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Introduction

@ Loewner’s transform [1923] consists of encoding the uniformizing conformal map of
a simply connected domain D C C into evolution of conformal distortions that

flatten out the boundary iteratively,

non self-intersecting curve 9D < real-valued driving function.
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@ Loewner’s transform [1923] consists of encoding the uniformizing conformal map of
a simply connected domain D C C into evolution of conformal distortions that
flatten out the boundary iteratively,

non self-intersecting curve 9D < real-valued driving function.

Main tool to solve Bieberbach’s conjecture by De Branges in 1985.

@ Random fractal non self-intersecting curves: the Schramm-Loewner Evolution
introduced by Oded Schramm in 1999 which successfully describe interfaces in many
statistical mechanics models.

@ The Loewner energy is the action functional of SLE, also the large deviation rate
function of SLE, as k — 0 [W. 2016].

@ Loewner energy for Jordan curves (loops) on the Riemann'’s sphere, is non-negative,
vanishing only on circles, and invariant under Mébius transformation [Rohde, W.
2017].

@ Weil-Petersson metric is the unique homogeneous Kahler metric on the universal
Teichmiiller space. Loewner energy is Kadhler potential of this metric.
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Chordal Loewner chains

Let I be a simple chord in H from 0 to co.

r
T, g(z) =2+ % + O(i) n(s) = ge(l'tys)
_ >
as z — 00
0 Wi = g:i(T')
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r, gi(2) =2+ % +0(3) n(s) == gi(Lers)
—
as z — o0
0 Wi = gi(I)

I is capacity-parametrized by [0, 00).

W : Ry — R is called the driving function of I'.

Wo = 0.

W is continuous.

One can recover the curve I' from W using Loewner's differential equation.

We say that I is the chordal Loewner chain generated by W.

The centered Loewner flow has the expansion
fi(z) = ge(z) = W =z — W, + 2t/z + O(1/z2).
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Chordal Loewner chain

o If W=0, then I = iR,.
I

I

Yilin Wang (ETH Ziirich)
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Chordal Loewner chain

o If W=0, then I = iR,.

r
I, gi(z) =z + % + 0(%) n(s) = gi(Lits)
—
as z — o0
0 Wi=g:(I't) =0

@ When the curve is driven by W = \/kB where B is 1-d Brownian motion, the curve
generated is the Schramm-Loewner Evolution of parameter s (SLE..).
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The chordal Loewner energy

D C C a simply connected domain, a, b are two boundary points of D.

Definition: Loewner energy

We define the Loewner energy of a simple chord I in (D, a, b) to be

Io.0(1) 1= hi0.00 (2(1)) = (W) = %/ W/ (1)dt

where W is the driving function of o(T).
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The chordal Loewner energy

@ The Loewner energy is well-defined in (D, a, b) since for ¢ > 0,

/H’o,oo(r) = IH,07OO(CF).
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The chordal Loewner energy

@ The Loewner energy is well-defined in (D, a, b) since for ¢ > 0,

/H’o,oo(r) = IH,07OO(C|_).

@ Ip. (") =0 iffT is the hyperbolic geodesic connecting a and b.
@ Ip (") < oo, then T is rectifiable [Friz & Shekhar, 2015].
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Upper half-plane vs. other domains

Assume that 9D is smooth in a neighborhood of b, a continuously parametrized chord
I:[0, 7] — D from a to b.
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Upper half-plane vs. other domains

Assume that 9D is smooth in a neighborhood of b, a continuously parametrized chord
I:[0, 7] — D from a to b.

The capacity parametrization of I' seen from b is chosen using the Schwarzian
derivative of the mapping-out function:

cap(r[o, t]) := 75(g1t;(b)
The driving function is given by
_ 1g/(b)
fT2g(b)

The Loewner energy is given by
n—1
Z (WTf+1 - WTi)2
— cap(r[0, Ti+1]) — cap(r[0, T3])
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SLE,, vs. Loewner energy

The Dirichlet energy /(W) is the action functional of Brownian motion. Intuitively, the
“Brownian path has the distribution on C°(R.,R) with density o exp(—/(W))DW."
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SLE,, vs. Loewner energy

The Dirichlet energy /(W) is the action functional of Brownian motion. Intuitively, the
“Brownian path has the distribution on C°(R.,R) with density o exp(—/(W))DW."

However, I(B) = oo with probability 1.

The Schilder’s theorem states that /(W) is also the large deviation rate function for
Brownian motion \/kB as k — 0. Loosely speaking,

(w
“P(+/kB stays close to W) =~ exp (—(H)>
It should imply that the Loewner energy is the large deviation rate function of SLE,:

“P(SLE, stays close to I') = exp (_I(KI')> (1)

The claim (1) is made precise in [W. 2016].
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Reversibility of chordal Loewner energy

Theorem (W. 2016)

Let I be a simple chord in D connecting two boundary points a and b, we have

Ip,a,6(T") = Ip,p,a(T).

z —1/z /
A S

Yilin Wang (ETH Ziirich) Loewner energy January, 2019 12 / 55



Reversibility of chordal Loewner energy

Theorem (W. 2016)

Let I' be a simple chord in D connecting two boundary points a and b, we have

Ip,a,6(T") = Ip,p,a(T).

z —1/z /

The deterministic result is based on

Theorem (Reversibility of SLE, Zhan 2008, Miller-Sheffield 2012)

For k < 8, the law of the trace of SLE, in (D, a, b), is the same as the law of SLE, in
(D, b, a).

