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Koch Snowflake

Image: Wikipedia
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Snowball

Image: Wikipedia
The intrinsic metric (shortest path metric) is bi-Lipschitz
equivalent to the Euclidean metric in R3.
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Snowball: abstract definition

Glue squares with same size.
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Uniformization theorem

Image: D. Meyer

Theorem (Koebe 1907, Poincaré 1907)

Every simply connected Riemann surface R is conformally
equivalent to C,U or Ĉ = C ∪ {∞}, i.e., there is an analytic
bijection f : R →M, where M = C,U, or Ĉ.

Corollary

The Brownian motion on any polyhedral surface homeomorphic to
S2 can be viewed as a time change of the Brownian motion on S2.
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Uniformization of a polyhedral approximation of Snowball
Can we view Brownian motion on snowball as a time change of the
Brownian motion on S2?

Image: Bowers and Stephenson 6 / 22



Can snowball be “conformally” mapped to Ĉ?
I Definition (Grötzsch 1928): A homeo f : (X , dX )→ (Y , dY )

is said to be K -quasiconformal (QC) if the dilitation [picture]

Hf (x , r) :=
sup {dY (f (x), f (z) : dX (x , z) ≤ r}
inf {dY (f (x), f (z) : dX (x , z) ≥ r}

,

satisfies
lim sup

r↓0
Hf (x , r) ≤ K for all x ∈ X .

I Fact: An orientation preserving homeo f : U → V between
domains U,V ⊂ C is 1-QC if and only if it is conformal
(Menshov 1937).

I Defintion (Ahlfors, Beurling 1956): A homeomorphism
f : (X , dX )→ (Y , dY ) is said to be K -quasisymmetric (QS) if

Hf (x , r) ≤ K for all x ∈ X , and for all r > 0.

I We say f is QS (resp. QC) if it is K -QS (resp. K -QC) for
some K ≥ 1.
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Snowballs are quasisymmetric to S2 (D. Meyer 2002, 2010)

Idea behind the proof: Take the limit of uniformizing maps.

Image: Snowballs are Quasiballs by Meyer.
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Two exponents associated with a graph G = (V ,E ).

I Let B(x , r) = {y ∈ V : d(x , y) ≤ r} denote the closed ball
and let V (x , r) = |B(x , r)| denote its volume.

I We say that df is the volume growth exponent or fractal
dimension if

V (x , r) � rdf ∀x ∈ V , ∀r ≥ 1.

I We say that dw is the escape time exponent or walk dimension
if the exit time on balls for the simple random walk satisfies

ExτB(x ,r) � rdw ∀x ∈ V , ∀r ≥ 1.

I Example: Zd has df = d and dw = 2.
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Graphical snowball

These graphs viewed from the central square converges to an
infinite quadrangulation of the plane with volume growth exponent
df = log3(13).
Question: How fast does the random walk travel in this
quadrangulation?
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Sub-Gaussian estimate on graphs

Definition
We say a graph G = (VG,EG) satisfies the sub-Gaussian estimate
with volume growth exponent df and escape time exponent dw if
there exists constants C1,C2, c1, c2 > 0 such that the transition
probability for the simple random walk satisfies the estimates

Pn(x , y) ≤ C1

ndf /dw
exp

−(d(x , y)dw

C2n

) 1
dw−1

 , ∀n ≥ 1,∀x , y ∈ VG

and

Pn(x , y) + Pn+1(x , y)

≥ c1
ndf /dw

exp

[
−
(
d(x ,y)dw

c2n

) 1
dw−1

]
,∀x , y ∈ VG, ∀n ≥ 1 ∨ d(x , y).

Sub-Gaussian estimate implies E(d(X0,Xn)) � n1/dw .
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Example: Graphical Sierpinski gasket

Graphical Sierpinski gasket has df = log2 3, dw = log2 5 and
satisfies the sub-Gaussian estimate (Barlow and Perkins 1988).

Image: Barlow.
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How to uniformize a planar graph?

Image: Angel, Hutchcroft, Nachmias, Ray.
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Good embedding
An embedding with straight lines of a planar graph G = (VG,EG)
is a map sending the vertices to points in the plane and edges to
straight lines connecting the corresponding vertices such that no
two edges cross.
The carrier of the embedding, denoted by carr(G) is the union of
closed faces of the embedding.

Definition (ABGN=Angel, Barlow, Gurel-Gurevich, Nachmias
2016)

Let D, η ∈ (0,∞). We say than an embedding with straight lines
of a planar graph G = (VG,EG) is (D, η)-good if

(a) No flat angles. For any face, all the inner angles are at most
π − η. In particular, all faces are convex, there is no outer
face, and the number of edges in a face is at most 2π/η.

