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Introduction

Loewner’s transform [1923] consists of encoding the uniformizing conformal map of
a simply connected domain D ⊂ C into evolution of conformal distortions that
flatten out the boundary iteratively,

non self-intersecting curve ∂D ⇔ real-valued driving function.

Main tool to solve Bieberbach’s conjecture by De Branges in 1985.
Random fractal non self-intersecting curves: the Schramm-Loewner Evolution
introduced by Oded Schramm in 1999 which successfully describe interfaces in many
statistical mechanics models.
The Loewner energy is the action functional of SLE, also the large deviation rate
function of SLEκ as κ→ 0 [W. 2016].
Loewner energy for Jordan curves (loops) on the Riemann’s sphere, is non-negative,
vanishing only on circles, and invariant under Möbius transformation [Rohde, W.
2017].
Weil-Petersson metric is the unique homogeneous Kähler metric on the universal
Teichmüller space. Loewner energy is Kähler potential of this metric.
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Action functionals vs. Random objects

Loewner Energy
∫
W ′(t)2/2dt Schramm Loewner Evolution

Large deviation

??

∫
C\Γ

|∇ log |h′(z)||2/πdz2 Surface with random measure e
√
κGFFdz2

Liouville quantum gravity

“Large deviation”

??

Quantum zipper by Sheffield

Kähler potential on T0(1) WP-Teichmüller space

ζ-regularized determinants of ∆ Gaussian free field partition function

What is the random object?

Part I

Part I

??

(Dubédat 2008)

??

Brownian loop soups

Renormalized Brownian loop measure attached to Γ

Part II

Part I

Part II

Part II
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Chordal Loewner chains

Let Γ be a simple chord in H from 0 to ∞.

gt(z) = z + 2t
z + o(1z)Γt

Wt = gt(Γt)

as z → ∞

Γ

η(s) := gt(Γt+s)

0

Γ is capacity-parametrized by [0,∞).
W : R+ → R is called the driving function of Γ.
W0 = 0.
W is continuous.
One can recover the curve Γ from W using Loewner’s differential equation.
We say that Γ is the chordal Loewner chain generated by W .
The centered Loewner flow has the expansion
ft(z) = gt(z)−Wt = z −Wt + 2t/z + O(1/z).
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Chordal Loewner chain

If W ≡ 0, then Γ = iR+.

gt(z) = z + 2t
z + o(1z)Γt

Wt = gt(Γt) = 0

as z → ∞

Γ

η(s) := gt(Γt+s)

0

When the curve is driven by W =
√
κB where B is 1-d Brownian motion, the curve

generated is the Schramm-Loewner Evolution of parameter κ (SLEκ).
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The chordal Loewner energy

D ⊂ C a simply connected domain, a, b are two boundary points of D.

a

b

D

Γ
ϕ : D → H

ϕ(a) = 0, ϕ(b) = ∞

0

H

ϕ(Γ)

Definition: Loewner energy
We define the Loewner energy of a simple chord Γ in (D, a, b) to be

ID,a,b(Γ) := IH,0,∞(ϕ(Γ)) := I(W ) := 1
2

∫ ∞
0

W ′(t)2dt

where W is the driving function of ϕ(Γ).
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The chordal Loewner energy

a

b

D

Γ
ϕ : D → H

ϕ(a) = 0, ϕ(b) = ∞

0

H

ϕ(Γ)

The Loewner energy is well-defined in (D, a, b) since for c > 0,

IH,0,∞(Γ) = IH,0,∞(cΓ).

ID,a,b(Γ) = 0 iff Γ is the hyperbolic geodesic connecting a and b.
ID,a,b(Γ) <∞, then Γ is rectifiable [Friz & Shekhar, 2015].
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Upper half-plane vs. other domains

Assume that ∂D is smooth in a neighborhood of b, a continuously parametrized chord
Γ : [0,T ]→ D from a to b.

a

b

D

Γ gt : D \ Γ[0,t] → D

gt(Γt) = a, gt(b) = b

g′t(b) = 1 a

b

D

Γ̃
Γt

The capacity parametrization of Γ seen from b is chosen using the Schwarzian
derivative of the mapping-out function:

cap(Γ[0, t]) := −S(gt)(b)
12 .

The driving function is given by

Wt = 1
2

g ′′t (b)
g ′t (b) .

The Loewner energy is given by

ID,a,b(Γ) = sup
0≤T0<T1<···<Tn=T

n−1∑
i=0

(WTi+1 −WTi )2

cap(Γ[0,Ti+1])− cap(Γ[0,Ti ])
Yilin Wang (ETH Zürich) Loewner energy January, 2019 10 / 55
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SLEκ vs. Loewner energy

The Dirichlet energy I(W ) is the action functional of Brownian motion. Intuitively, the
“Brownian path has the distribution on C 0(R+,R) with density ∝ exp(−I(W ))DW .”

