## Loewner energy via Brownian loop measure and action functional analogs of SLE/GFF couplings

Yilin Wang

ETH Zürich

January, 2019

IPAM UCLA

## Contents

## Introduction

- 2 Part I: Overview on the Loewner energy
- 3 Part II: Applications

#### What's next?

• Loewner's transform [1923] consists of encoding the uniformizing conformal map of a simply connected domain  $D \subset \mathbb{C}$  into evolution of conformal distortions that flatten out the boundary iteratively,

non self-intersecting curve  $\partial D \Leftrightarrow$  real-valued driving function.

- Random fractal non self-intersecting curves: the **Schramm-Loewner Evolution** introduced by Oded Schramm in 1999 which successfully describe interfaces in many statistical mechanics models.
- The Loewner energy is the action functional of SLE, also the large deviation rate function of SLE<sub> $\kappa$ </sub> as  $\kappa \to 0$  [W. 2016].
- Loewner energy for Jordan curves (loops) on the Riemann's sphere, is non-negative, vanishing only on circles, and invariant under Möbius transformation [Rohde, W. 2017].
- Weil-Petersson metric is the unique homogeneous Kähler metric on the universal Teichmüller space. Loewner energy is Kähler potential of this metric.

• Loewner's transform [1923] consists of encoding the uniformizing conformal map of a simply connected domain  $D \subset \mathbb{C}$  into evolution of conformal distortions that flatten out the boundary iteratively,

non self-intersecting curve  $\partial D \Leftrightarrow$  real-valued driving function.

- Random fractal non self-intersecting curves: the **Schramm-Loewner Evolution** introduced by Oded Schramm in 1999 which successfully describe interfaces in many statistical mechanics models.
- The Loewner energy is the action functional of SLE, also the large deviation rate function of SLE<sub>κ</sub> as κ → 0 [W. 2016].
- Loewner energy for Jordan curves (loops) on the Riemann's sphere, is non-negative, vanishing only on circles, and invariant under Möbius transformation [Rohde, W. 2017].
- Weil-Petersson metric is the unique homogeneous Kähler metric on the universal Teichmüller space. Loewner energy is Kähler potential of this metric.

• Loewner's transform [1923] consists of encoding the uniformizing conformal map of a simply connected domain  $D \subset \mathbb{C}$  into evolution of conformal distortions that flatten out the boundary iteratively,

non self-intersecting curve  $\partial D \Leftrightarrow$  real-valued driving function.

- Random fractal non self-intersecting curves: the Schramm-Loewner Evolution introduced by Oded Schramm in 1999 which successfully describe interfaces in many statistical mechanics models.
- The Loewner energy is the action functional of SLE, also the large deviation rate function of SLE<sub>κ</sub> as κ → 0 [W. 2016].
- Loewner energy for Jordan curves (loops) on the Riemann's sphere, is non-negative, vanishing only on circles, and invariant under Möbius transformation [Rohde, W. 2017].
- Weil-Petersson metric is the unique homogeneous Kähler metric on the universal Teichmüller space. Loewner energy is Kähler potential of this metric.

• Loewner's transform [1923] consists of encoding the uniformizing conformal map of a simply connected domain  $D \subset \mathbb{C}$  into evolution of conformal distortions that flatten out the boundary iteratively,

non self-intersecting curve  $\partial D \Leftrightarrow$  real-valued driving function.

- Random fractal non self-intersecting curves: the Schramm-Loewner Evolution introduced by Oded Schramm in 1999 which successfully describe interfaces in many statistical mechanics models.
- The **Loewner energy** is the action functional of SLE, also the large deviation rate function of SLE<sub> $\kappa$ </sub> as  $\kappa \to 0$  [W. 2016].
- Loewner energy for Jordan curves (loops) on the Riemann's sphere, is non-negative, vanishing only on circles, and invariant under Möbius transformation [Rohde, W. 2017].
- Weil-Petersson metric is the unique homogeneous Kähler metric on the universal Teichmüller space. Loewner energy is Kähler potential of this metric.

• Loewner's transform [1923] consists of encoding the uniformizing conformal map of a simply connected domain  $D \subset \mathbb{C}$  into evolution of conformal distortions that flatten out the boundary iteratively,

non self-intersecting curve  $\partial D \Leftrightarrow$  real-valued driving function.

- Random fractal non self-intersecting curves: the **Schramm-Loewner Evolution** introduced by Oded Schramm in 1999 which successfully describe interfaces in many statistical mechanics models.
- The **Loewner energy** is the action functional of SLE, also the large deviation rate function of  $SLE_{\kappa}$  as  $\kappa \to 0$  [W. 2016].
- Loewner energy for Jordan curves (loops) on the Riemann's sphere, is non-negative, vanishing only on circles, and invariant under Möbius transformation [Rohde, W. 2017].
- Weil-Petersson metric is the unique homogeneous Kähler metric on the universal Teichmüller space. Loewner energy is Kähler potential of this metric.

## Action functionals vs. Random objects



## Contents

## Introduction

#### 2 Part I: Overview on the Loewner energy

- SLE and the Loewner energy
- Zeta-regularized determinants of Laplacians
- Weil-Petersson Teichmüller space

#### **3** Part II: Applications

#### 4 What's next?



- $\Gamma$  is capacity-parametrized by  $[0,\infty)$ .
- $W : \mathbb{R}_+ \to \mathbb{R}$  is called the **driving function** of  $\Gamma$ .
- $W_0 = 0$ .
- W is continuous.
- One can recover the curve  $\Gamma$  from W using Loewner's differential equation.
- We say that  $\Gamma$  is the **chordal Loewner chain** generated by W.
- The centered Loewner flow has the expansion  $f_t(z) = g_t(z) W_t = z W_t + 2t/z + O(1/z).$



•  $\Gamma$  is capacity-parametrized by  $[0,\infty)$ .

