Crossing Probabilities of Multiple Ising Interfaces

Eveliina Peltola

Université de Genève; Section de Mathématiques < eveliina.peltola@unige.ch >

January 11, 2019

Joint work with Hao Wu

(Yau Mathematical Sciences Center, Tsinghua University)

Analysis and Geometry of Random Shapes @ IPAM, UCLA

Ising model

- phase transition
- conformal invariance at criticality?
- Crossing probabilities
 - critical Ising model
 - critical percolation
 - level lines of the Gaussian free field
 - (double-dimer pairings)
 - (multichordal loop-erased random walks / UST branches)
- Scaling limits of interfaces: SLE variants
 - chordal SLE_κ
 - multiple SLEs
 - partition functions

ISING MODEL

ON THE PLANE

Ising model: ferromagnetic phase transition

[Lenz & Ising '20s, Peierls 30's, Kramers, Wannier, Onsager 40's \rightarrow]

- random spins $\sigma_x = \pm 1$ at vertices x of a graph
- nearest neighbor interaction: $\mathbb{P}[\text{config.}] \propto \exp\left(\frac{1}{T}\sum_{x \sim y} \sigma_x \sigma_y\right)$
- phase transition at critical temperature $T = T_c$

look at correlation of a pair of spins at *x* and *y* $C(x, y) = \mathbb{E}[\sigma_x \sigma_y] - \mathbb{E}[\sigma_x] \mathbb{E}[\sigma_y]$ when |x - y| >> 1:

 $T < T_c$ $C(x, y) \sim \text{const.}$

$$T = T_c$$
$$C(x, y) \sim |x - y|^{-1}$$

 $T_c < T$ $C(x, y) \sim e^{-\frac{1}{\xi}|x-y|}$

Ising model: ferromagnetic phase transition

[Lenz & Ising '20s, Peierls 30's, Kramers, Wannier, Onsager 40's \rightarrow]

- random spins $\sigma_x = \pm 1$ at vertices x of a graph
- nearest neighbor interaction: $\mathbb{P}[\text{config.}] \propto \exp\left(\frac{1}{T}\sum_{x \sim y} \sigma_x \sigma_y\right)$
- phase transition at critical temperature $T = T_c$

look at correlation of a pair of spins at *x* and *y* $C(x, y) = \mathbb{E}[\sigma_x \sigma_y] - \mathbb{E}[\sigma_x] \mathbb{E}[\sigma_y]$ when |x - y| >> 1:

 $C(x, y) \sim \text{const.}$

 $T_c < T$ $C(x, y) \sim e^{-\frac{1}{\xi}|x-y|}$

• scaling limit at critical temperature T_c : conformal invariance

CROSSING PROBABILITIES

CROSSING PROBABILITIES IN THE CRITICAL ISING MODEL

- consider critical Ising model on a graph (e.g. square grid)
- take marked points x_1, \ldots, x_{2N} on the boundary
- impose alternating \oplus / \ominus boundary conditions
- \implies N macroscopic interfaces connect the marked points pairwise

CROSSING PROBABILITIES IN THE CRITICAL ISING MODEL

- consider critical Ising model on a graph (e.g. square grid)
- take marked points x_1, \ldots, x_{2N} on the boundary
- impose alternating \oplus / \ominus boundary conditions
- $\implies N$ macroscopic interfaces connect the marked points pairwise
 - possible connectivities labeled by planar pair partitions $\alpha \in LP_N$

CROSSING PROBABILITIES IN THE CRITICAL ISING MODEL

- consider critical Ising model on a graph (e.g. square grid)
- take marked points x_1, \ldots, x_{2N} on the boundary
- impose alternating \oplus / \ominus boundary conditions
- $\implies N$ macroscopic interfaces connect the marked points pairwise
 - possible connectivities labeled by planar pair partitions $\alpha \in LP_N$

What are the probabilities of the various connectivities?