However, I(B) =∞ with probability 1.

The Schilder’s theorem states that I(W ) is also the large deviation rate function for
Brownian motion

√
κB as κ→ 0. Loosely speaking,

“P(
√
κB stays close to W ) ≈ exp

(
− I(W )

κ

)
.”

It should imply that the Loewner energy is the large deviation rate function of SLEκ:

“P(SLEκ stays close to Γ) ≈ exp
(
− I(Γ)

κ

)
.” (1)

The claim (1) is made precise in [W. 2016].

0

H

Γ
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Reversibility of chordal Loewner energy

Theorem (W. 2016)
Let Γ be a simple chord in D connecting two boundary points a and b, we have

ID,a,b(Γ) = ID,b,a(Γ).

z 7→ −1/z

The deterministic result is based on

Theorem (Reversibility of SLE, Zhan 2008, Miller-Sheffield 2012)
For κ ≤ 8, the law of the trace of SLEκ in (D, a, b), is the same as the law of SLEκ in
(D, b, a).

In fact, the decay rate as κ→ 0 of the probability of SLEκ stays close to Γ is the same as
the decay rate of being close to −1/Γ.

Yilin Wang (ETH Zürich) Loewner energy January, 2019 12 / 55
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In fact, the Loewner energy has more symmetries.
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Loewner loop energy

Definition (Rohde, W., 2017)

We define the Loewner energy of a simple loop Γ : [0, 1] 7→ Ĉ rooted at Γ0 = Γ1 to be

IL(Γ, Γ0) := lim
ε→0

IĈ\Γ[0,ε],Γε,Γ0
(Γ[ε, 1]).

Γ0

Γε

ε → 0

IL(Γ, Γ0) = 0 if and only if Γ is a (round) circle.
If Γ[0, s] is a circular arc (including line segments), then the RHS is constant for
ε ≤ s, and IL(Γ, Γ0) equals to the chordal energy IĈ\Γ[0,s],Γs ,Γ0

(Γ[s, 1]).
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Root-invariance

Theorem (Rohde, W. 2017)
The Loewner loop energy is independent of the choice of root and orientation.

=⇒ IL is invariant on the set of free loops under Möbius transformation;
=⇒ The loop setting is more natural than the chordal setting.

The proof is based on the reversibility of the chordal energy.

Moreover,
IL(Γ) <∞, then Γ is a (rectifiable) quasicircle.
If Γ is C 1.5+ε for some ε > 0, then IL(Γ) <∞.
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Zeta-regularizated determinants

The Zeta-regularization of determinants is first introduced by Ray & Singer (1976).
Hawking (1977) has pointed out that it allows to regularize quadratic path integrals.
Osgood, Phillips & Sarnak (1988) have shown that the results obtained by
comparing two functional determinants of Laplacian in the QFT formalism agree
with the results obtained by the zeta-regularized determinant (Polyakov-Alvarez
conformal anomaly formula).
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The functional H

g0(z) = 4
(1+|z|2)2 dz2 denotes the spherical metric;

g = e2ϕg0 be a metric conformally equivalent to g0;
Γ a C∞ smooth simple loop in C ∪ {∞} ' S2;
D1 and D2 two connected components S2\Γ;
∆g (Di ) the Laplace-Beltrami operator with Dirichlet
boundary condition on Di .

D1

D2

Γ

Definition
Let detζ be the ζ-regularized determinant, we introduce

H(Γ, g) := log detζ∆g (S2)− log Areag (S2)− log detζ∆g (D1)− log detζ∆g (D2).
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Loewner Energy vs. Determinants

H(Γ, g) = log detζ∆g (S2)− log Areag (S2)− log detζ∆g (D1)− log detζ∆g (D2).

Theorem (W., 2018)

If g = e2ϕg0 is a metric conformally equivalent to the spherical metric g0 on S2, then:
1 H(·, g) = H(·, g0)
2 Circles minimize H(·, g) among all C∞ smooth Jordan curves.
3 Let Γ be a smooth Jordan curve on S2. We have the identity

IL(Γ, Γ(0)) = 12H(Γ, g)− 12H(S1, g)

= 12 log detζ(−∆g (D1))detζ(−∆g (D2))
detζ(−∆g (D1))detζ(−∆g (D2)) ,

where D1 and D2 are two connected components of the complement of S1.