- $W : \mathbb{R}_+ \to \mathbb{R}$  is called the **driving function** of  $\Gamma$ .
- $W_0 = 0$ .
- W is continuous.
- One can recover the curve Γ from W using Loewner's differential equation.
- We say that  $\Gamma$  is the **chordal Loewner chain** generated by W.
- The centered Loewner flow has the expansion  $f_t(z) = g_t(z) W_t = z W_t + 2t/z + O(1/z).$



- $\Gamma$  is capacity-parametrized by  $[0,\infty)$ .
- $W : \mathbb{R}_+ \to \mathbb{R}$  is called the **driving function** of  $\Gamma$ .
- $W_0 = 0$ .
- W is continuous.
- One can recover the curve Γ from W using Loewner's differential equation.
- We say that  $\Gamma$  is the **chordal Loewner chain** generated by W.
- The centered Loewner flow has the expansion  $f_t(z) = g_t(z) W_t = z W_t + 2t/z + O(1/z).$



- $\Gamma$  is capacity-parametrized by  $[0,\infty)$ .
- $W : \mathbb{R}_+ \to \mathbb{R}$  is called the **driving function** of  $\Gamma$ .
- $W_0 = 0$ .
- W is continuous.
- One can recover the curve Γ from W using Loewner's differential equation.
- We say that  $\Gamma$  is the **chordal Loewner chain** generated by W.
- The centered Loewner flow has the expansion  $f_t(z) = g_t(z) W_t = z W_t + 2t/z + O(1/z).$



- $\Gamma$  is capacity-parametrized by  $[0,\infty)$ .
- $W : \mathbb{R}_+ \to \mathbb{R}$  is called the **driving function** of  $\Gamma$ .
- $W_0 = 0$ .
- W is continuous.
- One can recover the curve  $\Gamma$  from W using Loewner's differential equation.
- We say that  $\Gamma$  is the **chordal Loewner chain** generated by W.
- The centered Loewner flow has the expansion  $f_t(z) = g_t(z) W_t = z W_t + 2t/z + O(1/z).$



- $\Gamma$  is capacity-parametrized by  $[0,\infty)$ .
- $W : \mathbb{R}_+ \to \mathbb{R}$  is called the **driving function** of  $\Gamma$ .
- $W_0 = 0$ .
- W is continuous.
- One can recover the curve  $\Gamma$  from W using Loewner's differential equation.
- We say that  $\Gamma$  is the **chordal Loewner chain** generated by W.
- The centered Loewner flow has the expansion  $f_t(z) = g_t(z) W_t = z W_t + 2t/z + O(1/z).$



• When the curve is driven by  $W = \sqrt{\kappa}B$  where B is 1-d Brownian motion, the curve generated is the Schramm-Loewner Evolution of parameter  $\kappa$  (SLE<sub> $\kappa$ </sub>).



• When the curve is driven by  $W = \sqrt{\kappa}B$  where *B* is 1-d Brownian motion, the curve generated is the Schramm-Loewner Evolution of parameter  $\kappa$  (SLE<sub> $\kappa$ </sub>).

 $D \subset \mathbb{C}$  a simply connected domain, a, b are two boundary points of D.



#### **Definition: Loewner energy**

We define the **Loewner energy of a simple chord**  $\Gamma$  in (D, a, b) to be

$$I_{D,a,b}(\Gamma) := I_{\mathbb{H},0,\infty}(\varphi(\Gamma)) := I(W) := rac{1}{2}\int_0^\infty W'(t)^2 dt$$

where W is the driving function of  $\varphi(\Gamma)$ .



• The Loewner energy is well-defined in (D, a, b) since for c > 0,

$$I_{\mathbb{H},0,\infty}(\Gamma) = I_{\mathbb{H},0,\infty}(c\Gamma).$$

*I*<sub>D,a,b</sub>(Γ) = 0 iff Γ is the hyperbolic geodesic connecting *a* and *b*.
 *I*<sub>D,a,b</sub>(Γ) < ∞, then Γ is rectifiable [*Friz & Shekhar, 2015*].



• The Loewner energy is well-defined in (D, a, b) since for c > 0,

$$I_{\mathbb{H},0,\infty}(\Gamma) = I_{\mathbb{H},0,\infty}(c\Gamma).$$

- $I_{D,a,b}(\Gamma) = 0$  iff  $\Gamma$  is the hyperbolic geodesic connecting a and b.
- $I_{D,a,b}(\Gamma) < \infty$ , then  $\Gamma$  is rectifiable [*Friz & Shekhar, 2015*].



• The Loewner energy is well-defined in (D, a, b) since for c > 0,

$$I_{\mathbb{H},0,\infty}(\Gamma) = I_{\mathbb{H},0,\infty}(c\Gamma).$$

- $I_{D,a,b}(\Gamma) = 0$  iff  $\Gamma$  is the hyperbolic geodesic connecting *a* and *b*.
- $I_{D,a,b}(\Gamma) < \infty$ , then  $\Gamma$  is rectifiable [Friz & Shekhar, 2015].

## Upper half-plane vs. other domains

Assume that  $\partial D$  is smooth in a neighborhood of *b*, a continuously parametrized chord  $\Gamma : [0, T] \rightarrow \overline{D}$  from *a* to *b*.



The **capacity parametrization** of  $\Gamma$  seen from *b* is chosen using the Schwarzian derivative of the mapping-out function:

$$\operatorname{cap}(\mathsf{\Gamma}[0,t]) := -\frac{S(g_t)(b)}{12}.$$

The driving function is given by

$$W_t=\frac{1}{2}\frac{g_t''(b)}{g_t'(b)}.$$

The **Loewner energy** is given by

$$I_{D,a,b}(\Gamma) = \sup_{0 \le T_0 < T_1 < \dots < T_n = T} \sum_{i=0}^{n-1} \frac{(W_{T_{i+1}} - W_{T_i})^2}{\mathsf{cap}(\Gamma[0, T_{i+1}]) - \mathsf{cap}(\Gamma[0, T_i])}$$

Yilin Wang (ETH Zürich)

## Upper half-plane vs. other domains

Assume that  $\partial D$  is smooth in a neighborhood of *b*, a continuously parametrized chord  $\Gamma : [0, T] \rightarrow \overline{D}$  from *a* to *b*.



The **capacity parametrization** of  $\Gamma$  seen from *b* is chosen using the Schwarzian derivative of the mapping-out function:

$$\mathsf{cap}(\mathsf{\Gamma}[0,t]):=-rac{\mathsf{S}(g_t)(b)}{12}.$$

The driving function is given by

$$W_t = \frac{1}{2} \frac{g_t''(b)}{g_t'(b)}.$$

The **Loewner energy** is given by

$$I_{D,a,b}(\Gamma) = \sup_{0 \le T_0 < T_1 < \dots < T_n = T} \sum_{i=0}^{n-1} \frac{(W_{T_{i+1}} - W_{T_i})^2}{\operatorname{cap}(\Gamma[0, T_{i+1}]) - \operatorname{cap}(\Gamma[0, T_i])}$$

Yilin Wang (ETH Zürich)

## Upper half-plane vs. other domains

Assume that  $\partial D$  is smooth in a neighborhood of *b*, a continuously parametrized chord  $\Gamma : [0, T] \rightarrow \overline{D}$  from *a* to *b*.