In fact, the decay rate as kK — 0 of the probability of SLE, stays close to I' is the same as
the decay rate of being close to —1/T.
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In fact, the Loewner energy has more symmetries.

—



Loewner loop energy

Definition (Rohde, W., 2017)

We define the Loewner energy of a simple loop T : [0, 1] — € rooted at [p = I to be

(T To) = lim e, ep.r. o (T 2D)-

r
l‘“’/eﬁ()
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Loewner loop energy

Definition (Rohde, W., 2017)

We define the Loewner energy of a simple loop T : [0, 1] — € rooted at [p = I to be

’L(r: o) == E"_’PO ’é\r[o,e],rg,ro(r[fa 1]).

r
l‘“’/sﬂo

e I*(I,To) = 0if and only if [ is a (round) circle.

@ If I'[0,s] is a circular arc (including line segments), then the RHS is constant for
e <'s, and I*(I", o) equals to the chordal energy lenrio,,r0.70 (IS5 11)-
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Root-invariance

Theorem (Rohde, W. 2017)

The Loewner loop energy is independent of the choice of root and orientation.
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Root-invariance

Theorem (Rohde, W. 2017)

The Loewner loop energy is independent of the choice of root and orientation.

= /' is invariant on the set of free loops under Mébius transformation;
== The loop setting is more natural than the chordal setting.
The proof is based on the reversibility of the chordal energy.

Moreover,
o /I*(I') < oo, then T is a (rectifiable) quasicircle.

o If [is C*°*¢ for some € > 0, then I*(I') < oo.

January, 2019
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Zeta-regularizated determinants

@ The Zeta-regularization of determinants is first introduced by Ray & Singer (1976).
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Zeta-regularizated determinants

@ The Zeta-regularization of determinants is first introduced by Ray & Singer (1976).
@ Hawking (1977) has pointed out that it allows to regularize quadratic path integrals.

@ Osgood, Phillips & Sarnak (1988) have shown that the results obtained by
comparing two functional determinants of Laplacian in the QFT formalism agree
with the results obtained by the zeta-regularized determinant (Polyakov-Alvarez
conformal anomaly formula).
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The functional H

g(z) = m dz® denotes the spherical metric;
g = e**gy be a metric conformally equivalent to go;
I a C* smooth simple loop in CU {oco} ~ S?;

D: and D; two connected components 52\r;

Ag(D;) the Laplace-Beltrami operator with Dirichlet
boundary condition on D;.

Definition

Let det¢ be the (-regularized determinant, we introduce

H(T, g) := log detc Ag(S?) — log Areag(S°) — log det¢ Ag(D1) — log dete Ag(Dy).
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Loewner Energy vs. Determinants

H(T, g) = log dete Ag(S?) — log Areag(S?) — log det¢ Ag(D1) — log dete Ag(D2).

Theorem (W., 2018)

If g = e**gy is a metric conformally equivalent to the spherical metric gy on S?, then:
O #(-,8) =H( &)
@ Circles minimize (-, g) among all C*> smooth Jordan curves.

© Let I be a smooth Jordan curve on S2. We have the identity

I5(T,T(0)) = 12H(T, g) — 12H(S", g)
dete(—Ag(D1))dete (—Ag(D2))

= 12log detc(_Ag(Dl))detg(—Ag(D2)) >

where ID; and D, are two connected components of the complement of S*.
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Loewner Energy vs. Determinants

H(T, g) = log dete Ag(S?) — log Areag(S?) — log det¢ Ag(D1) — log dete Ag(D2).

Theorem (W., 2018)

If g = e**gy is a metric conformally equivalent to the spherical metric gy on S?, then:
O #(-,8) =H( &)
@ Circles minimize (-, g) among all C*> smooth Jordan curves.

© Let I be a smooth Jordan curve on S2. We have the identity

I5(T,T(0)) = 12H(T, g) — 12H(S", g)
dete(—Ag(D1))dete (—Ag(D2))

= 12log detc(_Ag(Dl))detg(—Ag(D2)) >

where ID; and D, are two connected components of the complement of S*.

In particular, the above identity gives already the parametrization independence of the
Loewner loop energy for smooth loops.
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Remarks

@ The regularity assumption on the curve is due to the constraint from the
zeta-regularization and its variation formula [OPS].
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Remarks

@ The regularity assumption on the curve is due to the constraint from the
zeta-regularization and its variation formula [OPS].