(b) Adjacent edges have comparable lengths. For any two
adjacent edges e1 = {u, v} and e2 = {u,w}, we have
|u − v | / |u − w | ∈ [D−1,D].
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Two metrics on the graph

I The cable system X = X (G) corresponding to the graph G is
the topological space obtained by replacing each edge e ∈ EG
by a copy of the unit interval [0, 1], glued together in the
obvious way, with the endpoints corresponding to the vertices.

I A length function ` : EG → (0,∞) induces a metric on the
cable system as follows. We define the length of each unit
interval [0, 1] corresponding to an edge e to be `(e) and
consider the induced intrinsic metric (embedding metric).

I Any good embedding induces a length function `(e) defined
as the length of the straight line joining the vertices.

I Fact (ABGN 2016): For a good embedding, the Euclidean
metric is bi-Lipschitz equivalent to the embedding metric on
the cable system.

I The metric on the cable system defined by ` ≡ 1 is same as
the graph metric when restricted to vertices.
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Circle packing, quasisymmetry, and Sub-Gaussian estimate

Theorem (M. 2018+)

Let G = (VG,EG) be planar graph with volume growth exponent
df such that it admits a good embedding with carrier R2 or U.
Then the following are equivalent

(a) The embedding metric dE (or equivalently the Euclidean
metric) and the graph metric dG are quasisymmetric.

(b) The simple random on G satisfies sub-Gaussian estimate with
walk dimension dw = df .

Corollary (M. 2018+)

Let G = (VG,EG) be one-ended, planar triangulation with volume
growth exponent df . Then the circle packing metric is
quasisymmetric to the graph metric if and only if the simple
random on G satisfies sub-Gaussian estimate with walk dimension
dw = df .
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Proof sketch: from QS to heat kernel estimate

Key Ingredients:

I Theorem (ABGN 2016): The cable process (after a time
change) satisfies Gaussian heat kernel estimate with respect
to the (good) embedding metric (dw = 2).

I Comparability of annuli: Let d1, d2 be two quasisymmetric
metrics. Then every annulus B1(x ,A1r) \B1(x , r) is contained
in an annulus B2(x ,A2s) \ B2(x , s) where A2 does not depend
on x , r .

I Given A2 > 1, there exists A1 > 1, such that the annulus
B1(x ,A1r) \B1(x , r) contains B2(x ,A2s) \B2(x , s) for all x , r .

I Elliptic Harnack inequality is preserved under quasisymmetry.
[picture]
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Proof sketch: from QS to heat kernel estimate

I Theorem (Grigor’yan–Telcs 2002): To obtain sub-Gaussian
heat kernel estimate with df = dw , it suffices to verify elliptic
Harnack inequality and the following resistance estimate on
annuli

∃A > 1: Cap(BG(x , r),BG(x ,Ar)c) � 1 for all r ≥ 1, x .

I Using the above proposition and comparability of annuli, we
obtain the following two sided bounds on capacity: [picture]

∃A > 1: Cap(BG(x , r),BG(x ,Ar)c) � 1 for all r ≥ 1, x .

I The heat kernel bounds now follow from EHI, capacity bounds
and Grigor’yan–Telcs theorem.
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From heat kernel estimates to QS: QC vs QS

I Every QS map is QC but the converse is false; for example,
f : R→ R, f (x) = x + ex .

I Theorem (Local to global principle; Gehring 1960): If
f : Rn → Rn, n ≥ 2 is quasisconformal, then f is
quasisymmetric.

I We follow the approach of Heinonen and Koskela (1998) who
significantly generalized Gehring’s local to global principle.

I The key ingredients to carry out this approach are Loewner
property of the circle packing embedding and capacity upper
bounds across annuli on the graph.
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Concluding remarks

I The proof of heat kernel estimates using QS also applies to
diffusion on snowballs (fractal).

I A large family of random maps (Brownian map, UIPT,
Liouville Quantum Gravity, mated CRT map) are satisfy a
weaker variant of sub-Gaussian heat kernel estimate with
df = dw . (Gwynne–Miller 2017, Gwynne–Hutchcroft 2018).
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Image: Uniform triangulation of S2 (due to Curien)

Conjecture: Show that the uniform infinite planar triangulation
(resp. Brownian map) is ”almost quasisymmetric” to its circle
packing embedding (resp. Ĉ).
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Thank you
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