The **capacity parametrization** of  $\Gamma$  seen from *b* is chosen using the Schwarzian derivative of the mapping-out function:

$${\sf cap}({\sf \Gamma}[0,t]):=-rac{{\cal S}(g_t)(b)}{12}.$$

The driving function is given by

$$W_t = rac{1}{2} rac{g_t''(b)}{g_t'(b)}.$$

The Loewner energy is given by

$$I_{D,a,b}(\Gamma) = \sup_{0 \le T_0 < T_1 < \dots < T_n = T} \sum_{i=0}^{n-1} \frac{(W_{T_{i+1}} - W_{T_i})^2}{\mathsf{cap}(\Gamma[0, T_{i+1}]) - \mathsf{cap}(\Gamma[0, T_i])}$$

Yilin Wang (ETH Zürich)

The Dirichlet energy I(W) is the **action functional** of Brownian motion. Intuitively, the "Brownian path has the distribution on  $C^0(\mathbb{R}_+,\mathbb{R})$  with density  $\propto \exp(-I(W))\mathcal{D}W$ ."

However,  $I(B) = \infty$  with probability 1.

The Schilder's theorem states that I(W) is also the large deviation rate function for Brownian motion  $\sqrt{\kappa}B$  as  $\kappa \to 0$ . Loosely speaking,

"P(
$$\sqrt{\kappa}B$$
 stays close to  $W$ )  $\approx \exp\left(-\frac{l(W)}{\kappa}\right)$ ."

It should imply that the Loewner energy is the large deviation rate function of  $SLE_{\kappa}$ :

"P(SLE<sub>$$\kappa$$</sub> stays close to  $\Gamma$ )  $\approx \exp\left(-\frac{l(\Gamma)}{\kappa}\right)$ ." (1)



The Dirichlet energy I(W) is the **action functional** of Brownian motion. Intuitively, the "Brownian path has the distribution on  $C^0(\mathbb{R}_+,\mathbb{R})$  with density  $\propto \exp(-I(W))\mathcal{D}W$ ."

#### However, $I(B) = \infty$ with probability 1.

The Schilder's theorem states that I(W) is also the large deviation rate function for Brownian motion  $\sqrt{\kappa}B$  as  $\kappa \to 0$ . Loosely speaking,

"P(
$$\sqrt{\kappa}B$$
 stays close to  $W$ )  $\approx \exp\left(-\frac{l(W)}{\kappa}\right)$ ."

It should imply that the Loewner energy is the large deviation rate function of  $SLE_{\kappa}$ :

"P(SLE<sub>$$\kappa$$</sub> stays close to  $\Gamma$ )  $\approx \exp\left(-\frac{l(\Gamma)}{\kappa}\right)$ ." (1)



The Dirichlet energy I(W) is the **action functional** of Brownian motion. Intuitively, the "Brownian path has the distribution on  $C^0(\mathbb{R}_+,\mathbb{R})$  with density  $\propto \exp(-I(W))\mathcal{D}W$ ."

However,  $I(B) = \infty$  with probability 1.

The Schilder's theorem states that I(W) is also the **large deviation rate function** for Brownian motion  $\sqrt{\kappa}B$  as  $\kappa \to 0$ . Loosely speaking,

"
$$\mathrm{P}(\sqrt{\kappa}B \text{ stays close to } W) \approx \exp\left(-rac{l(W)}{\kappa}\right)$$
."

It should imply that the Loewner energy is the large deviation rate function of  $SLE_{\kappa}$ :

"P(SLE<sub>$$\kappa$$</sub> stays close to  $\Gamma$ )  $\approx \exp\left(-\frac{l(\Gamma)}{\kappa}\right)$ ." (1)



The Dirichlet energy I(W) is the **action functional** of Brownian motion. Intuitively, the "Brownian path has the distribution on  $C^0(\mathbb{R}_+,\mathbb{R})$  with density  $\propto \exp(-I(W))\mathcal{D}W$ ."

However,  $I(B) = \infty$  with probability 1.

The Schilder's theorem states that I(W) is also the **large deviation rate function** for Brownian motion  $\sqrt{\kappa}B$  as  $\kappa \to 0$ . Loosely speaking,

"P(
$$\sqrt{\kappa}B$$
 stays close to  $W$ )  $\approx \exp\left(-\frac{l(W)}{\kappa}\right)$ ."

It should imply that the Loewner energy is the large deviation rate function of  $SLE_{\kappa}$ :

"P(SLE<sub>$$\kappa$$</sub> stays close to  $\Gamma$ )  $\approx \exp\left(-\frac{l(\Gamma)}{\kappa}\right)$ ." (1)



### Theorem (W. 2016)

Let  $\Gamma$  be a simple chord in D connecting two boundary points a and b, we have

$$I_{D,a,b}(\Gamma) = I_{D,b,a}(\Gamma).$$



The deterministic result is based on

#### Theorem (Reversibility of SLE, Zhan 2008, Miller-Sheffield 2012

For  $\kappa \leq 8$ , the law of the trace of  $SLE_{\kappa}$  in (D, a, b), is the same as the law of  $SLE_{\kappa}$  in (D, b, a).

In fact, the decay rate as  $\kappa \to 0$  of the probability of SLE<sub> $\kappa$ </sub> stays close to  $\Gamma$  is the same as the decay rate of being close to  $-1/\Gamma$ .

## Theorem (W. 2016)

Let  $\Gamma$  be a simple chord in D connecting two boundary points a and b, we have

$$I_{D,a,b}(\Gamma) = I_{D,b,a}(\Gamma).$$



The deterministic result is based on

#### Theorem (Reversibility of SLE, Zhan 2008, Miller-Sheffield 2012)

For  $\kappa \leq 8$ , the law of the trace of  $SLE_{\kappa}$  in (D, a, b), is the same as the law of  $SLE_{\kappa}$  in (D, b, a).

In fact, the decay rate as  $\kappa \to 0$  of the probability of SLE<sub> $\kappa$ </sub> stays close to  $\Gamma$  is the same as the decay rate of being close to  $-1/\Gamma$ .

In fact, the Loewner energy has more symmetries.

#### Definition (Rohde, W., 2017)

We define the Loewner energy of a simple loop  $\Gamma : [0,1] \mapsto \hat{\mathbb{C}}$  rooted at  $\Gamma_0 = \Gamma_1$  to be

$$I^{L}(\Gamma,\Gamma_{0}) := \lim_{\varepsilon \to 0} I_{\hat{\mathbb{C}} \setminus \Gamma[0,\varepsilon],\Gamma_{\varepsilon},\Gamma_{0}}(\Gamma[\varepsilon,1]).$$



- $I^{L}(\Gamma, \Gamma_{0}) = 0$  if and only if  $\Gamma$  is a (round) circle.
- If  $\Gamma[0, s]$  is a circular arc (including line segments), then the RHS is constant for  $\varepsilon \leq s$ , and  $I^{L}(\Gamma, \Gamma_{0})$  equals to the chordal energy  $I_{\hat{\mathbb{C}} \setminus \Gamma[0, s], \Gamma_{s}, \Gamma_{0}}(\Gamma[s, 1])$ .