Examples – previous work

Proposition

[Izyurov '11]

 $\lim_{\delta \to 0} \mathbb{P} \left[\text{ there exists a left-right } \oplus \text{ crossing } \right] \\= \left(\int_0^1 \frac{s^{2/3} (1-s)^{2/3}}{1-s+s^2} \right)^{-1} \left(\int_0^\lambda \frac{s^{2/3} (1-s)^{2/3}}{1-s+s^2} \right)$

Proof: multi-point discrete holomorphic observable + FK-duality

• where
$$\varphi \colon \Omega \to \mathbb{H}, \ \varphi(x_4) = \infty$$

$$\lambda = \frac{\varphi(x_1) - \varphi(x_2)}{\varphi(x_3) - \varphi(x_2)}$$

• conjectured in physics literature [Cardy '80's; Bauer, Bernard, Kytölä '05]

Examples – previous work

Proposition

[Izyurov '11]

 $\lim_{\delta \to 0} \mathbb{P} \left[\text{ there exists a left-right } \oplus \text{ crossing } \right] \\= \left(\int_0^1 \frac{s^{2/3} (1-s)^{2/3}}{1-s+s^2} \right)^{-1} \left(\int_0^\lambda \frac{s^{2/3} (1-s)^{2/3}}{1-s+s^2} \right)$

Proof: multi-point discrete holomorphic observable + FK-duality

• where
$$\varphi \colon \Omega \to \mathbb{H}, \ \varphi(x_4) = \infty$$

$$\lambda = \frac{\varphi(x_1) - \varphi(x_2)}{\varphi(x_3) - \varphi(x_2)}$$

 conjectured in physics literature [Cardy '80's; Bauer, Bernard, Kytölä '05]

- [Izyurov '14]: convergence of 2^{N-1} connectivity events
- BUT there are $C_N := \frac{1}{N+1} {\binom{2N}{N}} \sim \frac{4^N}{N^{3/2} \sqrt{\pi}}$ events in total

MAIN THEOREM(S)

© Schramm & Sheffield

CROSSING PROBABILITIES OF MULTIPLE ISING INTERFACES

• discrete polygons $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta})$ $\Omega^{\delta} \subset \delta \mathbb{Z}^2$

• $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta}) \xrightarrow{\delta \to 0} (\Omega; x_1, \dots, x_{2N})$ in the Carathéodory sense

Theorem

[P. & Wu '18]

For the critical **Ising model** on Ω^{δ} with alternating boundary conditions, for all connectivities $\alpha \in LP_N$, we have

 $\lim_{\delta \to 0} \mathbb{P}\left[\text{ connectivity of interfaces } = \alpha \right] =$

$$\frac{\mathcal{Z}_{\alpha}^{(\kappa=3)}(\Omega; x_1, \dots, x_{2N})}{\mathcal{Z}_{\text{Ising}}^{(N)}(\Omega; x_1, \dots, x_{2N})}$$

•
$$\mathcal{Z}_{\text{Ising}}^{(N)} := \sum_{\alpha \in \text{LP}_N} \mathcal{Z}_{\alpha}^{(\kappa=3)} = \text{pf}\left((x_j - x_i)^{-1}\right)_{i,j}$$

• $\{\mathcal{Z}_{\alpha}^{(\kappa=3)}: \alpha \in \mathrm{LP}_N\}$ "pure partition functions"

CROSSING PROBABILITIES OF MULTIPLE ISING INTERFACES

• discrete polygons $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta})$ $\Omega^{\delta} \subset \delta \mathbb{Z}^2$

• $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta}) \xrightarrow{\delta \to 0} (\Omega; x_1, \dots, x_{2N})$ in the Carathéodory sense

Theorem

[P. & Wu '18]

For the critical **Ising model** on Ω^{δ} with alternating boundary conditions, for all connectivities $\alpha \in LP_N$, we have

 $\lim_{\delta \to 0} \mathbb{P}\left[\text{ connectivity of interfaces } = \alpha \right] =$

$$\frac{\mathcal{Z}_{\alpha}^{(\kappa=3)}(\Omega; x_1, \dots, x_{2N})}{\mathcal{Z}_{\text{Ising}}^{(N)}(\Omega; x_1, \dots, x_{2N})}$$

•
$$\mathcal{Z}_{\text{Ising}}^{(N)} := \sum_{\alpha \in \text{LP}_N} \mathcal{Z}_{\alpha}^{(\kappa=3)} = \text{pf}\left((x_j - x_i)^{-1}\right)_{i,j}$$

•
$$\{\mathcal{Z}_{\alpha}^{(\kappa=3)}: \alpha \in LP_N\}$$
 "pure partition functions"

