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Introduction

I’d like to talk about how mathematics and physics can come
together to the benefit of both fields, particularly in the case of
Calabi-Yau spaces and string theory. This, not coincidentally, is the
subject of a new book, THE SHAPE OF INNER SPACE, which I
have written with Steve Nadis, a science writer.

Steve Nadis Book Cover
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This book tells the story of those spaces. It also tells some of my
own story and a bit of the history of geometry as well. In that
spirit, I’m going to back up and talk about my personal
introduction to geometry and the evolution of the ideas that are
discussed in this book.

I wanted to write this book to give people a sense of how
mathematicians think and approach the world. I also want people
to realize that mathematics does not have to be a wholly abstract
discipline, disconnected from everyday phenomena, but is instead
crucial to our understanding of the physical world.

So we’re now going to step back in time a bit. Or perhaps I should
say step back in spacetime...
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I. Riemannian Geometry

When I arrived in Berkeley in 1969 for graduate study, I learned
that the concept of geometry had gone through a radical change in
the 19th century, thanks to the contributions of Gauss and
Riemann. Riemann revolutionized our notions of space. Objects no
longer had to be confined to the flat, linear space of Euclidean
geometry.

Gauss Riemann
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Riemann instead proposed a much more abstract conception of
space — of any possible dimension — in which we could describe
distance and curvature. In fact, one can develop a form of calculus
that is especially suited to such an abstract space. It took about
fifty years until Einstein realized that this kind of geometry, which
involved curved spaces, was exactly what he needed to unify
Newtonian gravity with special relativity. This insight culminated
in his famous theory of general relativity.

Einstein Curved Space-time
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I learned about Riemannian geom-
etry during my first year at Berke-
ley. After a couple of months, I
started to toy around with some
statements that related the curva-
ture of a space — its exact shape or
geometry — to a much cruder, more
general way of characterizing shape,
which we call topology.

At Berkeley 1969
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Topology is a concept of a space that is unrelated to the way that
we measure distance in that space. In that sense, topology
describes a space much less precisely than geometry. We need to
know all the details of a space to measure the distance between
any two points. The sum of all those details, which spell out the
curvature at every point, is what we mean by geometry.
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For example:

1. The sphere and the ellipsoid

have the same topology, but they have a different shape
(geometry).

2. The thin donut has the same topology as

, but they have a different shape (geometry).
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I wrote down some of my thoughts concerning ways in which
topology (or general shape) influenced the geometry (or exact
shape) and vice versa. While I was photocopying those notes in
the Xerox room, I ran into Arthur Fisher, a mathematician. He
insisted on knowing what I had written. After reading through my
notes, he told me that any principle that related curvature with
topology would be useful in physics. His comments have stayed
with me ever since.
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II. General Relativity

We learned through special relativity that space and time should
not be treated separately but should instead be merged together to
form spacetime. We learned that information should not, and
indeed cannot, travel faster than the speed of light. The laws of
gravity, moreover, should be independent of the coordinate system
selected by observers trying to measure events.
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Einstein struggled in his attempt to obtain a fundamental
description of gravity. But he got some help from his friend
Grossman, a mathematician, who told him of the work of other
mathematicians, Riemann and Ricci.

Riemann provided the framework of abstract space, as well as the
means for defining distance and curvature in such a space.
Riemann thus provided the background space or setting in which
gravity, as Einstein formulated it, plays out.
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But Einstein also drew on the work of Ricci, who defined a special
kind of curvature that could be used to describe the distribution of
matter in spacetime. Through general relativity, Einstein offered a
geometric picture of gravity. Rather than considering gravity as an
attractive force between massive objects, it could instead be
thought of as the consequence of the curvature of spacetime due
to the presence of massive objects. The precise way in which
spacetime is curved tells us how matter is distributed.
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When I looked at the equations of Einstein, I was intrigued by the
fact that matter only controls part of the curvature of spacetime. I
wondered whether we could construct a spacetime that is a
vacuum, and thus has no matter, yet its curvature is still
pronounced. Well, the famous Schwarzschild solution to Einstein’s
equations is such an example. This solution applies to a
non-spinning black hole — a vacuum that, curiously, has mass
owing to its extreme gravity. But that solution admits a singular
point, or singularity— a place where the laws of physics break
down.