#### Definition (Rohde, W., 2017)

We define the Loewner energy of a simple loop  $\Gamma : [0,1] \mapsto \hat{\mathbb{C}}$  rooted at  $\Gamma_0 = \Gamma_1$  to be

$$I^{L}(\Gamma,\Gamma_{0}) := \lim_{\varepsilon \to 0} I_{\hat{\mathbb{C}} \setminus \Gamma[0,\varepsilon],\Gamma_{\varepsilon},\Gamma_{0}}(\Gamma[\varepsilon,1]).$$



- $I^{L}(\Gamma, \Gamma_{0}) = 0$  if and only if  $\Gamma$  is a (round) circle.
- If  $\Gamma[0, s]$  is a circular arc (including line segments), then the RHS is constant for  $\varepsilon \leq s$ , and  $I^{L}(\Gamma, \Gamma_{0})$  equals to the chordal energy  $I_{\hat{\mathbb{C}} \setminus \Gamma[0, s], \Gamma_{s}, \Gamma_{0}}(\Gamma[s, 1])$ .

#### Theorem (Rohde, W. 2017)

The Loewner loop energy is **independent** of the choice of root and orientation.

 $\implies$   $I^L$  is invariant on the set of **free loops** under Möbius transformation;  $\implies$  The loop setting is more natural than the chordal setting. The proof is based on the reversibility of the chordal energy.

Moreover,

- $I^{L}(\Gamma) < \infty$ , then  $\Gamma$  is a (rectifiable) quasicircle.
- If  $\Gamma$  is  $C^{1.5+\varepsilon}$  for some  $\varepsilon > 0$ , then  $I^{L}(\Gamma) < \infty$ .

#### Theorem (Rohde, W. 2017)

The Loewner loop energy is independent of the choice of root and orientation.

 $\implies$   $I^{L}$  is invariant on the set of **free loops** under Möbius transformation;  $\implies$  The loop setting is more natural than the chordal setting.

The proof is based on the reversibility of the chordal energy.

Moreover,

- $I^{L}(\Gamma) < \infty$ , then  $\Gamma$  is a (rectifiable) quasicircle.
- If  $\Gamma$  is  $C^{1.5+\varepsilon}$  for some  $\varepsilon > 0$ , then  $I^{L}(\Gamma) < \infty$ .

#### Theorem (Rohde, W. 2017)

The Loewner loop energy is independent of the choice of root and orientation.

 $\implies$   $I^{L}$  is invariant on the set of **free loops** under Möbius transformation;  $\implies$  The loop setting is more natural than the chordal setting. The proof is based on the reversibility of the chordal energy.

# Moreover, *I*<sup>L</sup>(Γ) < ∞, then Γ is a (rectifiable) quasicircle.</li> If Γ is C<sup>1.5+ε</sup> for some ε > 0, then *I*<sup>L</sup>(Γ) < ∞.</li>
#### Theorem (Rohde, W. 2017)

The Loewner loop energy is independent of the choice of root and orientation.

 $\implies$   $l^{L}$  is invariant on the set of **free loops** under Möbius transformation;  $\implies$  The loop setting is more natural than the chordal setting. The proof is based on the reversibility of the chordal energy.

Moreover,

- $I^{L}(\Gamma) < \infty$ , then  $\Gamma$  is a (rectifiable) quasicircle.
- If  $\Gamma$  is  $C^{1.5+\varepsilon}$  for some  $\varepsilon > 0$ , then  $I^{L}(\Gamma) < \infty$ .

#### • The Zeta-regularization of determinants is first introduced by Ray & Singer (1976).

#### • Hawking (1977) has pointed out that it allows to regularize quadratic path integrals.

• Osgood, Phillips & Sarnak (1988) have shown that the results obtained by comparing two functional determinants of Laplacian in the QFT formalism agree with the results obtained by the zeta-regularized determinant (**Polyakov-Alvarez** conformal anomaly formula).

- The Zeta-regularization of determinants is first introduced by Ray & Singer (1976).
- Hawking (1977) has pointed out that it allows to regularize quadratic path integrals.
- Osgood, Phillips & Sarnak (1988) have shown that the results obtained by comparing two functional determinants of Laplacian in the QFT formalism agree with the results obtained by the zeta-regularized determinant (Polyakov-Alvarez conformal anomaly formula).

- The Zeta-regularization of determinants is first introduced by Ray & Singer (1976).
- Hawking (1977) has pointed out that it allows to regularize quadratic path integrals.
- Osgood, Phillips & Sarnak (1988) have shown that the results obtained by comparing two functional determinants of Laplacian in the QFT formalism agree with the results obtained by the zeta-regularized determinant (Polyakov-Alvarez conformal anomaly formula).

# The functional ${\cal H}$

- $g_0(z) = \frac{4}{(1+|z|^2)^2} dz^2$  denotes the spherical metric;
- $g = e^{2\varphi}g_0$  be a metric conformally equivalent to  $g_0$ ;
- $\Gamma$  a  $C^{\infty}$  smooth simple loop in  $\mathbb{C} \cup \{\infty\} \simeq S^2$ ;
- $D_1$  and  $D_2$  two connected components  $S^2 \setminus \Gamma$ ;
- Δ<sub>g</sub>(D<sub>i</sub>) the Laplace-Beltrami operator with Dirichlet boundary condition on D<sub>i</sub>.