Main inputs to the proof:

- convergence of interfaces to SLE₃ variants
- good control of the martingale $Z_{\alpha}/Z_{\text{Ising}}$

CROSSING PROBABILITIES OF PERCOLATION INTERFACES

• discrete polygons $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta})$ $\Omega^{\delta} \subset \delta \mathbb{T}^2$

• $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta}) \xrightarrow{\delta \to 0} (\Omega; x_1, \dots, x_{2N})$ in the Carathéodory sense

Theorem

[P. & Wu '18]

For the critical **Bernoulli percolation** on Ω^{δ} with alternating boundary conditions, for all connectivities $\alpha \in LP_N$, we have

 $\lim_{\delta \to 0} \mathbb{P} \left[\text{ connectivity of interfaces} = \alpha \right] =$

$$\frac{\mathcal{Z}_{\alpha}^{(\kappa=6)}(\Omega; x_1, \dots, x_{2N})}{\mathcal{Z}_{\text{perco}}^{(N)}(\Omega; x_1, \dots, x_{2N})}$$

•
$$\mathcal{Z}_{\text{perco}}^{(N)} := \sum_{\alpha \in \text{LP}_N} \mathcal{Z}_{\alpha}^{(\kappa=6)} = 1$$

•
$$\{\mathcal{Z}_{\alpha}^{(\kappa=6)}: \alpha \in LP_N\}$$
 "pure partition functions"

Main inputs to the proof:

- convergence of interfaces to SLE₆ variants
- good control of the martingale Z_{α}/Z_{perco}

Theorem [Flores & Kleban '15, Kytölä & P. '15, P. & Wu '17, Wu '18] (Proved so far for $\kappa \in (0, 6]$.) There exists a unique collection $\{Z_{\alpha}\}$ of functions with properties PDE, COV, ASY, and a growth bound.

Pure partition functions form a basis $\{Z_{\alpha}\}_{\alpha \in LP_N}$ for a space of **smooth positive** functions of 2*N* real variables $x_1 < \cdots < x_{2N}$.

(PDE): system of 2N partial differential equations

$$\left\{\frac{\kappa}{2}\frac{\partial^2}{\partial x_j^2} + \sum_{i\neq j} \left(\frac{2}{x_i - x_j}\frac{\partial}{\partial x_i} - \frac{6/\kappa - 1}{(x_i - x_j)^2}\right)\right\} \mathcal{Z}(x_1, \dots, x_{2N}) = 0 \qquad \forall \ 1 \le j \le 2N$$

(COV): conformal covariance

$$\mathcal{Z}(f(x_1),\ldots,f(x_{2N})) = \prod_{i=1}^{N} |f'(x_i)|^{\frac{k-6}{2k}} \times \mathcal{Z}(x_1,\ldots,x_{2N})$$

(ASY): specific asymptotics

$$\begin{aligned} |x_{j+1} - x_j| &\stackrel{6-\kappa}{\kappa} \quad \mathcal{Z}_{\alpha}(x_1, \dots, x_{2N}) \\ \xrightarrow{x_j, x_{j+1} \to \xi} & \begin{cases} \mathcal{Z}_{\alpha \setminus [j, j+1]}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}) & \text{if } \{j, j+1\} \in \alpha \\ 0 & \text{if } \{j, j+1\} \notin \alpha \end{cases} \xrightarrow{\xi \to \xi} \end{aligned}$$

CROSSING PROBABILITIES OF MULTIPLE ISING INTERFACES

• discrete polygons $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta})$ $\Omega^{\delta} \subset \delta \mathbb{Z}^2$

• $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta}) \xrightarrow{\delta \to 0} (\Omega; x_1, \dots, x_{2N})$ in the Carathéodory sense

Theorem

[P. & Wu '18]

For the critical **Ising model** on Ω^{δ} with alternating boundary conditions, for all connectivities $\alpha \in LP_N$, we have

 $\lim_{\delta \to 0} \mathbb{P}\left[\text{ connectivity of interfaces } = \alpha \right] =$

$$\frac{\mathcal{Z}_{\alpha}^{(\kappa=3)}(\Omega; x_1, \dots, x_{2N})}{\mathcal{Z}_{\text{Ising}}^{(N)}(\Omega; x_1, \dots, x_{2N})}$$