In particular, the above identity gives already the parametrization independence of the
Loewner loop energy for smooth loops.
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Remarks

The regularity assumption on the curve is due to the constraint from the
zeta-regularization and its variation formula [OPS].
Picking different metrics g provide a wide range of identities with the Loewner
energy that usually look different in their expression involving scalar curvatures,
geodesic curvatures, conformal maps D1 → D1, etc., (but of course they are equal).
One of the identities links to the Weil-Petersson class of the universal Teichmüller
space.
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Universal Teichmüller space

QS(S1) the group of quasisymmetric sense-preserving homeomorphism of S1;

A sense-preserving homeomorphism ϕ : S1 → S1 is quasisymmetric if there exists M ≥ 1
such that for all θ ∈ R and t ∈ (0, π),

1
M ≤

∣∣∣∣ϕ(e i(θ+t))− ϕ(e iθ)
ϕ(e iθ)− ϕ(e i(θ−t))

∣∣∣∣ ≤ M.

Möb(S1) ' PSL(2,R) the subgroup of Möbius function of S1.

The universal Teichmüller space is

T (1) := QS(S1)/Möb(S1) ' {ϕ ∈ QS(S1), ϕ fixes − 1,−i and 1}.

It can be modeled by Beltrami coefficients as well:

T (1) = L∞(D,C)1/ ∼,

where
‖µ‖∞ < 1, ‖ν‖∞ < 1, µ ∼ ν ⇔ wµ|S1 = wν |S1

wµ is the normalized solution (fixes −1,−i , 1) D→ D to the Beltrami equation

∂wµ(z) = µ(z)∂wµ(z).
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T (1) := QS(S1)/Möb(S1) ' {ϕ ∈ QS(S1), ϕ fixes − 1,−i and 1}.

It can be modeled by Beltrami coefficients as well:

T (1) = L∞(D,C)1/ ∼,

where
‖µ‖∞ < 1, ‖ν‖∞ < 1, µ ∼ ν ⇔ wµ|S1 = wν |S1

wµ is the normalized solution (fixes −1,−i , 1) D→ D to the Beltrami equation

∂wµ(z) = µ(z)∂wµ(z).
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Welding function

Associate Γ with its welding function ϕ:

f : D→ D

g : D∗ → D∗

g(∞) =∞

D
D∗

D

D∗

ϕ := g−1 ◦ f |S1
Γ

[Rohde, W. 2017]: IL(Γ) <∞⇒ Γ is a quasicircle ⇔ ϕ ∈ QS(S1).
“⇐” is not true, there are quasicircles with ∞ Loewner energy.

Question
What is the class of finite energy loops in T (1)?
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Weil-Petersson Class

The homogeneous space of C∞-smooth diffeomorphisms

M := Diff(S1)/Möb(S1) ⊂ T (1)

has a Kähler structure [Witten, Bowick, Rajeev, etc.].
There is a unique homogeneous Kähler metric (up to constant factor): the
Weil-Petersson metric.
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Weil-Petersson metric

The tangent space at id of M consists of C∞ vector fields on S1:

v = v(θ) ∂
∂θ

=
∑

m∈Z\{−1,0,1}

vme imθ ∂

∂θ
, where v−m = vm.

The almost complex structure J2 = −Id is given by the Hilbert transform:

J(v)m = −isgn(m)vm, for m ∈ Z\{−1, 0, 1}.

In particular,

J
(

cos(mθ) ∂
∂θ

)
= sin(mθ) ∂

∂θ
; J

(
sin(mθ) ∂

∂θ

)
= − cos(mθ) ∂

∂θ
.

The Weil-Petersson symplectic form ω(·, ·) and the Riemannian metric 〈·, ·〉WP is given at
the origin by

ω(v ,w) = i
∑

m∈Z\{−1,0,1}

(m3 −m)vmw−m,

〈v ,w〉WP = ω(v , J(w)) =
∞∑

m=2

(m3 −m) Re(vmw−m).
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Weil-Petersson Class

Weil-Petersson Teichmüller space T0(1) is the closure of
Diff(S1)/Möb(S1) ⊂ T (1) under the WP-metric. Weil-Petersson class
WP(S1) ⊂ QS(S1) are homeomorphisms representing points in T0(1).
The above description and many other characterizations are provided by [Nag,
Verjovski, Sullivan, Cui, Takhtajan, Teo, Shen, etc].

f : D→ D

g : D∗ → D∗

g(∞) =∞

D
D∗

D

D∗

ϕ := g−1 ◦ f |S1
Γ

Theorem (Takhtajan & Teo, 2006)
The universal Liouville action S1 : T0(1)→ R,

S1([ϕ]) :=
∫
D

∣∣∣∣ f ′′f ′ (z)
∣∣∣∣2 dz2 +

∫
D∗

∣∣∣∣g ′′g ′ (z)
∣∣∣∣2 dz2 + 4π log

∣∣∣∣ f ′(0)
g ′(∞)