#### Definition

Let  $det_{\zeta}$  be the  $\zeta$ -regularized determinant, we introduce

$$\mathcal{H}(\Gamma,g):= \log \det_{\zeta} \Delta_g(S^2) - \log \operatorname{Area}_g(S^2) - \log \det_{\zeta} \Delta_g(D_1) - \log \det_{\zeta} \Delta_g(D_2).$$

# Loewner Energy vs. Determinants

$$\mathcal{H}(\Gamma,g) = \log \det_{\zeta} \Delta_g(S^2) - \log \operatorname{Area}_g(S^2) - \log \det_{\zeta} \Delta_g(D_1) - \log \det_{\zeta} \Delta_g(D_2).$$

#### Theorem (W., 2018)

If  $g = e^{2\varphi}g_0$  is a metric conformally equivalent to the spherical metric  $g_0$  on  $S^2$ , then:  $\mathcal{H}(\cdot, g) = \mathcal{H}(\cdot, g_0)$ 

- 2 Circles minimize  $\mathcal{H}(\cdot, g)$  among all  $C^{\infty}$  smooth Jordan curves.
- **(**) Let  $\Gamma$  be a smooth Jordan curve on  $S^2$ . We have the identity

$$egin{aligned} &\mathcal{H}(\mathsf{\Gamma},\mathsf{\Gamma}(\mathsf{0})) = 12\mathcal{H}(\mathsf{\Gamma},g) &= 12\mathcal{H}(\mathsf{S}^1,g) \ &= 12\lograc{\det_\zeta(-\Delta_g(\mathbb{D}_1))\det_\zeta(-\Delta_g(\mathbb{D}_2))}{\det_\zeta(-\Delta_g(D_1))\det_\zeta(-\Delta_g(D_2))}, \end{aligned}$$

where  $\mathbb{D}_1$  and  $\mathbb{D}_2$  are two connected components of the complement of  $S^1$ .

In particular, the above identity gives already the parametrization independence of the Loewner loop energy for smooth loops.

# Loewner Energy vs. Determinants

$$\mathcal{H}(\Gamma,g) = \log \det_{\zeta} \Delta_g(S^2) - \log \operatorname{Area}_g(S^2) - \log \det_{\zeta} \Delta_g(D_1) - \log \det_{\zeta} \Delta_g(D_2).$$

#### Theorem (W., 2018)

If  $g = e^{2\varphi}g_0$  is a metric conformally equivalent to the spherical metric  $g_0$  on  $S^2$ , then: •  $\mathcal{H}(\cdot, g) = \mathcal{H}(\cdot, g_0)$ 

- **2** Circles minimize  $\mathcal{H}(\cdot, g)$  among all  $C^{\infty}$  smooth Jordan curves.
- **(**) Let  $\Gamma$  be a smooth Jordan curve on  $S^2$ . We have the identity

$$egin{aligned} &\mathcal{H}(\mathsf{\Gamma},\mathsf{\Gamma}(\mathsf{0})) = 12\mathcal{H}(\mathsf{\Gamma},g) &= 12\mathcal{H}(\mathsf{S}^1,g) \ &= 12\lograc{\det_\zeta(-\Delta_g(\mathbb{D}_1))\det_\zeta(-\Delta_g(\mathbb{D}_2))}{\det_\zeta(-\Delta_g(D_1))\det_\zeta(-\Delta_g(D_2))} \end{aligned}$$

where  $\mathbb{D}_1$  and  $\mathbb{D}_2$  are two connected components of the complement of  $S^1$ .

In particular, the above identity gives already the parametrization independence of the Loewner loop energy for smooth loops.

# Remarks

- The regularity assumption on the curve is due to the constraint from the zeta-regularization and its variation formula [OPS].
- Picking different metrics g provide a wide range of identities with the Loewner energy that usually look different in their expression involving scalar curvatures, geodesic curvatures, conformal maps  $D_1 \rightarrow \mathbb{D}_1$ , etc., (but of course they are equal).
- One of the identities links to the Weil-Petersson class of the universal Teichmüller space.

# Remarks

- The regularity assumption on the curve is due to the constraint from the zeta-regularization and its variation formula [OPS].
- Picking different metrics g provide a wide range of identities with the Loewner energy that usually look different in their expression involving scalar curvatures, geodesic curvatures, conformal maps D<sub>1</sub> → D<sub>1</sub>, etc., (but of course they are equal).
- One of the identities links to the Weil-Petersson class of the universal Teichmüller space.

# Remarks

- The regularity assumption on the curve is due to the constraint from the zeta-regularization and its variation formula [OPS].
- Picking different metrics g provide a wide range of identities with the Loewner energy that usually look different in their expression involving scalar curvatures, geodesic curvatures, conformal maps  $D_1 \rightarrow \mathbb{D}_1$ , etc., (but of course they are equal).
- One of the identities links to the Weil-Petersson class of the universal Teichmüller space.

### • $QS(S^1)$ the group of quasisymmetric sense-preserving homeomorphism of $S^1$ ;

A sense-preserving homeomorphism  $\varphi : S^1 \to S^1$  is **quasisymmetric** if there exists  $M \ge 1$  such that for all  $\theta \in \mathbb{R}$  and  $t \in (0, \pi)$ ,

$$\frac{1}{M} \leq \left| \frac{\varphi(e^{i(\theta+t)}) - \varphi(e^{i\theta})}{\varphi(e^{i\theta}) - \varphi(e^{i(\theta-t)})} \right| \leq M.$$

•  $\mathsf{M\ddot{o}b}(S^1) \simeq \mathsf{PSL}(2,\mathbb{R})$  the subgroup of Möbius function of  $S^1$ .

The universal Teichmüller space is

 $\mathcal{T}(1) := QS(S^1) / \mathsf{M\"ob}(S^1) \simeq \{ \varphi \in QS(S^1), \varphi \text{ fixes } -1, -i \text{ and } 1 \}.$ 

It can be modeled by **Beltrami coefficients** as well:

$$T(1) = L^{\infty}(\mathbb{D}, \mathbb{C})_1 / \sim,$$

where

$$\|\mu\|_{\infty} < 1, \|\nu\|_{\infty} < 1, \quad \mu \sim \nu \Leftrightarrow w_{\mu}|_{S^{1}} = w_{\nu}|_{S^{1}}$$

$$\overline{\partial} w_{\mu}(z) = \mu(z) \partial w_{\mu}(z).$$

•  $QS(S^1)$  the group of quasisymmetric sense-preserving homeomorphism of  $S^1$ ;

A sense-preserving homeomorphism  $\varphi : S^1 \to S^1$  is **quasisymmetric** if there exists  $M \ge 1$  such that for all  $\theta \in \mathbb{R}$  and  $t \in (0, \pi)$ ,

$$\frac{1}{M} \leq \left| \frac{\varphi(e^{i(\theta+t)}) - \varphi(e^{i\theta})}{\varphi(e^{i\theta}) - \varphi(e^{i(\theta-t)})} \right| \leq M.$$

•  $\mathsf{M\ddot{o}b}(S^1) \simeq \mathsf{PSL}(2,\mathbb{R})$  the subgroup of  $\mathsf{M\ddot{o}bius}$  function of  $S^1$ .