•
$$\mathcal{Z}_{\text{Ising}}^{(N)} := \sum_{\alpha \in \text{LP}_N} \mathcal{Z}_{\alpha}^{(\kappa=3)} = \text{pf}\left((x_j - x_i)^{-1}\right)_{i,j}$$

•
$$\{\mathcal{Z}_{\alpha}^{(\kappa=3)}: \alpha \in LP_N\}$$
 "pure partition functions"

Main inputs to the proof:

- convergence of interfaces to SLE₃ variants
- good control of the martingale $\mathcal{Z}_{\alpha}/\mathcal{Z}_{\text{Ising}}$

Proof ideas

PROOF IDEA: MARTINGALE ARGUMENT

- WLOG: assume $\{1, 2\} \in \alpha$.
- consider scaling limit η_{12} of Ising interface starting from x_1 :

 $\mathrm{d}W_t = \sqrt{3} \,\mathrm{d}B_t + 3 \,\partial_1 \log \mathcal{Z}_{\mathrm{Ising}}(W_t, V_t^2, V_t^3, \dots, V_t^{2N}) \mathrm{d}t$

$$dV_t^i = \frac{2dt}{V_t^i - W_t}, \qquad V_0^i = x_i, \text{ for } i \neq 1, \quad W_0 = x_1$$

(convergence of discrete interface: [Izyurov '15; P. & Wu '18])

Proof idea: martingale argument

- WLOG: assume $\{1, 2\} \in \alpha$.
- consider scaling limit η_{12} of Ising interface starting from x_1 :

 $\mathrm{d}W_t = \sqrt{3} \,\mathrm{d}B_t + 3\,\partial_1 \log \mathcal{Z}_{\mathrm{Ising}}(W_t, V_t^2, V_t^3, \dots, V_t^{2N})\mathrm{d}t$

$$dV_t^i = \frac{2dt}{V_t^i - W_t}, \qquad V_0^i = x_i, \text{ for } i \neq 1, \quad W_0 = x_1$$

(convergence of discrete interface: [Izyurov '15; P. & Wu '18])

• pure partition function \mathcal{Z}_{α} gives **bounded martingale**

$$M_t := \frac{Z_{\alpha}(W_t, V_t^2, V_t^3, \dots, V_t^{2N})}{Z_{\text{Ising}}(W_t, V_t^2, V_t^3, \dots, V_t^{2N})}$$

PROOF IDEA: MARTINGALE ARGUMENT

- WLOG: assume $\{1, 2\} \in \alpha$.
- consider scaling limit η_{12} of Ising interface starting from x_1 :

 $\mathrm{d}W_t = \sqrt{3} \,\mathrm{d}B_t + 3\,\partial_1 \log \mathcal{Z}_{\mathrm{Ising}}(W_t, V_t^2, V_t^3, \dots, V_t^{2N})\mathrm{d}t$

$$dV_t^i = \frac{2dt}{V_t^i - W_t}, \quad V_0^i = x_i, \text{ for } i \neq 1, \quad W_0 = x_1$$

(convergence of discrete interface: [Izyurov '15; P. & Wu '18])

• pure partition function \mathcal{Z}_{α} gives **bounded martingale**

$$M_t := \frac{\mathcal{Z}_{\alpha}(W_t, V_t^2, V_t^3, \dots, V_t^{2N})}{\mathcal{Z}_{\text{Ising}}(W_t, V_t^2, V_t^3, \dots, V_t^{2N})}$$

• Main proposition: [P. & Wu '18] at continuation threshold T,

$$M_t \xrightarrow{t \to T} 1\{\eta_{12}(T) = x_2\} \frac{\mathcal{Z}_{\hat{\alpha}}(V_T^3, \dots, V_T^{2N})}{\mathcal{Z}_{\text{Ising}}^{(N-1)}(V_T^3, \dots, V_T^{2N})} =: M_T$$

Proof idea: martingale argument

- WLOG: assume $\{1, 2\} \in \alpha$.
- consider scaling limit η_{12} of Ising interface starting from x_1 :