@ Picking different metrics g provide a wide range of identities with the Loewner
energy that usually look different in their expression involving scalar curvatures,
geodesic curvatures, conformal maps D; — Dy, etc., (but of course they are equal).

@ One of the identities links to the Weil-Petersson class of the universal Teichmiiller
space.
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Universal Teichmiiller space

° QS(Sl) the group of quasisymmetric sense-preserving homeomorphism of S*;
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Universal Teichmiiller space
° QS(Sl) the group of quasisymmetric sense-preserving homeomorphism of S*;

A sense-preserving homeomorphism ¢ : S* — S' is quasisymmetric if there exists M > 1
such that for all # € R and t € (0, 7),

i(0+t)y _ i0
L jele T —ele)) g,
M = | p(e?) — p(el®=1)| =
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Universal Teichmiiller space
° QS(Sl) the group of quasisymmetric sense-preserving homeomorphism of S*;

A sense-preserving homeomorphism ¢ : S* — S' is quasisymmetric if there exists M > 1
such that for all # € R and t € (0, 7),

i(0+t)y _ i0
1 (o) (™))
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Universal Teichmiiller space
° QS(Sl) the group of quasisymmetric sense-preserving homeomorphism of S*;

A sense-preserving homeomorphism ¢ : S* — S' is quasisymmetric if there exists M > 1
such that for all # € R and t € (0, 7),

i(0+t)y _ i0
1 _je(e) — ()| oy,
M = p(e?) = p(e®=) | —

o Méb(S') ~ PSL(2,R) the subgroup of Mébius function of S*.

The universal Teichmiiller space is

T(1) := QS(S")/Mbb(S") ~ {p € QS(S"), ¢ fixes —1,—i and 1}.
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Universal Teichmiiller space

° QS(Sl) the group of quasisymmetric sense-preserving homeomorphism of S*;

A sense-preserving homeomorphism ¢ : S* — S' is quasisymmetric if there exists M > 1

such that for all # € R and t € (0, 7),

i(0+t)y _ i0
1 _je(e) — ()| oy,
M = p(e?) = p(e®=) | —

o Méb(S') ~ PSL(2,R) the subgroup of Mébius function of S*.

The universal Teichmiiller space is
T(1) := QS(S')/Méb(S") ~ {p € QS(S'), ¢ fixes —1,—i and 1}.
It can be modeled by Beltrami coefficients as well:
T(1) = L7(D,C)/ ~,
where

llloe < LIl <1, i~ v & wls = wls

w,, is the normalized solution (fixes —1, —i,1) D — D to the Beltrami equation

Tw,(2) = p(2)ow(2).

Yilin Wang (ETH Ziirich) Loewner energy January, 2019
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Welding function

@ Associate I with its welding function ¢:
r pi=g"ofla

D*

[Rohde, W. 2017]: I"(T) < oo = T is a quasicircle < ¢ € QS(S1).
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[Rohde, W. 2017]: I"(T) < oo = T is a quasicircle < ¢ € QS(S1).

@ “«" is not true, there are quasicircles with co Loewner energy.
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Welding function

@ Associate I with its welding function ¢:
r pi=g"ofla

D*

[Rohde, W. 2017]: I"(T) < oo = T is a quasicircle < ¢ € QS(S1).

@ “«" is not true, there are quasicircles with co Loewner energy.

What is the class of finite energy loops in T(1)?
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Weil-Petersson Class

@ The homogeneous space of C°°-smooth diffeomorphisms
M := Diff(S§')/Msb(S") c T(1)

has a Kahler structure [Witten, Bowick, Rajeev, etc.].
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Weil-Petersson Class

@ The homogeneous space of C*°-smooth diffeomorphisms
M := Diff(§")/Méb(S") ¢ T(1)

has a Kahler structure [Witten, Bowick, Rajeev, etc.].

@ There is a unique homogeneous Kihler metric (up to constant factor): the
Weil-Petersson metric.
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Weil-Petersson metric

The tangent space at id of M consists of C* vector fields on S*:

v= v(Q)% = Z v,,,<-:*""’9%7 where v_, = V.
meZ\{—-1,0,1}
The almost complex structure J> = —Id is given by the Hilbert transform:

J(V)m = —isgn(m)vm, for m € Z\{-1,0,1}.
In particular,
0 . 0 a9\ _ 0
J (cos(m@)%> = sm(m@)%, J (sm(m@) 80) cos(mb) = 20"

The Weil-Petersson symplectic form w(-,-) and the Riemannian metric (-, ), is given at
the origin by

w(v,w) =i Z (m3 — M)VmW_m,

meZ\{—1,0,1}

(v, W) pp = w(v, J(w Z(m — m) Re(vmw_pm).
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Weil-Petersson Class

o Weil-Petersson Teichmiiller space To(1) is the closure of
Diff(S*)/Méb(S*) C T(1) under the WP-metric. Weil-Petersson class
WP(Sh) C @QS(S") are homeomorphisms representing points in To(1).
@ The above description and many other characterizations are provided by [Nag,
Verjovski, Sullivan, Cui, Takhtajan, Teo, Shen, etc].
r p=g"o fls

