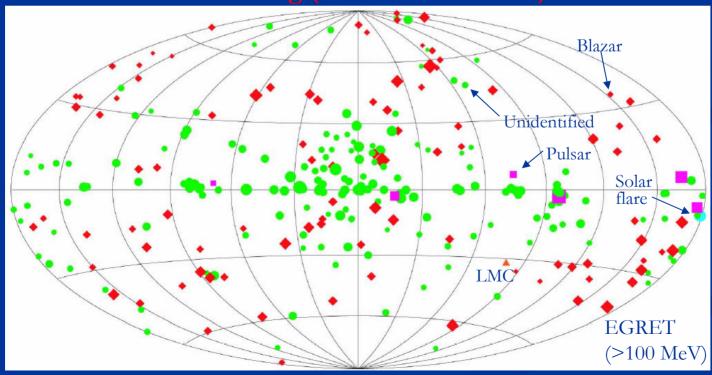
Analysis Issues (2)


- Standard observing mode will be scanning the sky
 - Increases the data taking efficiency vs. inertial pointing
 - Covers the whole sky every 3 hours
 - Keep the earth (and albedo gamma rays) out of the FOV
- High-level data include the pointing & livetime history

Analysis Issues (3)

 We'd also like source detection fast and robust (objective, with understood statistical properties, like upper limits)

 \sim 4-5 downlinks per day to monitor



One day's worth of simulated gamma rays, color coded by energy 24/31

EGRET: Detection & Characterization

Many point sources are transient and detected over ~1 week only
 3EG catalog has 271 sources, almost all of them real (~170 unidentified)

3EG catalog (Hartman et al. 1999)

Strategies for Source Detection

Do what EGRET did

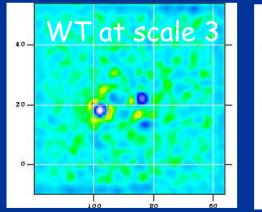
- Maximum likelihood analysis model fitting, first used for COS-B
- Or do what EGRET did, but better
 - Unbinned likelihood analysis, EM
- Nonparametric analyses
 - Wavelets (CWT, DWT), Independent Component Analysis, Bayesian Blocks, Cross Correlation

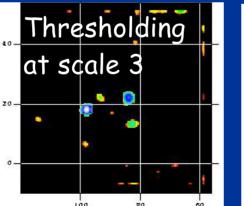
Monte Carlo the sky...

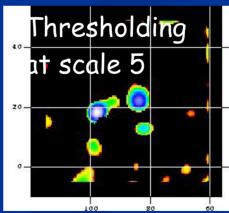
Review of Likelihood Analysis ■ Models are straightforward to define – *radiative transfer is* simple $\overline{I(x, y, E)} = I_{MW}(x, y, E) + \sum F_i(E)\delta(x - x_i, y - y_i)$ Data-space version not as simple, of course $M(E',\mathbf{p}',t,k) = \int_0^\infty D_k(E';E,\mathbf{p}\cdot\mathbf{z}(t))P_k(|\mathbf{p}'-\mathbf{p}|;E,\mathbf{p}\cdot\mathbf{z}(t))A_k(E,\mathbf{p}\cdot\mathbf{z}(t))\,s(E)\,dE$ $\ln \mathcal{L} = \sum_{i} \ln M(E'_{i}, \mathbf{p}'_{i}, t_{i}, k_{i}) - N_{\text{pred}}$ $N_{\rm pred} = \sum_{\bf j} \int \int \int M(E',{f p}',t,k) \, dE' d{f p}' dt$ P. Nolan (SU) [Extended] Maximum Likelihood analysis is widely used in y-ray astronomy & we plan to use it for the standard high-level analysis tool for LAT data ■ Introduced by Pollock et al. (1981) for analysis of COS-B data, also used extensively for EGRET analysis.

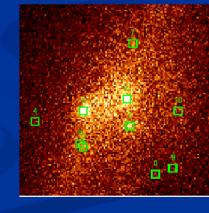
Likelihood Analysis (2)

Why use the EGRET approach?

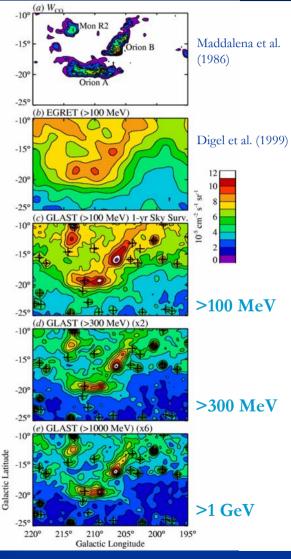

- Low fluxes, pervasive structured diffuse emission, & poor angular resolution
- Why not use likelihood analysis?
 - Doesn't answer any question that you aren't asking
 - Don't want to bin in inclination angle
 - Not everything we want to study is a point source
 - Requires a good model for the difffuse γ-ray emission of the Milky Way. Not easy.
 - Protassov et al. (2002) point out that the principal application, source testing, violates the conditions of Wilks' theorem


Likelihood Analysis (3)


- Why use unbinned likelihood analysis?
 In principle, uses all of the information in the data
- Why *not* use it? All of the above, plus
 Computationally tough multidimensional integration & optimization

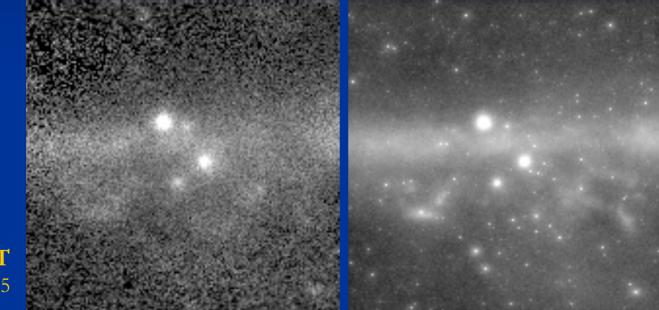

Other Approaches

 Initial investigations underway of alternatives for all or part of the source detection problem
 WT (Damiani et al. 1997) implemented by F. Marcucci & C. Cecchi (INFN)



Simulated LAT data in Galactic anticenter

Extended Sources


- Orion simulation as an example for LAT resolving extended sources
- Probably ideal case Nearest giant molecular cloud complex, and have a good template for the emission
- Study of the diffuse emission could permit detailed calibration of molecular content & propagation of cosmic rays & maybe gamma-ray point sources

Conclusions

Gamma-ray sky has diverse source populations

Exciting science will derive from the great capabilities of the LAT

EGRET Phases 1-5

- The challenges for source detection, for maximizing the return are understood and approaches are being investigated
- Look forward to the LAT

LAT