 $\mathrm{d}W_t = \sqrt{3} \,\mathrm{d}B_t + 3 \,\partial_1 \log \mathcal{Z}_{\mathrm{Ising}}(W_t, V_t^2, V_t^3, \dots, V_t^{2N}) \mathrm{d}t$

$$dV_t^i = \frac{2dt}{V_t^i - W_t}, \quad V_0^i = x_i, \text{ for } i \neq 1, \quad W_0 = x_1$$

(convergence of discrete interface: [Izyurov '15; P. & Wu '18])

• pure partition function \mathcal{Z}_{α} gives **bounded martingale**

$$M_t := \frac{\mathcal{Z}_{\alpha}(W_t, V_t^2, V_t^3, \dots, V_t^{2N})}{\mathcal{Z}_{\text{Ising}}(W_t, V_t^2, V_t^3, \dots, V_t^{2N})}$$

• Main proposition: [P. & Wu '18] at continuation threshold T,

$$M_t \xrightarrow{t \to T} 1\{\eta_{12}(T) = x_2\} \frac{\mathcal{Z}_{\hat{\alpha}}(V_T^3, \dots, V_T^{2N})}{\mathcal{Z}_{\text{Ising}}^{(N-1)}(V_T^3, \dots, V_T^{2N})} =: M_T$$

• therefore, by the optional stopping theorem,

$$\frac{\mathcal{Z}_{\alpha}(x_{1}, x_{2}, x_{3}, \dots, x_{2N})}{\mathcal{Z}_{\text{Ising}}(x_{1}, x_{2}, x_{3}, \dots, x_{2N})} = M_{0} = \mathbb{E}[M_{T}]$$

10

Proof idea: Induction on N

Induction hypothesis: for Ising model with N - 1 interfaces,

$$\lim_{\delta \to 0} \mathbb{P}\left[\hat{\alpha}\right] = \frac{\mathcal{Z}_{\hat{\alpha}}(x_3, \dots, x_{2N})}{\mathcal{Z}_{\text{Ising}}^{(N-1)}(x_3, \dots, x_{2N})}$$

Then: optional stopping argument + technical details give

$$\begin{aligned} \frac{\mathcal{Z}_{\alpha}\left(x_{1}, x_{2}, x_{3}, \dots, x_{2N}\right)}{\mathcal{Z}_{\text{Ising}}\left(x_{1}, x_{2}, x_{3}, \dots, x_{2N}\right)} &= \mathbb{E}[M_{T}] \\ &= \mathbb{E}\left[1\{\eta_{12}(T) = x_{2}\}\frac{\mathcal{Z}_{\hat{\alpha}}(V_{T}^{3}, \dots, V_{T}^{2N})}{\mathcal{Z}_{\text{Ising}}^{(N-1)}(V_{T}^{3}, \dots, V_{T}^{2N})}\right] \\ &= \mathbb{E}\left[1\{\eta_{12}(T) = x_{2}\}\lim_{\delta \to 0} \mathbb{P}\left[\hat{\alpha}\right]\right] \\ &= \lim_{\delta \to 0} \mathbb{E}\left[1\{\eta_{12}^{\delta} \text{ terminates at } x_{2}^{\delta}\} \mathbb{E}\left[\alpha \mid \eta_{12}^{\delta}\right]\right] \\ &= \lim_{\delta \to 0} \mathbb{P}\left[\alpha\right] \end{aligned}$$

SCALING LIMITS OF INTERFACES

SLE_K **VARIANTS** & **PARTITION FUNCTIONS** $dW_t = \sqrt{\kappa} dB_t + \kappa \partial_1 \log \mathcal{Z} \left(W_t, V_t^2, V_t^3, \dots, V_t^{2N} \right) dt$

Scaling limit of an Ising interface

Dobrushin boundary conditions: $\partial \Omega^{\delta} = \{ \oplus \text{ segment} \} \cup \{ \ominus \text{ segment} \}$

interface of Ising model $\xrightarrow{\delta \to 0}$ Schramm-Loewner evolution, SLE₃

<u>NB:</u> Convergence in the topology of curves (and driving functions) [Chelkak, Duminil-Copin, Hongler, Kemppainen, Smirnov '14] Proof: tightness (RSW type estimates) + discrete holomorphic observable

- fix discrete domain data $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta})$
- consider critical Ising model in

 $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ with alternating \oplus / \ominus b.c.