Yilin Wang (ETH Ziirich)
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Weil-Petersson Class

o Weil-Petersson Teichmiiller space To(1) is the closure of
Diff(S*)/Méb(S*) C T(1) under the WP-metric. Weil-Petersson class
WP(Sh) C @QS(S") are homeomorphisms representing points in To(1).
@ The above description and many other characterizations are provided by [Nag,
Verjovski, Sullivan, Cui, Takhtajan, Teo, Shen, etc].
r p=g"o fls

2
D D*
g(00) = o0
Theorem (Takhtajan & Teo, 2006)
The universal Liouville action S; : To(1) — R,
f-// 2 2 / g// 2 2 f/(o)
S = —(2)| dz° + 2 (z)| dz° +4wlo
()= [ |56 R o| 22

is a Kahler potential of the Weil-Petersson metric, where

g'(00) = lim g'(z) = 2'(0) ™" and &(2) = 1/g(1/2).
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Loewner Energy vs. Weil-Petersson Class

Theorem (W. 2018)

A bounded simple loop T in C has finite Loewner energy if and only if [¢] € To(1).

Moreover,
1) = Sa([g]) /7.
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Loewner Energy vs. Weil-Petersson Class

Theorem (W. 2018)

A bounded simple loop T in C has finite Loewner energy if and only if [¢] € To(1).

Moreover,
1) = Sa([g]) /7.

@ There is no regularity assumption on the loop for the identity to hold.
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Loewner Energy vs. Weil-Petersson Class

Theorem (W. 2018)

A bounded simple loop T in C has finite Loewner energy if and only if [¢] € To(1).
Moreover,

I(T) = Sa([]) /7

@ There is no regularity assumption on the loop for the identity to hold.

@ This gives a new characterization of the WP-Class, and a new viewpoint on the
Kahler potential on To(1) (or alternatively a way to look at the Loewner energy).
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Characterizations of the WP-Class (an incomplete list)

[Nag, Verjovsky, Sullivan, Cui, Taktajan, Teo, Shen, etc.] The following are equivalent:
@ The welding function ¢ is in Weil-Petersson class;
o [ |Viog|f'(2)|]° d2* = [} |f"(2)/f'(2)|* d2* < oc;
o [L.1g"(2)/g () dZ* < oo;
° fD IS(F)]? p~Y(2) d2® < o0;
o [ IS(&) p}(z)dz* < o0;
@ ¢ has quasiconformal extension to D, whose complex dilation . = 9z¢/0,p satisfies

/mwh&m£<w

@ (¢ is absolutely continuous with respect to arc-length measure, such that log |’
belongs to the Sobolev space H/?(S%);

@ Grunsky operator associated to f or g is Hilbert-Schmidt,
where p(z)dz? = 1/(1 — |z|*)?dZ? is the hyperbolic metric on D or D* and
f/// 3 f// 2
S“*‘wz(p)
is the Schwarzian derivative of f.
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Action functionals vs. Random objects

Part I

¢ Part IT ¢ Quantum zipper by Sheffield

2

Part I ‘ fc\r |Vilog |W (2)||?/mdz? “Large deviation” Slhlrfage with random measure eVRGFF g
= ~92 ~ ~® | Liouville quantum gravity

¢ Part 11 ¢

(Dubédat 2008) | Gaussian free field partition function
<> B .. . .
rownian loop soups

\ A
Part II /

‘ Renormalized Brownian loop measure attached to I' ‘

‘ (-regularized determinants of A ‘

Part 1

A
27
Kaéhler potential on Tp(1) WP-Teichmiiller space ‘4* - ‘ What is the random object?
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Loewner Energy vs. Determinants

Recall H(I', g) = log det¢ Ag(S?) — log Areag(S?) — log det¢ Ag(D1) — log dete Ag(Ds).

Theorem (W., 2018)

If g = e**gy is a metric conformally equivalent to the spherical metric go on S?, then:
Q H(.g)=H( &)
@ Circles minimize (-, g) among all C*° smooth Jordan curves.

@ Let I be a smooth Jordan curve on S%2. We have the identity

IM(T,T(0)) = 12H(T, g) — 12H(S", g)
detc(—Ag(D1))dete(—Ag(D2))

= 121 ot (~ 30 D))ot c(u(D2)

where ID; and D, are two connected components of the complement of S*.
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Zeta-regularizated determinants

o A,(S?) is non-negative, essentially self-adjoint for the L? product.