Black hole
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I became interested in a different situation —a smooth space
without a singularity that was compact and closed, unlike the
open, extended space of the Schwarzschild solution. The question
was: Could there be a compact space that contained no
matter— a closed vacuum universe, in other words —whose force
of gravity was nontrivial? I was obsessed with this question and
believed that such a space could not exist. If I could prove that, I
was sure that it would be an elegant theorem in geometry.
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III. Calabi Conjecture

When I started thinking about this in the early 1970s, I did not
realize that the geometer Eugenio Calabi had posed almost the
exact same question. Calabi framed the problem in fairly
complicated mathematical language — involving difficult concepts
like Kahler manifolds, Ricci curvature, and Chern classes. Yet his
abstract conjecture could also be framed in terms of Einstein’s
theory of general relativity. In that context his question translated
to: Can there be gravity, or the curving of space, in a closed
vacuum —a compact space that has no matter?
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For about three years, my friends and I tried to prove that the class
of spaces proposed by Calabi could not exist. We, along with many
others, considered them to be ”too good to be true.” But try as
we might, we could not prove that such spaces do not exist.

With Prof. Calabi, 2004
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Until one day I thought I found a way to demonstrate that Calabi
was wrong. I made this discovery at a big conference at Stanford,
and I was asked to give a talk about it. However, a few months
later, while trying to write up my proof in a rigorous fashion, I
found that I could not complete my argument. I finally decided
that the Calabi conjecture must be right after all, and I spent the
next several years trying to prove it.

Calabi-Yau space
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In 1975, I used my Sloan fellowship to visit Courant at the
invitation of Professor Louis Nirenberg. My friend S.-Y. Cheng was
there. Although a major motivation for me was to visit my
girlfriend who worked in the Plasma lab in Princeton, I still got a
lot of work done. I wrote several important papers with S.-Y.
Cheng related to the real Monge-Ampère equation. They are very
much related to the work on the complex Monge-Ampére equation,
which appeared in the proof of Calabi conjecture. In fact, by this
time, I had learned quite a bit about complex Monge-Ampére
equations in terms of second-order estimates and was confident
that I could solve the whole problem.
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Looking back, this was rather amazing since I was spending so
much time traveling back and forth between Princeton and New
York, yet still managed to make progress with the research. My
girlfriend’s job was finishing by the summer of 1976 . She went to
interview at TRW in Los Angeles in December of 1975. So I
accompanied her to LA. She got an offer from TRW for a job in
the following year.
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So I decided to take a leave of absence from Stanford to come to
UCLA for the 1976-1977 academic year. I wrote to Prof. Robert
Greene and Barrett O’Neil. I have to say that I am grateful that
my proposal was accepted immediately. I used my Sloan fellowship
for the first quarter and for the rest of the academic year I had a
teaching job at UCLA. Stanford allowed me to take the leave of
absence. My girlfriend was very impressed by that. I was a new
Ph.D., and the job situation in those years was tough.
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My girlfriend and I got engaged in Princeton when I visited her in
May 1976. In June, I drove cross country with her and her parents
from Princeton to Los Angeles. It was a very enjoyable trip . Along
the way, I was thinking about solving the Poincaré conjecture and
the Calabi conjecture at the same time. For the Poincaré
conjecture, I was hoping to use the theory of minimal surfaces. My
idea did not quite work, but the potential was there.
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As for the Calabi conjecture, I thought through the estimates that
were needed to solve the equations, while I was enjoying the
American countryside. (I did not tell my future wife what I was
thinking about at the time.) When we arrived in LA, my friends at
UCLA were very friendly. We found a temporary apartment, and I
then went out to buy my first house with my future wife.
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We got married in early September and moved to a house in the
San Fernando Valley. I was given an office right next to Prof.
Robert Greene. It was a small office but very nice. Best of all, I
could talk with Robert and other faculty members. Marriage
proved to be truly enjoyable, so much so that within a couple of
weeks, I was able to put all my ideas together to find a proof of
the Calabi conjecture.
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Life was good, as they say. The proof of the Calabi conjecture
looked beautiful to me, especially after such a long struggle. It was
extremely satisfying to be the first person to understand such a
proof, and I felt certain that it would eventually be important in
physics. There is a poem that conveys some of what I was feeling:

In the spring, the flowers are falling while I was watching
alone. The pair of birds ( swallows) were flying together
in the light rain.

I felt that I was truly mingled with nature.
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But then I got practical. I remembered all of my earlier efforts to
disprove the Calabi conjecture. Each of the supposed
counterexamples I had gathered turned out to be theorems for
which I now had a proof, and many of these statements were
important.
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In September of 1976, David Mumford gave a seminar talk at
UCLA on solitons. I attended that lecture and another lecture he
gave at UC Irvine. There he discussed a conjecture related to the
work of Bogomolov about some inequalities between topological
numbers of algebraic surfaces. After staring at it, I realized it was
exactly a consequence of the Calabi conjecture I mentioned above.
I had used that same inequality about three years ago in my
attempt to disprove the Calabi conjecture. (This idea was inspired
by works of Hitchin and Grey.) So I told Mumford about it.
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I double checked it at home and sent the details to Mumford a
week later. I was gratified that the expected inequality turned out
to be true. But I was also able to prove a further result that led to
a solution of the famous Severi conjecture, which concerns the
algebraic structure of the so-called “projective space”. This
conjecture can be viewed as the Poincaré conjecture in an algebraic
setting.
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The math department at UCLA provided me with a comfortable
space to develop my thinking. Within a month or so, I met Bill
Meeks, and we immediately got involved in a major development
on minimal surfaces, which related geometry with topology. It was
used to solve the Smith conjecture later.

Hence, in the period of less than a year, I managed to solve several
major mathematical problems. Needless to say, it was the most
fruitful year in my career, both personally and professionally.
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IV. String Theory

A couple of years later, when I visited my wife in San Diego, I got
several phone calls. Horowitz and his colleague Andy Strominger
said that they were very excited about a model for describing the
vacuum state of the universe, based on a new theory called string
theory.

Kaluza-Klein garden hose
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String theory is built on the assumption that particles, at their
most basic level, are made of vibrating bits of tiny strings. In order
for the theory to be consistent with quantum theory, spacetime has
a certain symmetry built into it called supersymmetry. Spacetime
is also assumed to be ten dimensional.

Vibrating strings

30



Horowitz and Strominger were interested in the multidimensional
spaces whose existence I proved, mathematically, in my
confirmation of the Calabi conjecture. They believed that these
spaces could play an important role in string theory, as they
seemed to be endowed with the right kind of supersymmetry — a
property deemed essential to their theory. They asked me if their
assessment of the situation was correct and, to their delight, I told
them that it was.
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Ed Witten, whom I’d met in Princeton, was now collaborating with
Philip Candelas, Horowitz, and Strominger, trying to figure out the
shape, or geometry, of the six ”extra” dimensions of string theory.
The physicists believed these six dimensions were curled up in a
tiny space, which they called Calabi-Yau space — the same family
of spaces originally proposed by Calabi and later proved by me.

