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1 Ising model
phase transition
conformal invariance at criticality?

2 crossing probabilities
critical Ising model
critical percolation
level lines of the Gaussian free field
(double-dimer pairings)
(multichordal loop-erased random walks / UST branches)

3 scaling limits of interfaces: SLE variants
chordal SLEκ
multiple SLEs
partition functions
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I :   

[Lenz & Ising ’20s, Peierls 30’s, Kramers, Wannier, Onsager 40’s →]

random spins σx = ±1 at vertices x of a graph
nearest neighbor interaction: P [config.] ∝ exp

(
1
T

∑
x∼y σxσy

)
phase transition at critical temperature T = Tc

look at correlation of a pair of spins at x and y
C(x, y) = E [σxσy] − E [σx] E [σy] when |x − y| >> 1:

T < Tc

C(x, y) ∼ const.

T = Tc

C(x, y) ∼ |x − y|−β
Tc < T

C(x, y) ∼ e−
1
ξ |x−y|

scaling limit at critical temperature Tc: conformal invariance
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C     I 

consider critical Ising model on a graph (e.g. square grid)
take marked points x1, . . . , x2N on the boundary
impose alternating ⊕/	 boundary conditions

=⇒ N macroscopic interfaces connect the marked points pairwise

possible connectivities labeled by planar pair partitions α ∈ LPN

What are the probabilities of the various connectivities?
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E –  
Proposition [Izyurov ’11]

lim
δ→0
P [ there exists a left-right ⊕ crossing ]

=

(∫ 1

0

s2/3(1 − s)2/3

1 − s + s2

)−1 (∫ λ

0

s2/3(1 − s)2/3

1 − s + s2

)
Proof: multi-point discrete holomorphic observable

+ FK-duality

where ϕ : Ω→ H, ϕ(x4) = ∞

λ =
ϕ(x1) − ϕ(x2)
ϕ(x3) − ϕ(x2)

conjectured in physics literature
[Cardy ’80’s; Bauer, Bernard, Kytölä ’05]

x1

x2 x3

x4

[Izyurov ’14]: convergence of 2N−1 connectivity events
BUT there are CN := 1

N+1

(
2N
N

)
∼ 4N

N3/2 √π
events in total
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C    I 

discrete polygons (Ωδ; xδ1 , . . . , x
δ
2N) Ωδ ⊂ δZ2

(Ωδ; xδ1 , . . . , x
δ
2N)

δ→0
−→ (Ω; x1, . . . , x2N) in the Carathéodory sense

Theorem [P. & Wu ’18]
For the critical Ising model on Ωδ with alternating boundary
conditions, for all connectivities α ∈ LPN , we have

lim
δ→0
P [ connectivity of interfaces = α] =

Z (κ=3)
α (Ω; x1, . . . , x2N)

Z (N)
Ising(Ω; x1, . . . , x2N)

Z (N)
Ising :=

∑
α∈LPN Z

(κ=3)
α = pf

(
(x j − xi)−1

)
i, j

{Z (κ=3)
α : α ∈ LPN} “pure partition functions”

Main inputs to the proof:

convergence of interfaces to SLE3 variants

good control of the martingale Zα/ZIsing
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C    I 
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C    

discrete polygons (Ωδ; xδ1 , . . . , x
δ
2N) Ωδ ⊂ δT2

(Ωδ; xδ1 , . . . , x
δ
2N)

δ→0
−→ (Ω; x1, . . . , x2N) in the Carathéodory sense

Theorem [P. & Wu ’18]
For the critical Bernoulli percolation on Ωδ with alternating
boundary conditions, for all connectivities α ∈ LPN , we have

lim
δ→0
P [ connectivity of interfaces = α] =

Z (κ=6)
α (Ω; x1, . . . , x2N)

Z (N)
perco(Ω; x1, . . . , x2N)

Z (N)
perco :=

∑
α∈LPN Z

(κ=6)
α = 1

{Z (κ=6)
α : α ∈ LPN} “pure partition functions”

Main inputs to the proof:

convergence of interfaces to SLE6 variants

good control of the martingale Zα/Zperco 6



C      GFF

x1 x2 x3 x4 x5 x6−λ +λ −λ +λ −λ +λ −λ
Theorem [Kenyon & Wilson ’11, P. & Wu ’17]
For the Gaussian free field with alternating boundary data, for all
connectivities α ∈ LPN , we have (KW: similar result for double-dimers)

P [ connectivity of level lines = α] =
Z (κ=4)
α (Ω; x1, . . . , x2N)

Z (N)
GFF(Ω; x1, . . . , x2N)

Z (N)
GFF :=

∑
α∈LPN Z

(κ=4)
α =

∏
i< j

(x j − xi)
1
2 (−1) j−i

{Z (κ=4)
α : α ∈ LPN} “pure partition functions”

Main inputs to the proof:

level lines: multiple SLE4

good control of the martingale Zα/ZGFF

© Schramm & Sheffield
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M SLE     L, D

Theorem [Flores & Kleban ’15, Kytölä & P. ’15, P. & Wu ’17, Wu ’18]
(Proved so far for κ ∈ (0, 6].) There exists a unique collection {Zα}

of functions with properties PDE, COV, ASY, and a growth bound.