@ The spectrum is
0=Xo <\t SAQ

@ Define the Zeta-function
— -5 __ i < —tAy ,s—1
Cals) = §>1 AT = r(s)/o Tr(e” ™)t° “dt,

it can be analytically continued to a neighborhood of 0.
@ Define (following Ray & Singer 1976)

Iogdet'C(Ag(SZ))i —(a(0)
=3 log(M)A; %s=0 = log([ ] )"
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Proof of the identity (sketch)

det (—A]D) )detc(—A]]) )
I5(r,T(0)) = 12log — = L. 2:80
( ( )) dEtC(_ADhgo)det€(_AD27g0)

@ When I passes through oo, we show

I(T', 00) = Daum- (log |h/|) = % (/ |V|og|h'(z)||2 sz) ,
H

UH*
where h maps conformally H U H* to the complement of I' and fixes co.
I H

— e % h
-~ H*
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Proof of the identity (sketch)

det (—A]D) )detc(—A]]) )
I5(F,T(0)) = 12 log —— L0 —
( ( )) dEté(_ADhgo)det€(_AD27g0)

@ When I passes through oo, we show

1(T, 00) = D1141u1m*(|og|h’|) = % (/

where h maps conformally H U H* to the complement of I' and fixes co.
I

—e e h
\_/ H*

|V|og|h'(z)||2 sz) ,

UH*

H

The right-hand side does not involve Loewner iteration of conformal maps.
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Proof of the identity (sketch)

detC(_ADhgo )detC (_Aﬂmz,go)
det((_ADhgo )deté(_ADzygo )

I5(T,T(0)) = 12log

@ When I passes through oo, we show

1(T, 00) = DHUH*(Iog|h’|) = % (/

where h maps conformally H U H* to the complement of I' and fixes co.
I H

— e % h
-~ H*

|V|og|h'(z)||2 dzz) ,

UH*

The right-hand side does not involve Loewner iteration of conformal maps.

@ Use the Polyakov-Alvarez conformal anomaly formula to compare determinants of

Laplacians.
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Polyakov-Alvarez conformal anomaly formula

Take g = €®7 gy a metric conformally equivalent to g. (Here think o = log |H|.)
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Polyakov-Alvarez conformal anomaly formula

Take g = €®7 gy a metric conformally equivalent to g. (Here think o = log |H|.)

Theorem ([Polyakov 1981], [Alvarez 1983], [Osgood, et al. 1988])

For a compact surface M without boundary,

(log det¢(—Ag) — log volg(M)) — (log dett(—Ao) — log volo(M))

E i |:1/ |V00‘|2 dVOlO +/ K()O' dVOlO.:|
6r |2/, .

The analogue for a compact surface D with smooth boundary is:

log det¢(—Ag) — log dete (—Ao)

__ L [1/|vw|2 dvolo—i—/Koadvolo—i-/ koadlo} —i/ Ao dl.
6m |2 Jp D aD 47 Jop

“Taking go = dz*", we have Ky = 0 and ko = 0. We get:

15T, (0)) = 1 (/ ) |V log |1 (2)]|” sz> = 12H(T, g) — 12H(S", ). O

™
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Brownian loop measure

Introduced by Greg Lawler and Wendelin Werner.
[Following J. Dubédat] Let x € M, t > 0, consider the sub-probability measure W on

the path of Brownian motion (diffusion generated by —Ay) on M started from x on the
time interval [0, t], killed if it hits the boundary of M.
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Brownian loop measure

Introduced by Greg Lawler and Wendelin Werner.

[Following J. Dubédat] Let x € M, t > 0, consider the sub-probability measure W on
the path of Brownian motion (diffusion generated by —Ay) on M started from x on the
time interval [0, t], killed if it hits the boundary of M.

The measures W5 _,, on paths from x to y are obtained from the disintegration of W
according to its endpoint y:

Wi:/Wiﬁydvol(y).
M
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Brownian loop measure

Introduced by Greg Lawler and Wendelin Werner.

[Following J. Dubédat] Let x € M, t > 0, consider the sub-probability measure W on
the path of Brownian motion (diffusion generated by —Ay) on M started from x on the
time interval [0, t], killed if it hits the boundary of M.

The measures W5 _,, on paths from x to y are obtained from the disintegration of W
according to its endpoint y:

Wi:/Wiﬁydvol(y).
M

Define the Brownian loop measure on M:

hvid ::/ $/ Wi _,, dvol(x).
0 M

’W)t(—»(’ = Pt(X>X)~

In particular,
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Brownian loop measure

Introduced by Greg Lawler and Wendelin Werner.

[Following J. Dubédat] Let x € M, t > 0, consider the sub-probability measure W on
the path of Brownian motion (diffusion generated by —Ay) on M started from x on the
time interval [0, t], killed if it hits the boundary of M.