Witten
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String theory, again, assumes that spacetime has 10 dimensions
overall. The three large spatial dimensions that we’re familiar with,
plus time, make up the four-dimensional spacetime of Einstein’s
theory. But there are also six additional dimensions hidden away in
Calabi-Yau space, and this invisible space exists at every point in
”real space,” according to the theory, even though we can’t see it.
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The existence of this extra-dimensional space is fantastic on its
own, but string theory goes much farther. It says that the exact
shape, or geometry, of Calabi-Yau space dictates the properties of
our universe and the kind of physics we see. The shape of
Calabi-Yau space — or the ”shape of inner space,” as we put it in
our book —determines the kinds of particles that exist, their
masses, the ways in which they interact, and maybe even the
constants of nature.
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While Einstein had said the phenomenon of gravity is really a
manifestation of geometry, string theorists boldly proclaimed that
the physics of our universe is a consequence of the geometry of
Calabi-Yau space. That’s why string theorists were so anxious to
figure out the precise shape of this six —dimensional space — a
problem we’re still working on today.
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The great excitement over Calabi-Yau spaces started in 1984, when
physicists first found out about them. That enthusiasm kept up for
a couple years, before waning. But the excitement picked up again
in the late 1980s, when Brian Greene, Ronen Plesser, Candelas,
and others began exploring the notion of ”mirror symmetry.”

Greene Plesser
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The basic idea here was that two different Calabi-Yau spaces,
which had different topologies and seemed to have nothing in
common, nevertheless gave rise to the same physics. This
established a previously unknown kinship between so-called mirror
pairs of Calabi-Yau’s.
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The connection uncovered through physics proved to be extremely
powerful in the hands of mathematicians. When they were
stumped trying to solve a problem involving one Calabi-Yau space,
they could try solving the same problem on its mirror pair. On
many occasions, this approach was successful. As a result,
problems that had defied resolution, sometimes for as long as a
century, were now being solved. And a branch of mathematics
called enumerative geometry was suddenly rejuvenated. These
advances gave mathematicians greater respect for physicists, as
well as greater respect for string theory itself.
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V. Conclusion

Before we get too carried away, we should bear in mind that string
theory, as the name suggests, is just a theory. It has not been
confirmed by physical experiments, nor have any experiments yet
been designed that could put that theory to a definitive test. So
the jury is still out on the question of whether string theory
actually describes nature, which was the original intent.
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On the positive side of the ledger, some extremely intriguing, as
well as powerful, mathematics has been inspired by string theory.
Mathematical formulae developed through this connection have
proved to be correct independent of the scientific validity of string
theory. So far it stands as the only consistent theory that unifies
the different forces. And it is beautiful. Moreover, the effort to
unify the different forces of nature has unexpectedly led to the
unification of different areas mathematics that at one time seemed
unrelated.
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We still don’t know what the final word will be. In the past two
thousand years, the concept of geometry has evolved over several
important stages to the current state of modern geometry. Each
time geometry has been transformed in a major way, the new
version has incorporated our improved understanding of nature
arrived at through advances in theoretical physics. It seems likely
that we shall witness another major development in the 21st
century, the advent of quantum geometry— a geometry that can
incorporate quantum physics in the small and general relativity in
the large.
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The fact that abstract mathematics can reveal so much about
nature is something I find both mysterious and fascinating. This is
one of the ideas that my coauthor and I have tried to get across in
our book, The Shape of Inner Space. We also hope that the book
gives you a description of how mathematicians work. They are not
necessarily weird people, such as a janitor who solves centuries-old
math problems on the side while mopping and dusting floors, as
described in the movie “Good Will Hunting”. Nor does a brilliant
mathematician have to be mentally ill, or exhibit otherwise bizarre
behavior, as depicted in another popular movie and book.
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Mathematicians are just scientists who look at nature from a
different, more abstract point of view than the empiricists. But the
work mathematicians do is still based on the truth and beauty of
nature, the same as it is in physics. Our book tries to convey the
thrill of working at the interface between mathematics and physics,
showing how important ideas flow through different disciplines,
with the result being the birth of new and important subjects.
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In the case of string theory, geometry and physics have come
together to produce some beautiful mathematics, as well as some
very intriguing physics. The mathematics is so beautiful, in fact,
and it has branched out into so many different areas, that it makes
you wonder whether the physicists might be onto something after
all.

The story is still unfolding, to be sure, and I consider myself lucky
to have been part of it.
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