Pure partition functions form a basis {Zα}α∈LPN for a space of
smooth positive functions of 2N real variables x1 < · · · < x2N .

(PDE): system of 2N partial differential equations κ2 ∂2

∂x2j
+

∑
i, j

(
2

xi − x j

∂

∂xi
−

6/κ − 1
(xi − x j)2

)Z(x1, . . . , x2N) = 0 ∀ 1 ≤ j ≤ 2N

(COV): conformal covariance
Z

(
f (x1), . . . , f (x2N)

)
=

∏
j

∣∣∣ f ′(x j)
∣∣∣ κ−62κ ×Z(x1, . . . , x2N)

(ASY): specific asymptotics
|x j+1 − x j|

6−κ
κ Zα(x1, . . . , x2N)

x j , x j+1 → ξ

−→

Zα\{ j, j+1}(x1, . . . , x j−1, x j+2, . . . , x2N) if { j, j + 1} ∈ α

0 if { j, j + 1} < α

(PLB): power law bound
8



C    I 

discrete polygons (Ωδ; xδ1 , . . . , x
δ
2N) Ωδ ⊂ δZ2

(Ωδ; xδ1 , . . . , x
δ
2N)

δ→0
−→ (Ω; x1, . . . , x2N) in the Carathéodory sense

Theorem [P. & Wu ’18]
For the critical Ising model on Ωδ with alternating boundary
conditions, for all connectivities α ∈ LPN , we have

lim
δ→0
P [ connectivity of interfaces = α] =

Z (κ=3)
α (Ω; x1, . . . , x2N)

Z (N)
Ising(Ω; x1, . . . , x2N)

Z (N)
Ising :=

∑
α∈LPN Z

(κ=3)
α = pf

(
(x j − xi)−1

)
i, j

{Z (κ=3)
α : α ∈ LPN} “pure partition functions”

Main inputs to the proof:

convergence of interfaces to SLE3 variants

good control of the martingale Zα/ZIsing 9



P 

→

9



P :  

WLOG: assume {1, 2} ∈ α.
consider scaling limit η12 of Ising interface starting from x1:

dWt =
√
3 dBt + 3 ∂1 logZIsing(Wt,V2

t ,V
3
t , . . . ,V

2N
t )dt

dV i
t =

2dt
V i

t −Wt
, V i

0 = xi, for i , 1, W0 = x1

(convergence of discrete interface: [Izyurov ’15; P. & Wu ’18])

pure partition function Zα gives bounded martingale

Mt :=
Zα(Wt,V2

t ,V
3
t , . . . ,V

2N
t )

ZIsing(Wt,V2
t ,V

3
t , . . . ,V

2N
t )

Main proposition: [P. & Wu ’18] at continuation threshold T ,

Mt
t→T
−→ 1{η12(T ) = x2}

Zα̂(V3
T , . . . ,V

2N
T )

Z (N−1)
Ising (V3

T , . . . ,V
2N
T )

=: MT

therefore, by the optional stopping theorem,
Zα (x1, x2, x3, . . . , x2N)

ZIsing (x1, x2, x3, . . . , x2N)
= M0 = E[MT ]
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P :   N

Induction hypothesis: for Ising model with N − 1 interfaces,

lim
δ→0
P [α̂] =

Zα̂(x3, . . . , x2N)

Z (N−1)
Ising (x3, . . . , x2N)

Then: optional stopping argument + technical details give
Zα (x1, x2, x3, . . . , x2N)

ZIsing (x1, x2, x3, . . . , x2N)
= E[MT ]

= E

1{η12(T ) = x2}
Zα̂(V3

T , . . . ,V
2N
T )

Z (N−1)
Ising (V3

T , . . . ,V
2N
T )


= E

[
1{η12(T ) = x2} lim

δ→0
P [α̂]

]
= lim

δ→0
E

[
1{ηδ12 terminates at xδ2} E [α | ηδ12]

]
= lim

δ→0
P [α]

11



   

κ 
  

dWt =
√
κ dBt + κ ∂1logZ

(
Wt,V2

t ,V
3
t , . . . ,V

2N
t

)
dt

11



S    I 

Dobrushin boundary conditions: ∂Ωδ = {⊕ segment}
⋃
{	 segment}

interface of Ising model
δ→0
−→ Schramm-Loewner evolution, SLE3

NB: Convergence in the topology of curves (and driving functions)
[Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov ’14]

Proof: tightness (RSW type estimates) + discrete holomorphic observable 12



S    I  (I)

x1

x2

x3

x4

x5

x6

fix discrete domain data (Ωδ; xδ1 , . . . , x
δ
2N)

consider critical Ising model in
Ωδ ⊂ δZ2 with alternating ⊕/	 b.c.

let (Ωδ; xδ1 , . . . , x
δ
2N)

δ→0
−→ (Ω; x1, . . . , x2N)

in the Carathéodory sense

condition on the event that the
interfaces connect the boundary points
according to a given connectivity α

Theorem [Beffara, P. & Wu ’18]
The law of the N macroscopic interfaces of the critical Ising model
converges in the scaling limit δ→ 0 to the N-SLEκ with κ = 3.