The measures W5 _,, on paths from x to y are obtained from the disintegration of W
according to its endpoint y:

Wi:/Wiﬁydvol(y).
M

Define the Brownian loop measure on M:

hvid ::/ $/ Wi _,, dvol(x).
0 M

In particular,
t
’Wx—»(’ = Pt(X>X)~
We consider /L;L;,Dp as measure on unrooted Brownian loops by forgetting the starting
point.
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Property of Brownian loop measure

The Brownian loop measure satisfies the following two remarkable properties

@ (Restriction property) If M’ C M, then
dpg?(8) = Lsem dpy ™ (6).

e (Conformal invariance) On the surfaces My = (M, g) and M, = (M, €%’ g) be two

conformally equivalent Riemann surface, where o € C*°(M, R), then
loop __ loop
Fomy = Huy -
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Loop measure vs. determinant of Laplacian

|p/°°p| —log det¢(A).” J

If we compute formally, the total mass of 2>

:/ ﬂ/ Pt(X,X)dVOl(X):/ t ' Tr (e_m) de.”
o tJm 0

On the other hand, 1/T(s) is analytic and has the expansion near 0 as

1/T(s) = s+ O(s%).

is given by

“ loop
37

Therefore for any analytic function f in a neighborhood of 0,

f(s)\'
I(s)

Take formally f(s) = [ t*"*Tr(e™*) dt, we have

= £(0).

— log det¢(A) = Ca(0) = (()) "o (2)

r(s)

/ t_lTr(e_tA) dt = }uﬁ&o"
0
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Loop measure vs. Loewner energy (heuristic)

|u’°°"| = —logdet¢(A).”

The determinant expression of Loewner energy suggests that we have formally

o det¢ (Ap,,g)dete(Ap,,g)
%8 dete(Boy,g)dete (Do, ¢)

|/LIOOP| + |,LLIODP| o {H |uloop| + |H
= p&P({6;6N ST #0}) — pSP {5 0NT #0})."

However, both terms diverge due to the small and large Brownian loops (from the
conformal invariance).

I =

loop | o loop | o loop |

s
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Loop measure vs. Loewner energy

Sl
N 2
' f:D=D

P )

For a Brownian loop 6§ C D, where D C D is simply connected, we denote §°* its outer
boundary (therefore of SLEg,3 type).
Let A, B C C be disjoint compact sets,

W(A, B; D) := }M""’p{é C D; 6 intersects both A and B}| < oc.

Introduced by W. Werner.
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Loop measure vs. Loewner energy

Sl
N Tpr
/ f:D=D

P )

For a Brownian loop 6§ C D, where D C D is simply connected, we denote §°* its outer
boundary (therefore of SLEg,3 type).
Let A, B C C be disjoint compact sets,

W(A, B; D) := }M""’p{é C D; 5°* intersects both A and B}| < 0.

Introduced by W. Werner.

Theorem (W., 2018)

For all Jordan curve I' (no regularity assumption),

i/L(r) = lim W(S", rS*; C) — W(I,T"; C).
12 r—1
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Proof: Chordal Conformal restriction

Lemma 1: Chordal Conformal restriction

Let (D, a, b) and (D', a, b) be two simply connected domains in C coinciding in a
neighborhood of a and b, and I a simple curve in both (D, a, b) and (D, a, b). Then we
have
Ipt,2,6(F) = Ip,a,6(T) =Ip,a,6(2(I")) — Ip,a,(T")
=3log [¢/(a)¢/ (b)| + 12W(T, D\D'; D) — 12W(T', D'\ D; D'),

where v : D' — D is a conformal map fixing a and b.

Deterministic proof, similar computation as in SLE conformal restriction.
Intuition: The SLE partition function is

Zipsy = Hp(a, b) det(8) ™,
where as Kk — 0,

_6-x 3 C_(3Ku—8)(6—l£) 24

2K K’ 2K K

The Energy = “—xlog(-)"
Loewner energy January, 2019 38 / 55



Proof: Loop Conformal restriction

Lemma 2: Loop conformal restriction

If 7 is a Jordan curve with finite energy and I = (), where f : A — A is conformal on a
neighborhood A of 7, then

IM(T) = I*(n) = 12W(n, A%; C) — 12W(T, A%; C).

Proof of Lemma 2:

¥ C\ ((ab), U K) — C\(ab), l Q lv;ic\((&l;)rUA)%C\ab

q@\abm«:\awo Let b — a
) b
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Proof: Equipotentials

When 1 = rS', " = f(rS) is the equipotential, and A =D.
Sl

st Sl
/ f:D—>D

IM(T") = 12W(rS', §*; C) — 12W(I", T; C).

We deduce
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Proof: Equipotentials

When 1 = rS', " = f(rS) is the equipotential, and A =D.
Sl

N T
/ f:D—>D

o s

IM(T") = 12W(rS', §*; C) — 12W(I", T; C).

We deduce

r—1

We have: [5(I") === [5(T).
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Proof: Equipotentials

When 1 = rS', " = f(rS) is the equipotential, and A =D.
Sl

N 2
/ f:D—>D

IM(T") = 12W(rS', §*; C) — 12W(I", T; C).

We deduce

r—1

We have: [5(I") === [5(T).