• let $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta}) \xrightarrow{\delta \to 0} (\Omega; x_1, \dots, x_{2N})$

in the Carathéodory sense

- fix discrete domain data $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta})$
- consider critical Ising model in

 $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ with alternating \oplus / \ominus b.c.

- let $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta}) \xrightarrow{\delta \to 0} (\Omega; x_1, \dots, x_{2N})$ in the Carathéodory sense
- *condition* on the event that the interfaces connect the boundary points according to a given connectivity *α*

Theorem

[Beffara, P. & Wu '18]

The law of the *N* macroscopic interfaces of the critical Ising model **converges in the scaling limit** $\delta \rightarrow 0$ **to the** *N*-SLE_{κ} **with** $\kappa = 3$.

Wu [arXiv:1703.02022] Beffara, P. & Wu [arXiv:1801.07699] Proof: convergence for N = 1 and classification of multiple SLE₃

- consider critical **Ising model** in $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ with alternating \oplus / \ominus b.c.
- *condition* on having given connectivity α

Theorem		[Beffara, P. & Wu '18]
Ising interfaces	$\overset{\delta \to 0}{\longrightarrow}$	N -SLE $_3$ associated to α

• consider critical **Ising model** in $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ with alternating \oplus / \ominus b.c.

• *condition* on having given connectivity α

Theorem		[Beffara, P. & Wu '18]
Ising interfaces	$\overset{\delta \to 0}{\longrightarrow}$	N -SLE $_3$ associated to α

• On $(\mathbb{H}; x_1, \dots, x_{2N})$ the marginal law of the curve starting from x_1 is given by the Loewner chain with driving process $dW_t = \sqrt{3} dB_t + 3 \partial_1 \log \mathcal{Z}_{\alpha} \left(W_t, V_t^2, V_t^3, \dots, V_t^{2N} \right) dt, \qquad W_0 = x_1$ $dV_t^i = \frac{2dt}{V_t^i - W_t}, \qquad V_0^i = x_i, \quad \text{for } i \neq 1$

• consider critical **Ising model** in $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ with alternating \oplus / \ominus b.c.

• *condition* on having given connectivity α

Theorem		[Beffara, P. & Wu '18]
Ising interfaces	$\overset{\delta \to 0}{\longrightarrow}$	N -SLE $_3$ associated to α

• On $(\mathbb{H}; x_1, \dots, x_{2N})$ the marginal law of the curve starting from x_1 is given by the Loewner chain with driving process $dW_t = \sqrt{3} dB_t + 3 \partial_1 \log \mathcal{Z}_{\alpha} \left(W_t, V_t^2, V_t^3, \dots, V_t^{2N} \right) dt, \qquad W_0 = x_1$ $dV_t^i = \frac{2dt}{V_t^i - W_t}, \qquad V_0^i = x_i, \quad \text{for } i \neq 1$

 Almost surely generated by a continuous transient curve, which hits the boundary only at its endpoint, determined by α.

P. & Wu [arXiv:1703.00898] Proof: control drift + compare with chordal SLE

GLOBAL MULTIPLE SLE_{κ}, aka N-SLE_{κ}

- family of random curves in $(\Omega; x_1, \ldots, x_{2N})$
- various connectivities encoded in planar pair partitions $\alpha \in LP_N$
- unique "pure" measure for each α :

Theorem

[Beffara, P. & Wu '18]

Let $\kappa \in (0, 4] \cup \{16/3, 6\}$. For any fixed connectivity α of 2N points, there exists a unique probability measure on N curves such that conditionally on N - 1 of the curves, the remaining one is the chordal SLE_{κ} in the random domain where it can live.