∣∣∣∣
is a Kähler potential of the Weil-Petersson metric, where

g ′(∞) = lim
z→∞

g ′(z) = g̃ ′(0)−1 and g̃(z) = 1/g(1/z).
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Loewner Energy vs. Weil-Petersson Class

f : D→ D

g : D∗ → D∗

g(∞) =∞

D
D∗

D

D∗

ϕ := g−1 ◦ f |S1
Γ

Theorem (W. 2018)

A bounded simple loop Γ in Ĉ has finite Loewner energy if and only if [ϕ] ∈ T0(1).
Moreover,

IL(Γ) = S1([ϕ])/π.

There is no regularity assumption on the loop for the identity to hold.
This gives a new characterization of the WP-Class, and a new viewpoint on the
Kähler potential on T0(1) (or alternatively a way to look at the Loewner energy).
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Characterizations of the WP-Class (an incomplete list)

[Nag, Verjovsky, Sullivan, Cui, Taktajan, Teo, Shen, etc.] The following are equivalent:
The welding function ϕ is in Weil-Petersson class;∫
D |∇ log |f ′(z)||2 dz2 =

∫
D |f
′′(z)/f ′(z)|2 dz2 <∞;∫

D∗ |g
′′(z)/g ′(z)|2 dz2 <∞;∫

D |S(f )|2 ρ−1(z) dz2 <∞;∫
D∗ |S(g)|2 ρ−1(z) dz2 <∞;
ϕ has quasiconformal extension to D, whose complex dilation µ = ∂zϕ/∂zϕ satisfies∫

D
|µ(z)|2 ρ(z) dz2 <∞;

ϕ is absolutely continuous with respect to arc-length measure, such that log |ϕ′|
belongs to the Sobolev space H1/2(S1);
Grunsky operator associated to f or g is Hilbert-Schmidt,

where ρ(z) dz2 = 1/(1− |z|2)2 dz2 is the hyperbolic metric on D or D∗ and

S(f ) = f ′′′

f ′ −
3
2

(
f ′′

f ′

)2

is the Schwarzian derivative of f .
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Action functionals vs. Random objects

Loewner Energy
∫
W ′(t)2/2dt Schramm Loewner Evolution

Large deviation

??

∫
C\Γ

|∇ log |h′(z)||2/πdz2 Surface with random measure e
√
κGFFdz2

Liouville quantum gravity

“Large deviation”

??

Quantum zipper by Sheffield

Kähler potential on T0(1) WP-Teichmüller space

ζ-regularized determinants of ∆ Gaussian free field partition function

What is the random object?

Part I

Part I

??

(Dubédat 2008)

??

Brownian loop soups

Renormalized Brownian loop measure attached to Γ

Part II

Part I

Part II

Part II
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Loewner Energy vs. Determinants

Recall H(Γ, g) = log detζ∆g (S2)− log Areag (S2)− log detζ∆g (D1)− log detζ∆g (D2).

Theorem (W., 2018)

If g = e2ϕg0 is a metric conformally equivalent to the spherical metric g0 on S2, then:
1 H(·, g) = H(·, g0)
2 Circles minimize H(·, g) among all C∞ smooth Jordan curves.
3 Let Γ be a smooth Jordan curve on S2. We have the identity

IL(Γ, Γ(0)) = 12H(Γ, g)− 12H(S1, g)

= 12 log detζ(−∆g (D1))detζ(−∆g (D2))
detζ(−∆g (D1))detζ(−∆g (D2)) ,

where D1 and D2 are two connected components of the complement of S1.
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Zeta-regularizated determinants

∆g (S2) is non-negative, essentially self-adjoint for the L2 product.
The spectrum is

0 = λ0 < λ1 ≤ λ2 · · ·
Define the Zeta-function

ζ∆(s) :=
∑
i≥1

λ−s
i = 1

Γ(s)

∫ ∞
0

Tr(e−t∆)ts−1dt,

it can be analytically continued to a neighborhood of 0.
Define (following Ray & Singer 1976)

log det′ζ(∆g (S2)) := −ζ′∆(0)

“ =
∑
i≥1

log(λi )λ−s
i |s=0 = log(

∏
i≥1

λi ).”
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Proof of the identity (sketch)

IL(Γ, Γ(0)) = 12 log detζ(−∆D1,g0 )detζ(−∆D2,g0 )
detζ(−∆D1,g0 )detζ(−∆D2,g0 )

When Γ passes through ∞, we show

IL(Γ,∞) = DH∪H∗(log
∣∣h′∣∣) := 1

π

(∫
H∪H∗

∣∣∇ log |h′(z)|
∣∣2 dz2

)
,

where h maps conformally H ∪H∗ to the complement of Γ and fixes ∞.

h
Γ H

H∗

The right-hand side does not involve Loewner iteration of conformal maps.
Use the Polyakov-Alvarez conformal anomaly formula to compare determinants of
Laplacians.
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Polyakov-Alvarez conformal anomaly formula

Take g = e2σg0 a metric conformally equivalent to g0. (Here think σ = log |h′|.)