The **universal Teichmüller space** is

 $\mathcal{T}(1) := QS(S^1) / \mathsf{M\"ob}(S^1) \simeq \{ \varphi \in QS(S^1), \varphi \text{ fixes } -1, -i \text{ and } 1 \}.$ 

It can be modeled by **Beltrami coefficients** as well:

$${\mathcal T}(1) = L^\infty({\mathbb D},{\mathbb C})_1/\sim,$$

where

$$\|\mu\|_{\infty} < 1, \|\nu\|_{\infty} < 1, \quad \mu \sim \nu \Leftrightarrow w_{\mu}|_{S^{1}} = w_{\nu}|_{S^{1}}$$

$$\overline{\partial} w_{\mu}(z) = \mu(z) \partial w_{\mu}(z).$$

•  $QS(S^1)$  the group of quasisymmetric sense-preserving homeomorphism of  $S^1$ ;

A sense-preserving homeomorphism  $\varphi : S^1 \to S^1$  is **quasisymmetric** if there exists  $M \ge 1$  such that for all  $\theta \in \mathbb{R}$  and  $t \in (0, \pi)$ ,

$$\frac{1}{M} \leq \left| \frac{\varphi(e^{i(\theta+t)}) - \varphi(e^{i\theta})}{\varphi(e^{i\theta}) - \varphi(e^{i(\theta-t)})} \right| \leq M.$$

•  $\mathsf{M\ddot{o}b}(S^1) \simeq \mathsf{PSL}(2,\mathbb{R})$  the subgroup of Möbius function of  $S^1$ .

The universal Teichmüller space is

 $\mathcal{T}(1) := QS(S^1) / \mathsf{M\"ob}(S^1) \simeq \{ \varphi \in QS(S^1), \varphi \text{ fixes } -1, -i \text{ and } 1 \}.$ 

It can be modeled by **Beltrami coefficients** as well:

$$T(1) = L^{\infty}(\mathbb{D}, \mathbb{C})_1 / \sim,$$

where

$$\|\mu\|_{\infty} < 1, \|\nu\|_{\infty} < 1, \quad \mu \sim \nu \Leftrightarrow w_{\mu}|_{S^{1}} = w_{\nu}|_{S^{1}}$$

$$\overline{\partial} w_{\mu}(z) = \mu(z) \partial w_{\mu}(z).$$

•  $QS(S^1)$  the group of quasisymmetric sense-preserving homeomorphism of  $S^1$ ;

A sense-preserving homeomorphism  $\varphi : S^1 \to S^1$  is **quasisymmetric** if there exists  $M \ge 1$  such that for all  $\theta \in \mathbb{R}$  and  $t \in (0, \pi)$ ,

$$\frac{1}{M} \leq \left| \frac{\varphi(e^{i(\theta+t)}) - \varphi(e^{i\theta})}{\varphi(e^{i\theta}) - \varphi(e^{i(\theta-t)})} \right| \leq M.$$

•  $\mathsf{M\ddot{o}b}(S^1) \simeq \mathsf{PSL}(2,\mathbb{R})$  the subgroup of Möbius function of  $S^1$ .

#### The universal Teichmüller space is

$$\mathcal{T}(1) := \mathcal{QS}(S^1) / \mathsf{M\"ob}(S^1) \simeq \{ \varphi \in \mathcal{QS}(S^1), \ \varphi \ \mathsf{fixes} \ -1, -i \ \mathsf{and} \ 1 \}.$$

It can be modeled by **Beltrami coefficients** as well:

$${\mathcal T}(1) = L^\infty({\mathbb D},{\mathbb C})_1/\sim,$$

where

$$\|\mu\|_{\infty} < 1, \|\nu\|_{\infty} < 1, \quad \mu \sim \nu \Leftrightarrow w_{\mu}|_{S^{1}} = w_{\nu}|_{S^{1}}$$

$$\overline{\partial} w_{\mu}(z) = \mu(z) \partial w_{\mu}(z).$$

•  $QS(S^1)$  the group of quasisymmetric sense-preserving homeomorphism of  $S^1$ ;

A sense-preserving homeomorphism  $\varphi : S^1 \to S^1$  is **quasisymmetric** if there exists  $M \ge 1$  such that for all  $\theta \in \mathbb{R}$  and  $t \in (0, \pi)$ ,

$$\frac{1}{M} \leq \left| \frac{\varphi(e^{i(\theta+t)}) - \varphi(e^{i\theta})}{\varphi(e^{i\theta}) - \varphi(e^{i(\theta-t)})} \right| \leq M.$$

•  $\mathsf{M\ddot{o}b}(S^1) \simeq \mathsf{PSL}(2,\mathbb{R})$  the subgroup of Möbius function of  $S^1$ .

#### The universal Teichmüller space is

$$\mathcal{T}(1):= QS(S^1)/\mathsf{M\"ob}(S^1) \simeq \{\varphi \in QS(S^1), \, \varphi \text{ fixes } -1, -i \text{ and } 1\}.$$

It can be modeled by **Beltrami coefficients** as well:

$$T(1) = L^{\infty}(\mathbb{D}, \mathbb{C})_1 / \sim,$$

where

$$\|\mu\|_{\infty} < 1, \|\nu\|_{\infty} < 1, \quad \mu \sim \nu \Leftrightarrow \mathsf{w}_{\mu}|_{\mathsf{S}^1} = \mathsf{w}_{\nu}|_{\mathsf{S}^1}$$

$$\overline{\partial} w_{\mu}(z) = \mu(z) \partial w_{\mu}(z).$$

# Welding function

• Associate  $\Gamma$  with its welding function  $\varphi$ :



[Rohde, W. 2017]:  $I^{L}(\Gamma) < \infty \Rightarrow \Gamma$  is a quasicircle  $\Leftrightarrow \varphi \in QS(S^{1})$ .

• " $\Leftarrow$ " is not true, there are quasicircles with  $\infty$  Loewner energy.

#### Question

What is the class of finite energy loops in T(1)?

# Welding function

• Associate  $\Gamma$  with its welding function  $\varphi$ :



[Rohde, W. 2017]:  $I^{L}(\Gamma) < \infty \Rightarrow \Gamma$  is a quasicircle  $\Leftrightarrow \varphi \in QS(S^{1})$ .

• " $\Leftarrow$  " is not true, there are quasicircles with  $\infty$  Loewner energy.

#### Question

What is the class of finite energy loops in T(1)?

# Welding function

Associate Γ with its welding function φ:



[Rohde, W. 2017]:  $I^{L}(\Gamma) < \infty \Rightarrow \Gamma$  is a quasicircle  $\Leftrightarrow \varphi \in QS(S^{1})$ .

• " $\Leftarrow$  " is not true, there are quasicircles with  $\infty$  Loewner energy.

#### Question

What is the class of finite energy loops in T(1)?