Dubédat (2006); Kozdron & Lawler (2007–2009); Miller & Sheffield (2016); Miller, Sheffield & Werner (2018); P. & Wu (2017); Beffara, P. & Wu (2018)

Proof: Markov chain on space of curve families 15

- consider critical **Ising model** in $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ with alternating \oplus / \ominus b.c.
- let $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta}) \xrightarrow{\delta \to 0} (\Omega; x_1, \dots, x_{2N})$
- allow any connectivity of the interfaces

Proof: multi-point holomorphic observable

- consider critical **Ising model** in $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ with alternating \oplus / \ominus b.c.
- let $(\Omega^{\delta}; x_1^{\delta}, \dots, x_{2N}^{\delta}) \xrightarrow{\delta \to 0} (\Omega; x_1, \dots, x_{2N})$
- allow any connectivity of the interfaces

Proof: multi-point holomorphic observable

Scaling limit of the interface starting from x_1 is given by the Loewner chain with driving process

$$dW_t = \sqrt{3} dB_t + 3 \partial_1 \log \mathcal{Z}_{\text{Ising}} \left(W_t, V_t^2, V_t^3, \dots, V_t^{2N} \right) dt, \qquad W_0 = x_1$$
$$dV_t^i = \frac{2dt}{V_t^i - W_t}, \qquad V_0^i = x_i, \quad \text{for } i \neq 1$$

LOCAL: A priori, holds only before blow-up

• consider critical **Ising model** in $\Omega^{\delta} \subset \delta \mathbb{Z}^2$ with alternating \oplus / \ominus b.c.

• allow any connectivity of the interfaces

Theorem		[Izyurov '15]
Ising interfaces $\frac{\delta}{-}$	$\xrightarrow{\to 0}$	(local) multiple SLE ₃

$$\mathrm{d}W_t = \sqrt{3} \,\mathrm{d}B_t + 3 \,\partial_1 \mathrm{log} \,\mathcal{Z}_{\mathrm{Ising}} \left(W_t, V_t^2, V_t^3, \dots, V_t^{2N}\right) \mathrm{d}t$$

Proposition: "Globality of the scaling limit"

[P. & Wu '18]

- Convergence holds also in the space of curves.
- Scaling limit is a.s. a continuous transient curve, that hits the boundary only at its endpoint = one of the marked points.

Proof: 1. RSW bounds by [Chelkak, Duminil-Copin & Hongler '16] + results of [Aizenman & Burchard '99; Kemppainen & Smirnov '17]
2. control drift + compare with chordal SLE [arXiv:1808.09438] (I): conditionally on given connectivity α : interfaces $\xrightarrow{\delta \to 0} N$ -SLE₃ associated to α , which has (pure) partition function \mathbb{Z}_{α}

$$\mathrm{d}W_t = \sqrt{3} \,\mathrm{d}B_t + 3 \,\partial_1 \mathrm{log} \,\mathcal{Z}\left(W_t, V_t^2, V_t^3, \dots, V_t^{2N}\right) \mathrm{d}t$$

[arXiv:1703.00898]

(I): conditionally on given connectivity α : interfaces $\xrightarrow{\delta \to 0} N$ -SLE₃ associated to α , which has (pure) partition function \mathbb{Z}_{α}

(II): allow any connectivity of the interfaces: interfaces $\xrightarrow{\delta \to 0}$ multiple SLE₃ with partition function $\mathcal{Z}_{\text{Ising}}$

$$\mathrm{d}W_t = \sqrt{3} \,\mathrm{d}B_t + 3 \,\partial_1 \mathrm{log} \,\mathcal{Z}\left(W_t, V_t^2, V_t^3, \dots, V_t^{2N}\right) \mathrm{d}t$$

[arXiv:1703.00898]

(I): conditionally on given connectivity α : interfaces $\xrightarrow{\delta \to 0} N$ -SLE₃ associated to α , which has (pure) partition function \mathbb{Z}_{α}

(II): allow any connectivity of the interfaces: interfaces $\xrightarrow{\delta \to 0}$ multiple SLE₃ with partition function $\mathcal{Z}_{\text{Ising}}$

$$\mathrm{d}W_t = \sqrt{3} \,\mathrm{d}B_t + 3 \,\partial_1 \mathrm{log}\,\mathcal{Z}\left(W_t, V_t^2, V_t^3, \dots, V_t^{2N}\right) \mathrm{d}t$$

Lemma [Kytölä & P. '16, P. & Wu '17]
$$\mathcal{Z}_{\text{Ising}} := \text{pf}\left(\frac{1}{x_j - x_i}\right)_{i,j} = \sum_{\alpha} \mathcal{Z}_{\alpha}$$

[[]arXiv:1703.00898]

Proof: uniqueness of partition functions using ideas of [Dubédat '06; Kozdron & Lawler '07] + PDE results [Flores & Kleban '15]