Theorem ([Polyakov 1981], [Alvarez 1983], [Osgood, et al. 1988])
For a compact surface M without boundary,(

log det′ζ(−∆g )− log volg (M)
)
−
(

log det′ζ(−∆0)− log vol0(M)
)

=− 1
6π

[
1
2

∫
M
|∇0σ|2 dvol0 +

∫
M

K0σ dvol0.

]
The analogue for a compact surface D with smooth boundary is:

log detζ(−∆g )− log detζ(−∆0)

=− 1
6π

[
1
2

∫
D
|∇0σ|2 dvol0 +

∫
D

K0σ dvol0 +
∫
∂D

k0σ dl0

]
− 1

4π

∫
∂D
∂nσ dl0.

“Taking g0 = dz2”, we have K0 ≡ 0 and k0 ≡ 0. We get:

IL(Γ, Γ(0)) = 1
π

(∫
H∪H∗

∣∣∇ log |h′(z)|
∣∣2 dz2

)
= 12H(Γ, g0)− 12H(S1, g0).
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Brownian loop measure

Introduced by Greg Lawler and Wendelin Werner.

[Following J. Dubédat] Let x ∈ M, t > 0, consider the sub-probability measure Wt
x on

the path of Brownian motion (diffusion generated by −∆M) on M started from x on the
time interval [0, t], killed if it hits the boundary of M.
The measures Wt

x→y on paths from x to y are obtained from the disintegration of Wt
x

according to its endpoint y :

Wt
x =

∫
M
Wt

x→y dvol(y).

Define the Brownian loop measure on M:

µloop
M :=

∫ ∞
0

dt
t

∫
M
Wt

x→x dvol(x).

In particular, ∣∣Wt
x→x
∣∣ = pt(x , x).

We consider µloop
M as measure on unrooted Brownian loops by forgetting the starting

point.
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Property of Brownian loop measure

The Brownian loop measure satisfies the following two remarkable properties

(Restriction property) If M′ ⊂ M, then

dµloop
M′ (δ) = 1δ∈M′dµloop

M (δ).

(Conformal invariance) On the surfaces M1 = (M, g) and M2 = (M, e2σg) be two
conformally equivalent Riemann surface, where σ ∈ C∞(M,R), then

µloop
M1

= µloop
M2

.
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Loop measure vs. determinant of Laplacian

“
∣∣µloop

M

∣∣ = − log detζ(∆).”

If we compute formally, the total mass of µloop
M is given by

“
∣∣µloop

M

∣∣ =
∫ ∞

0

dt
t

∫
M

pt(x , x) dvol(x) =
∫ ∞

0
t−1Tr

(
e−t∆) dt.”

On the other hand, 1/Γ(s) is analytic and has the expansion near 0 as

1/Γ(s) = s + O(s2).

Therefore for any analytic function f in a neighborhood of 0,(
f (s)
Γ(s)

)′ ∣∣∣∣
s=0

= f (0).

Take formally f (s) =
∫∞

0 ts−1Tr(e−t∆) dt, we have

“− log detζ(∆) = ζ′∆(0) =
(

f (s)
Γ(s)

)′ ∣∣∣∣
s=0

=
∫ ∞

0
t−1Tr(e−t∆) dt =

∣∣µloop
M

∣∣ ”. (2)
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Loop measure vs. Loewner energy (heuristic)

“
∣∣µloop

M

∣∣ = − log detζ(∆).”

The determinant expression of Loewner energy suggests that we have formally

“ 1
12 IL(Γ) = log detζ(∆D1,g )detζ(∆D2,g )

detζ(∆D1,g )detζ(∆D2,g )
=
∣∣µloop

D1

∣∣+
∣∣µloop

D2

∣∣− ∣∣µloop
D1

∣∣− ∣∣µloop
D2

∣∣+
∣∣µloop

S2

∣∣− ∣∣µloop
S2

∣∣
= µloop

S2 ({δ; δ ∩ S1 6= ∅})− µloop
S2 ({δ; δ ∩ Γ 6= ∅}).”