O
In fact, r +— I*(I") is increasing if /(') > 0, namely when I is not a circle. It will follow
from the flow-line coupling for finite energy curve [Viklund, W. 2019+].
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SLE/GFF coupling analogs: A Dictionary

Work in progress with F. Viklund. With v = \/k, x =~/2 —2/~:

Random Conformal Geometry <— Action Functional Analogs
Neumann GFF on H <— 2u; : H — R with finite Dirichlet energy;
Neumann GFF on H" +— 2u, : H* — R with finite Dirichlet energy;

~v-LQG measure on H, 7P dz? 2102 g 2.
7-LQG boundary measure on R = 9H +— €9 |dz|, |z € H?(R);
“SLE, loop” <— finite energy loop T;
7-LQG on C +— eI dz?;
~y-quantum chaos wrt. «— trace of pon I € HI/Q(F);
natural parametrization on SLE loop

independent couple <— sum up their rate functions;

eFF/x (@) it vector field:
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Isometric conformal welding

Let D1, D, C C be Jordan domains bounded respectively by rectifiable curves '; and I';
of same total length. Let ¢ : [y — > be an isometry (preserves the arc-length).

o [Huber 1976] The solution does not always exist.

@ [Bishop 1990] Even if the solution exists, I can be a curve of positive area —
non-uniqueness of solution.

o [David 1982, Zinsmeister 1982...] If D1 and D, are chord-arc, then the solution
exists and is unique, which is an quasi-circle. [Bishop 1990] The Hausdorff
dimension of [ can take any value in 1 < d < 2.

o [David 1982] If the chord-arc constant of domains are close enough to 1, I is also
chord-arc.
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Isometric conformal welding

Let D1, D, C C be Jordan domains bounded respectively by rectifiable curves '; and I';
of same total length. Let ¢ : [y — > be an isometry (preserves the arc-length).
o [Huber 1976] The solution does not always exist.
@ [Bishop 1990] Even if the solution exists, I can be a curve of positive area —
non-uniqueness of solution.

o [David 1982, Zinsmeister 1982...] If D1 and D, are chord-arc, then the solution
exists and is unique, which is an quasi-circle. [Bishop 1990] The Hausdorff
dimension of [ can take any value in 1 < d < 2.

o [David 1982] If the chord-arc constant of domains are close enough to 1, I is also
chord-arc.

o [Viklund, W. 2019+] We will see that isometric welding of two finite energy domains
has also finite energy (solution exists and is unique).
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Welding coupling identity

e20(2) 1,2 Y f(o00) =00 o () 4,2
F —_— e x— e
H* *
4(00) = 00 H 62u2(z)dz2

Let ¢ € W)1?(C) with finite Dirichlet energy:

loc
1
De(p) = / V() de* < oo,
T Je

I" an infinite Jordan curve, f, g the conformal maps from H, H* onto H, H*, respectively.

Theorem (Welding coupling 2019+)

We have €*? € L}, (C), so the measure e*?dz? is well-defined and locally finite. The

pull-back measures e** by f on H (resp. €2 by g on H*) satisfy

n(z) = pof(z) +log|f'(2)], w(z)=y¢og(z)+log|eg(2)].

We have the identity

Da(un) + D= (12) = I(T) + De()-

v

Yilin Wang (ETH Ziirich) Loewner energy January, 2019 43 / 55




Welding-coupling uniqueness

2p(z 2 =
e20(2) 1~ " floo) =00 . G2(2) g2
F —— e x—— s
ar *
4(00) = 00 H e2u2(z)dz2

Theorem (Welding-coupling uniqueness, 2019+)

Suppose 11 and w> with finite Dirichlet energy are given. Then there exist unique I', ¢, f,
and g such that the following holds:

@ T is an infinite Jordan curve passing through 0 and 1;
@ If H and H* are the connected components of C\T, then f : H — H is the conformal
map fixing 0,1 and co and g : H* — H™ is the conformal map fixing 0, co;

© € WSA(C) and De(p) < oo

Q wi(z) = pof(z)+log|f(z)], z € H;

© w(z) = pog(z) +loglg'(2)], z € H".
In fact, I is obtained from the isometric conformal welding of H and H* according to the
boundary lengths e“!|dz| and e“?|dz|. Moreover, I*(T') < co.

v
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Isometric welding of finite energy domains

Assume ['(I'1) < oo, I*(I'2) < oo, both curves pass through oo.

The isometric conformal welding of Euclidean domain H; bounded by I'1 and H, bounded
by I'> has a unique solution ' up to Mébius transformation. Moreover,

I5(T) < I5(T1) + 14(T2)

if I'(T1) + I*(T2) #0.

F
o g — >4

Yilin Wang (ETH Ziirich) Loewner energy January, 2019 45 / 55



Isometric welding of finite energy domains

Assume ['(I'1) < oo, I*(I'2) < oo, both curves pass through oo.

The isometric conformal welding of Euclidean domain H; bounded by I'1 and H, bounded
by I'> has a unique solution ' up to Mébius transformation. Moreover,

I5(T) < I5(T1) + 14(T2)

if I'(T1) + I*(T2) #0.