Wu [arXiv:1703.02022] Proof: convergence for N = 1 and
Beffara, P. & Wu [arXiv:1801.07699] classification of multiple SLE3
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S    I  (I)

consider critical Ising model in
Ωδ ⊂ δZ2 with alternating ⊕/	 b.c.

condition on having given connectivity α

Theorem [Beffara, P. & Wu ’18]

Ising interfaces
δ→0
−→ N-SLE3 associated to α

On (H; x1, . . . , x2N) the marginal law of the curve starting from
x1 is given by the Loewner chain with driving process

dWt =
√
3 dBt + 3 ∂1logZα

(
Wt,V2

t ,V
3
t , . . . ,V

2N
t

)
dt, W0 = x1

dV i
t =

2dt
V i

t −Wt
, V i

0 = xi, for i , 1

Almost surely generated by a continuous transient curve,
which hits the boundary only at its endpoint, determined by α.

P. & Wu [arXiv:1703.00898] Proof: control drift + compare with chordal SLE
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G  SLEκ,  N-SLEκ

family of random curves in
(Ω; x1, . . . , x2N)

various connectivities encoded in
planar pair partitions α ∈ LPN

unique “pure” measure for each α:

xbj

CL
j

CR
j

xaj

Theorem [Beffara, P. & Wu ’18]
Let κ ∈ (0, 4] ∪ {16/3, 6}. For any fixed connectivity α of 2N points,

there exists a unique probability measure on N curves
such that

conditionally on N − 1 of the curves, the remaining one is
the chordal SLEκ in the random domain where it can live.

Dubédat (2006); Kozdron & Lawler (2007–2009); Miller & Sheffield (2016);
Miller, Sheffield & Werner (2018); P. & Wu (2017); Beffara, P. & Wu (2018)

Proof: Markov chain on space of curve families 15



S    I  (II)

x1

x2

x3

x4

x5

x6

consider critical Ising model in
Ωδ ⊂ δZ2 with alternating ⊕/	 b.c.

let (Ωδ; xδ1 , . . . , x
δ
2N)

δ→0
−→ (Ω; x1, . . . , x2N)

allow any connectivity of the interfaces

Theorem [Izyurov ’15]

Ising interfaces
δ→0
−→ (local) multiple SLE3

Proof: multi-point holomorphic observable

Scaling limit of the interface starting from x1
is given by the Loewner chain with driving process

dWt =
√
3 dBt + 3 ∂1logZIsing

(
Wt,V2

t ,V
3
t , . . . ,V

2N
t

)
dt, W0 = x1

dV i
t =

2dt
V i

t −Wt
, V i

0 = xi, for i , 1

LOCAL: A priori, holds only before blow-up

16
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S    I  (II)

consider critical Ising model in
Ωδ ⊂ δZ2 with alternating ⊕/	 b.c.

allow any connectivity of the interfaces

Theorem [Izyurov ’15]

Ising interfaces
δ→0
−→ (local) multiple SLE3

dWt =
√
3 dBt + 3 ∂1logZIsing

(
Wt,V2

t ,V
3
t , . . . ,V

2N
t

)
dt

Proposition: “Globality of the scaling limit” [P. & Wu ’18]
1 Convergence holds also in the space of curves.
2 Scaling limit is a.s. a continuous transient curve, that hits

the boundary only at its endpoint = one of the marked points.

Proof: 1. RSW bounds by [Chelkak, Duminil-Copin & Hongler ’16]
+ results of [Aizenman & Burchard ’99; Kemppainen & Smirnov ’17]

2. control drift + compare with chordal SLE [arXiv:1808.09438] 16



R     (I)  (II)

(I): conditionally on given connectivity α:
interfaces

δ→0
−→ N-SLE3 associated to α,

which has (pure) partition function Zα

(II): allow any connectivity of the interfaces:
interfaces

δ→0
−→ multiple SLE3 with partition function ZIsing

dWt =
√
3 dBt + 3 ∂1logZ

(
Wt,V2

t ,V
3
t , . . . ,V

2N
t

)
dt

Lemma [Kytölä & P. ’16, P. & Wu ’17]

ZIsing := pf
(

1
x j − xi

)
i, j

=
∑
α

Zα
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Proof: uniqueness of partition functions using
ideas of [Dubédat ’06; Kozdron & Lawler ’07] + PDE results [Flores & Kleban ’15]
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