However, both terms diverge due to the small and large Brownian loops (from the
conformal invariance).
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Loop measure vs. Loewner energy

f : D → D

S1

Γ
ΓrrS1

For a Brownian loop δ ⊂ D, where D ⊂ D is simply connected, we denote δout its outer
boundary (therefore of SLE8/3 type).
Let A,B ⊂ C be disjoint compact sets,

W(A,B; D) :=
∣∣µloop{δ ⊂ D; δout intersects both A and B}

∣∣ <∞.
Introduced by W. Werner.

Theorem (W., 2018)
For all Jordan curve Γ (no regularity assumption),

1
12 IL(Γ) = lim

r→1
W(S1, rS1;C)−W(Γ, Γr ;C).
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Proof: Chordal Conformal restriction

Lemma 1: Chordal Conformal restriction
Let (D, a, b) and (D′, a, b) be two simply connected domains in C coinciding in a
neighborhood of a and b, and Γ a simple curve in both (D, a, b) and (D′, a, b). Then we
have

ID′,a,b(Γ)− ID,a,b(Γ) =ID,a,b(ψ(Γ))− ID,a,b(Γ)
=3 log

∣∣ψ′(a)ψ′(b)
∣∣+ 12W(Γ,D\D′; D)− 12W(Γ,D′\D; D′),

where ψ : D′ → D is a conformal map fixing a and b.

Deterministic proof, similar computation as in SLE conformal restriction.
Intuition: The SLE partition function is

ZSLEκ
(D,a,b) = HD(a, b)βdetζ(∆)−c/2,

where as κ→ 0,

β = 6− κ
2κ ∼ 3

κ
, c = (3κ− 8)(6− κ)

2κ ∼ −24
κ
.

The Energy = “−κ log(·)”
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Proof: Loop Conformal restriction

Lemma 2: Loop conformal restriction

If η is a Jordan curve with finite energy and Γ = f (η), where f : A→ Ã is conformal on a
neighborhood A of η, then

IL(Γ)− IL(η) = 12W(η,Ac ;C)− 12W(Γ, Ãc ;C).

Proof of Lemma 2:

f : A→ Ã

K := Ac ∪ T K̃ := Ãc ∪ T̃

ψ : Ĉ\ ((ab)η ∪K) → Ĉ\(ab)η ψ̃ : Ĉ\
(

(ãb̃)Γ ∪ K̃
)
→ Ĉ\(ãb̃)Γ

a

b

η

T b̃
ã

Γ = f(η)

T̃

b

a
ã

b̃

g : Ĉ\(ab)η → Ĉ\(ãb̃)Γ Let b→ a.
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Proof: Equipotentials

When η = rS1, Γr = f (rS1) is the equipotential, and A = D.

f : D → D

S1

Γ
ΓrrS1

We deduce
IL(Γr ) = 12W(rS1,S1;C)− 12W(Γr , Γ;C).

Lemma 3

We have: IL(Γr ) r→1−−→ IL(Γ).

In fact, r 7→ IL(Γr ) is increasing if IL(Γ) > 0, namely when Γ is not a circle. It will follow
from the flow-line coupling for finite energy curve [Viklund, W. 2019+].
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Yilin Wang (ETH Zürich) Loewner energy January, 2019 40 / 55



Proof: Equipotentials

When η = rS1, Γr = f (rS1) is the equipotential, and A = D.

f : D → D

S1

Γ
ΓrrS1

We deduce
IL(Γr ) = 12W(rS1,S1;C)− 12W(Γr , Γ;C).

Lemma 3

We have: IL(Γr ) r→1−−→ IL(Γ).

In fact, r 7→ IL(Γr ) is increasing if IL(Γ) > 0, namely when Γ is not a circle. It will follow
from the flow-line coupling for finite energy curve [Viklund, W. 2019+].
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SLE/GFF coupling analogs: A Dictionary

Work in progress with F. Viklund. With γ =
√
κ, χ = γ/2− 2/γ:

Random Conformal Geometry←→ Action Functional Analogs
Neumann GFF on H←→ 2u1 : H→ R with finite Dirichlet energy;

Neumann GFF on H∗ ←→ 2u2 : H∗ → R with finite Dirichlet energy;

γ-LQG measure on H, eγGFF dz2 ←→ e2u1(z)dz2;

γ-LQG boundary measure on R = ∂H←→ eu1(z) |dz| , u1|R ∈ H1/2(R);
“SLEκ loop” ←→ finite energy loop Γ;

γ-LQG on C←→ e2ϕ(z)dz2;

γ-quantum chaos wrt.←→ trace of ϕ on Γ ∈ H1/2(Γ);
natural parametrization on SLE loop

independent couple ←→ sum up their rate functions;

e iGFF/χ ←→ e iϕ(z) unit vector field;
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Isometric conformal welding

Let D1, D2 ⊂ C be Jordan domains bounded respectively by rectifiable curves Γ1 and Γ2
of same total length. Let ψ : Γ1 → Γ2 be an isometry (preserves the arc-length).