F

‘/E/\fx——‘&): " )2
r

M
FZ‘S\/C/X/ H* 2u9(z 2
‘N/ Iy *r(o0) — oo e2u2(2)

In fact, let uy = log|f{|, u2 = log|gs|,

D(w) < IN(M1), 15(T) < D(w) + D(u2) < 15(T1) + 15(T).
The first equality holds only when /*(I'1) = 0.
T ) January, 2010 45/ 55



Elements of proof of welding coupling identity

Welding coupling identity

Da(un) + D= (12) = I(T) + De ().

2¢(z 2 =
e20(2) 15 " floo) =00 . 2m2) g2
F —— e x— s
H* *
g(oo) = H 62u2(z)d22

@ Recall that u1(z) = p o f(z) + log|f'(2)], w(z) = og(z)+ logl|g'(z)].
o Use the identity /(") = Du(log |f'|) + Du-(log |g’])-

@ Prove that the cross-terms cancel out. O
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Notice that since the harmonic conjugate arg(f’) has the same Dirichlet energy as log |f’|.
We have the identity
I"(T) = Du(arg ') + D (arg g").
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Notice that since the harmonic conjugate arg(f’) has the same Dirichlet energy as log |f’|.
We have the identity
I"(T) = Du(arg ') + D (arg g").

= the analog to the forward SLE/GFF coupling (flow-line coupling).
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Analog to flow-line coupling

Let n be a bounded C' Jordan curve and I := yu(n), where y is a Mébius function
mapping one point of 7 to co.
For z =T (s), define the function 7 : I — R such that 7 is continuous and

7(2) = arg(I"(s)) = —arg(f ) (2).

We denote by P[r](z) = — arg(f')'(z) the Poisson integral of 7 in C (defined from
both sides of I').
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Analog to flow-line coupling

Let n be a bounded C' Jordan curve and I := yu(n), where y is a Mébius function
mapping one point of 7 to co.
For z =T (s), define the function 7 : I — R such that 7 is continuous and

7(z) := arg(I"(s)) = —arg(f ) (2)-

We denote by P[r](z) = — arg(f')'(z) the Poisson integral of 7 in C (defined from
both sides of I').

Theorem (Flowline coupling analog 2019+)

We have the identity
IL(F) = Dc(P[7]) = min Dc(p).

w,plr="

Conversely, under regularity condition of ¢ and Dc(p) < oo, then for all zy € C, the
solution to the differential equation

I'(t) = exp (ip(T(t))), Vt €ER and T(0) =z
is an infinite arclength parametrized simple curve and

I(T) < De(v).

v
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Equipotential energy decrease

We have /5(I”) < IY(T). The equality holds if and only if /*(I') = 0.

Proof: Since on IV, 7 = P[r]. We have

1) = De(P[]) < De(Plr]) = I(T). O

‘fu}_}@
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Action functionals vs. Random objects

Part I

¢ Part IT ¢ Quantum zipper by Sheffield
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Kaéhler potential on Tp(1) WP-Teichmiiller space ‘4* - ‘ What is the random object?
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What random model?

@ What is the random model naturally associated to the WP-Teichmiiller space?
Malliavin's measure on diffeomorphisms of the circle?
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What random model?

@ What is the random model naturally associated to the WP-Teichmiiller space?
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What random model?

@ What is the random model naturally associated to the WP-Teichmiiller space?
Malliavin's measure on diffeomorphisms of the circle?

@ In which space does the random welding belong to? (What analytic framework
beyond quasiconformal geometry?)

@ What is the gradient flow of the Loewner energy and what meaning in Loewner's
framework? Other natural dynamics? Stochastic gradient flow?

@ Random model = an intrinsic description of SLE loop (k < 4)? —
Reversibility?
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Exploring the connection

@ How is the Kahler structure on the WP-Teichmiiller space encoded in the Loewner's
driving function? Why there is such a coincidence?
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Exploring the connection

@ How is the Kahler structure on the WP-Teichmiiller space encoded in the Loewner's
driving function? Why there is such a coincidence?

@ Topological group structure on WP-Teichmiiller space —> what meaning in the
Loewner setting?

@ Use driving function to find purely geometric characterization of WP-quasicircles?
(Jones’ Conjecture)
e [TT06] WP-quasicircle < associated Grunsky operator G is Hilbert-Schmidt.
Moreover,
I*(T)  log det (I — G*G),

where detr is the Fredholm determinant (only well-defined when G is HS).
Is it a better object to look at than zeta-regularized determinant of Laplacian?
Interpretation of Grunsky operator?
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Other topology?

@ Multiple-chord Loewner energy, large deviation of multiple SLE (work in progress
with E. Peltola).

@ Energy of (multiple) loops in higher genus surface?

@ Probabilistic interpretation of Weil-Petersson metric on Teichmiiller space of
compact surfaces (genus > 2)? Natural measure on Teichmiiller/moduli space?

o Conformal field theory (SLE, statistical mechanics models) = String theory
(Kahler geometry on universal Teichmiiller space)???
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Thanks for your attention!
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