• The homogeneous space of  $C^\infty$ -smooth diffeomorphisms

$$M := \mathsf{Diff}(S^1) / \mathsf{M\"ob}(S^1) \subset T(1)$$

#### has a Kähler structure [Witten, Bowick, Rajeev, etc.].

• There is a **unique** homogeneous Kähler metric (up to constant factor): the **Weil-Petersson metric**.

• The homogeneous space of  $C^\infty$ -smooth diffeomorphisms

$$M := \mathsf{Diff}(S^1) / \mathsf{M\"ob}(S^1) \subset T(1)$$

has a Kähler structure [Witten, Bowick, Rajeev, etc.].

• There is a **unique** homogeneous Kähler metric (up to constant factor): the **Weil-Petersson metric**.

#### Weil-Petersson metric

The tangent space at *id* of *M* consists of  $C^{\infty}$  vector fields on  $S^1$ :

$$v = v(\theta) \frac{\partial}{\partial \theta} = \sum_{m \in \mathbb{Z} \setminus \{-1,0,1\}} v_m e^{im\theta} \frac{\partial}{\partial \theta}, \text{ where } v_{-m} = \overline{v_m}.$$

The almost complex structure  $J^2 = -Id$  is given by the Hilbert transform:

$$J(v)_m = -i \operatorname{sgn}(m) v_m$$
, for  $m \in \mathbb{Z} \setminus \{-1, 0, 1\}$ .

In particular,

$$J\left(\cos(m\theta)\frac{\partial}{\partial\theta}\right) = \sin(m\theta)\frac{\partial}{\partial\theta}; \quad J\left(\sin(m\theta)\frac{\partial}{\partial\theta}\right) = -\cos(m\theta)\frac{\partial}{\partial\theta}$$

The Weil-Petersson symplectic form  $\omega(\cdot, \cdot)$  and the Riemannian metric  $\langle \cdot, \cdot \rangle_{WP}$  is given at the origin by

$$\omega(\mathbf{v},\mathbf{w})=i\sum_{m\in\mathbb{Z}\setminus\{-1,0,1\}}(m^3-m)\mathbf{v}_m\mathbf{w}_{-m},$$

$$\langle \mathbf{v}, \mathbf{w} \rangle_{WP} = \omega(\mathbf{v}, J(\mathbf{w})) = \sum_{m=2}^{\infty} (m^3 - m) \operatorname{Re}(v_m w_{-m}).$$

### Weil-Petersson Class

- Weil-Petersson Teichmüller space  $T_0(1)$  is the closure of  $\text{Diff}(S^1)/\text{M\"ob}(S^1) \subset T(1)$  under the WP-metric. Weil-Petersson class  $\text{WP}(S^1) \subset QS(S^1)$  are homeomorphisms representing points in  $T_0(1)$ .
- The above description and many other characterizations are provided by [Nag, Verjovski, Sullivan, Cui, Takhtajan, Teo, Shen, etc].



Theorem (Takhtajan & Teo, 2006)

The universal Liouville action  $S_1$  :  $T_0(1) \rightarrow \mathbb{R}$ ,

$$\mathbf{S}_{1}([\varphi]) := \int_{\mathbb{D}} \left| \frac{f''}{f'}(z) \right|^{2} \mathrm{d}z^{2} + \int_{\mathbb{D}^{*}} \left| \frac{g''}{g'}(z) \right|^{2} \mathrm{d}z^{2} + 4\pi \log \left| \frac{f'(0)}{g'(\infty)} \right|^{2}$$

is a Kähler potential of the Weil-Petersson metric, where

 $g'(\infty) = \lim_{z \to \infty} g'(z) = \tilde{g}'(0)^{-1}$  and  $\tilde{g}(z) = 1/g(1/z)$ .

Yilin Wang (ETH Zürich)

Loewner energy

### Weil-Petersson Class

- Weil-Petersson Teichmüller space  $T_0(1)$  is the closure of  $\text{Diff}(S^1)/\text{M\"ob}(S^1) \subset T(1)$  under the WP-metric. Weil-Petersson class  $\text{WP}(S^1) \subset QS(S^1)$  are homeomorphisms representing points in  $T_0(1)$ .
- The above description and many other characterizations are provided by [Nag, Verjovski, Sullivan, Cui, Takhtajan, Teo, Shen, etc].



#### Theorem (Takhtajan & Teo, 2006)

The universal Liouville action  $S_1$ :  $T_0(1) \to \mathbb{R}$ ,

$$\mathbf{S}_{\mathbf{1}}([\varphi]) := \int_{\mathbb{D}} \left| \frac{f''}{f'}(z) \right|^2 \mathrm{d}z^2 + \int_{\mathbb{D}^*} \left| \frac{g''}{g'}(z) \right|^2 \mathrm{d}z^2 + 4\pi \log \left| \frac{f'(0)}{g'(\infty)} \right|^2$$

is a Kähler potential of the Weil-Petersson metric, where

$$g'(\infty) = \lim_{z \to \infty} g'(z) = \tilde{g}'(0)^{-1}$$
 and  $\tilde{g}(z) = 1/g(1/z)$ .

### Loewner Energy vs. Weil-Petersson Class



### Theorem (W. 2018)

A bounded simple loop  $\Gamma$  in  $\hat{\mathbb{C}}$  has finite Loewner energy *if and only if*  $[\varphi] \in T_0(1)$ . Moreover,

$$I^{L}(\Gamma) = \mathbf{S}_{1}([\varphi])/\pi.$$

- There is no regularity assumption on the loop for the identity to hold.
- This gives a new characterization of the WP-Class, and a new viewpoint on the Kähler potential on  $T_0(1)$  (or alternatively a way to look at the Loewner energy).

### Loewner Energy vs. Weil-Petersson Class



### Theorem (W. 2018)

A bounded simple loop  $\Gamma$  in  $\hat{\mathbb{C}}$  has finite Loewner energy *if and only if*  $[\varphi] \in T_0(1)$ . Moreover,

$$I^{L}(\Gamma) = \mathbf{S}_{1}([\varphi])/\pi.$$

• There is no regularity assumption on the loop for the identity to hold.

 This gives a new characterization of the WP-Class, and a new viewpoint on the Kähler potential on T<sub>0</sub>(1) (or alternatively a way to look at the Loewner energy).

## Loewner Energy vs. Weil-Petersson Class



### Theorem (W. 2018)

A bounded simple loop  $\Gamma$  in  $\hat{\mathbb{C}}$  has finite Loewner energy *if and only if*  $[\varphi] \in T_0(1)$ . Moreover,

$$I^{L}(\Gamma) = \mathbf{S}_{1}([\varphi])/\pi.$$

- There is no regularity assumption on the loop for the identity to hold.
- This gives a new characterization of the WP-Class, and a new viewpoint on the Kähler potential on  $T_0(1)$  (or alternatively a way to look at the Loewner energy).