[Huber 1976] The solution does not always exist.
[Bishop 1990] Even if the solution exists, Γ can be a curve of positive area =⇒
non-uniqueness of solution.
[David 1982, Zinsmeister 1982...] If D1 and D2 are chord-arc, then the solution
exists and is unique, which is an quasi-circle. [Bishop 1990] The Hausdorff
dimension of Γ can take any value in 1 < d < 2.
[David 1982] If the chord-arc constant of domains are close enough to 1, Γ is also
chord-arc.
[Viklund, W. 2019+] We will see that isometric welding of two finite energy domains
has also finite energy (solution exists and is unique).
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Welding coupling identity

f (∞) =∞

g(∞) =∞

Γ

e2ϕ(z)dz2
e2u1(z)dz2

e2u2(z)dz2

H

H∗

H

H∗

Let ϕ ∈W 1,2
loc (C) with finite Dirichlet energy:

DC(ϕ) := 1
π

∫
C
|∇ϕ(z)|2 dz2 <∞,

Γ an infinite Jordan curve, f , g the conformal maps from H,H∗ onto H,H∗, respectively.

Theorem (Welding coupling 2019+)

We have e2ϕ ∈ L1
loc (C), so the measure e2ϕdz2 is well-defined and locally finite. The

pull-back measures e2u1 by f on H (resp. e2u2 by g on H∗) satisfy

u1(z) = ϕ ◦ f (z) + log
∣∣f ′(z)

∣∣ , u2(z) = ϕ ◦ g(z) + log
∣∣g ′(z)

∣∣ .
We have the identity

DH(u1) +DH∗(u2) = IL(Γ) +DC(ϕ).
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Welding-coupling uniqueness

f (∞) =∞

g(∞) =∞

Γ

e2ϕ(z)dz2
e2u1(z)dz2

e2u2(z)dz2

H

H∗

H

H∗

Theorem (Welding-coupling uniqueness, 2019+)
Suppose u1 and u2 with finite Dirichlet energy are given. Then there exist unique Γ, ϕ, f ,
and g such that the following holds:

1 Γ is an infinite Jordan curve passing through 0 and 1;
2 If H and H∗ are the connected components of C\Γ, then f : H→ H is the conformal

map fixing 0, 1 and ∞ and g : H∗ → H∗ is the conformal map fixing 0,∞;
3 ϕ ∈W 1,2

loc (C) and DC(ϕ) <∞;
4 u1(z) = ϕ ◦ f (z) + log |f ′(z)|, z ∈ H;
5 u2(z) = ϕ ◦ g(z) + log |g ′(z)|, z ∈ H∗.

In fact, Γ is obtained from the isometric conformal welding of H and H∗ according to the
boundary lengths eu1 |dz| and eu2 |dz|. Moreover, IL(Γ) <∞.

Yilin Wang (ETH Zürich) Loewner energy January, 2019 44 / 55



Isometric welding of finite energy domains

Assume IL(Γ1) <∞, IL(Γ2) <∞, both curves pass through ∞.

Corollary
The isometric conformal welding of Euclidean domain H1 bounded by Γ1 and H2 bounded
by Γ2 has a unique solution Γ up to Möbius transformation. Moreover,

IL(Γ) < IL(Γ1) + IL(Γ2)

if IL(Γ1) + IL(Γ2) 6= 0.

f1(∞) =∞

g2(∞) =∞

Γ1 e2u1(z)dz2

e2u2(z)dz2

H1

H

H∗Γ2

H2

Γ

F1

F2

In fact, let u1 = log |f ′1 |, u2 = log |g ′2|,

D(u1) ≤ IL(Γ1), IL(Γ) ≤ D(u1) +D(u2) ≤ IL(Γ1) + IL(Γ2).

The first equality holds only when IL(Γ1) = 0.
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Elements of proof of welding coupling identity

Welding coupling identity

DH(u1) +DH∗(u2) = IL(Γ) +DC(ϕ).

f (∞) =∞

g(∞) =∞

Γ

e2ϕ(z)dz2
e2u1(z)dz2

e2u2(z)dz2

H

H∗

H

H∗

Recall that u1(z) = ϕ ◦ f (z) + log |f ′(z)| , u2(z) = ϕ ◦ g(z) + log |g ′(z)| .
Use the identity IL(Γ) = DH(log |f ′|) +DH∗(log |g ′|).
Prove that the cross-terms cancel out.
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Notice that since the harmonic conjugate arg(f ′) has the same Dirichlet energy as log |f ′|.
We have the identity

IL(Γ) = DH(arg f ′) +DH∗(arg g ′).

⇒ the analog to the forward SLE/GFF coupling (flow-line coupling).
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Analog to flow-line coupling

Let η be a bounded C 1 Jordan curve and Γ := µ(η), where µ is a Möbius function
mapping one point of η to ∞.
For z = Γ(s), define the function τ : Γ→ R such that τ is continuous and

τ(z) := arg(Γ′(s)) = − arg(f −1)′(z).

We denote by P[τ ](z) = − arg(f −1)′(z) the Poisson integral of τ in C (defined from
both sides of Γ).

Theorem (Flowline coupling analog 2019+)
We have the identity

IL(Γ) = DC(P[τ ]) = min
ϕ,ϕ|Γ=τ

DC(ϕ).

Conversely, under regularity condition of ϕ and DC(ϕ) <∞, then for all z0 ∈ C, the
solution to the differential equation

Γ′(t) = exp (iϕ(Γ(t))) , ∀t ∈ R and Γ(0) = z0

is an infinite arclength parametrized simple curve and

IL(Γ) ≤ DC(ϕ).
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Equipotential energy decrease

f (∞) = ∞

Γ
H H R + iyΓy := f (R + iy)

R

Corollary

We have IL(Γy ) ≤ IL(Γ). The equality holds if and only if IL(Γ) = 0.

Proof: Since on Γy , τ y = P[τ ]. We have

IL(Γy ) = DC(P[τ y ]) ≤ DC(P[τ ]) = IL(Γ).

f : D → D

ΓS1

rS1

Γr
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Action functionals vs. Random objects

Loewner Energy
∫
W ′(t)2/2dt Schramm Loewner Evolution

Large deviation

??

∫
C\Γ

|∇ log |h′(z)||2/πdz2 Surface with random measure e
√
κGFFdz2

Liouville quantum gravity

“Large deviation”

??

Quantum zipper by Sheffield

Kähler potential on T0(1) WP-Teichmüller space

ζ-regularized determinants of ∆ Gaussian free field partition function

What is the random object?

Part I

Part I

??

(Dubédat 2008)

??

Brownian loop soups

Renormalized Brownian loop measure attached to Γ

Part II

Part I

Part II

Part II
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What random model?

What is the random model naturally associated to the WP-Teichmüller space?
Malliavin’s measure on diffeomorphisms of the circle?
In which space does the random welding belong to? (What analytic framework
beyond quasiconformal geometry?)
What is the gradient flow of the Loewner energy and what meaning in Loewner’s
framework? Other natural dynamics? Stochastic gradient flow?
Random model =⇒ an intrinsic description of SLE loop (κ ≤ 4)? =⇒
Reversibility?
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Yilin Wang (ETH Zürich) Loewner energy January, 2019 52 / 55



What random model?

What is the random model naturally associated to the WP-Teichmüller space?
Malliavin’s measure on diffeomorphisms of the circle?
In which space does the random welding belong to? (What analytic framework
beyond quasiconformal geometry?)
What is the gradient flow of the Loewner energy and what meaning in Loewner’s
framework? Other natural dynamics? Stochastic gradient flow?
Random model =⇒ an intrinsic description of SLE loop (κ ≤ 4)? =⇒
Reversibility?
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Exploring the connection

How is the Kähler structure on the WP-Teichmüller space encoded in the Loewner’s
driving function? Why there is such a coincidence?
Topological group structure on WP-Teichmüller space =⇒ what meaning in the
Loewner setting?
Use driving function to find purely geometric characterization of WP-quasicircles?
(Jones’ Conjecture)
[TT06] WP-quasicircle ⇔ associated Grunsky operator G is Hilbert-Schmidt.
Moreover,

IL(Γ) ∝ log det F (I − G∗G),

where detF is the Fredholm determinant (only well-defined when G is HS).
Is it a better object to look at than zeta-regularized determinant of Laplacian?
Interpretation of Grunsky operator?
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Other topology?

Multiple-chord Loewner energy, large deviation of multiple SLE (work in progress
with E. Peltola).
Energy of (multiple) loops in higher genus surface?
Probabilistic interpretation of Weil-Petersson metric on Teichmüller space of
compact surfaces (genus ≥ 2)? Natural measure on Teichmüller/moduli space?
Conformal field theory (SLE, statistical mechanics models) =⇒ String theory
(Kähler geometry on universal Teichmüller space)???
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Thanks for your attention!
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