# Characterizations of the WP-Class (an incomplete list)

[Nag, Verjovsky, Sullivan, Cui, Taktajan, Teo, Shen, etc.] The following are equivalent:

- $\bullet\,$  The welding function  $\varphi$  is in Weil-Petersson class;
- $\int_{\mathbb{D}} |\nabla \log |f'(z)||^2 dz^2 = \int_{\mathbb{D}} |f''(z)/f'(z)|^2 dz^2 < \infty;$
- $\int_{\mathbb{D}^*} |g''(z)/g'(z)|^2 \mathrm{d}z^2 < \infty;$
- $\int_{\mathbb{D}} |\mathcal{S}(f)|^2 \rho^{-1}(z) \, \mathrm{d}z^2 < \infty;$
- $\int_{\mathbb{D}^*} |\mathcal{S}(g)|^2 \rho^{-1}(z) \, \mathrm{d} z^2 < \infty;$
- $\varphi$  has quasiconformal extension to  $\mathbb{D}$ , whose complex dilation  $\mu = \partial_{\overline{z}} \varphi / \partial_z \varphi$  satisfies

$$\int_{\mathbb{D}} |\mu(z)|^2 \, \rho(z) \, \mathrm{d} z^2 < \infty;$$

- $\varphi$  is absolutely continuous with respect to arc-length measure, such that  $\log |\varphi'|$  belongs to the Sobolev space  $H^{1/2}(S^1)$ ;
- Grunsky operator associated to f or g is Hilbert-Schmidt,

where  $\rho(z) dz^2 = 1/(1 - |z|^2)^2 dz^2$  is the hyperbolic metric on  $\mathbb{D}$  or  $\mathbb{D}^*$  and  $\mathcal{S}(f) = \frac{f'''}{f'} - \frac{3}{2} \left(\frac{f''}{f'}\right)^2$ 

is the Schwarzian derivative of f.

# Contents

Introduction

2 Part I: Overview on the Loewner energy

### 3 Part II: Applications

- Brownian loop measure interpretation
- Action functional analogs of SLE/GFF couplings

What's next?

# Action functionals vs. Random objects



# Loewner Energy vs. Determinants

 $\mathsf{Recall} \ \mathcal{H}(\Gamma,g) = \mathsf{log} \det_{\zeta} \Delta_g(S^2) - \mathsf{log} \operatorname{Area}_g(S^2) - \mathsf{log} \det_{\zeta} \Delta_g(D_1) - \mathsf{log} \det_{\zeta} \Delta_g(D_2).$ 

### Theorem (W., 2018)

If  $g = e^{2\varphi}g_0$  is a metric conformally equivalent to the spherical metric  $g_0$  on  $S^2$ , then: •  $\mathcal{H}(\cdot, g) = \mathcal{H}(\cdot, g_0)$ 

- **2** Circles minimize  $\mathcal{H}(\cdot, g)$  among all  $C^{\infty}$  smooth Jordan curves.
- **(3)** Let  $\Gamma$  be a smooth Jordan curve on  $S^2$ . We have the identity

$$egin{aligned} &\mathcal{H}(\Gamma,\Gamma(0)) = 12\mathcal{H}(\Gamma,g) - 12\mathcal{H}(S^1,g) \ &= 12\lograc{\det_\zeta(-\Delta_g(\mathbb{D}_1))\det_\zeta(-\Delta_g(\mathbb{D}_2))}{\det_\zeta(-\Delta_g(D_1))\det_\zeta(-\Delta_g(D_2))}, \end{aligned}$$

where  $\mathbb{D}_1$  and  $\mathbb{D}_2$  are two connected components of the complement of  $S^1$ .

### Zeta-regularizated determinants

- $\Delta_g(S^2)$  is non-negative, essentially self-adjoint for the  $L^2$  product.
- The spectrum is

$$0 = \lambda_0 < \lambda_1 \leq \lambda_2 \cdots$$

• Define the Zeta-function

$$\zeta_{\Delta}(s) := \sum_{i \ge 1} \lambda_i^{-s} = \frac{1}{\Gamma(s)} \int_0^{\infty} \operatorname{Tr}(e^{-t\Delta}) t^{s-1} dt,$$

it can be analytically continued to a neighborhood of 0.

• Define (following Ray & Singer 1976)

$$egin{aligned} \log \det_\zeta'(\Delta_g(S^2)) &:= -\zeta_\Delta'(0) \ &= \sum_{i\geq 1} \log(\lambda_i)\lambda_i^{-s}|_{s=0} = \log(\prod_{i\geq 1}\lambda_i). \end{aligned}$$

### Proof of the identity (sketch)

$$\mathcal{I}^{L}(\Gamma,\Gamma(0)) = 12\lograc{\det_{\zeta}(-\Delta_{\mathbb{D}_{1},g_{0}})\det_{\zeta}(-\Delta_{\mathbb{D}_{2},g_{0}})}{\det_{\zeta}(-\Delta_{D_{1},g_{0}})\det_{\zeta}(-\Delta_{D_{2},g_{0}})}$$

• When  $\Gamma$  passes through  $\infty,$  we show

$$I^{L}(\Gamma,\infty) = \mathcal{D}_{\mathbb{H}\cup\mathbb{H}^{*}}(\log\left|h'\right|) := rac{1}{\pi}\left(\int_{\mathbb{H}\cup\mathbb{H}^{*}}\left|\nabla\log\left|h'(z)
ight|\right|^{2}\,\mathrm{d}z^{2}
ight),$$

where *h* maps conformally  $\mathbb{H} \cup \mathbb{H}^*$  to the complement of  $\Gamma$  and fixes  $\infty$ .



The right-hand side does not involve Loewner iteration of conformal maps.

• Use the Polyakov-Alvarez conformal anomaly formula to compare determinants of Laplacians.

# Proof of the identity (sketch)

$$\mathcal{I}^{L}(\Gamma,\Gamma(0)) = 12\lograc{\det_{\zeta}(-\Delta_{\mathbb{D}_{1},g_{0}})\det_{\zeta}(-\Delta_{\mathbb{D}_{2},g_{0}})}{\det_{\zeta}(-\Delta_{D_{1},g_{0}})\det_{\zeta}(-\Delta_{D_{2},g_{0}})}$$

• When  $\Gamma$  passes through  $\infty,$  we show

$$I^{L}(\Gamma,\infty) = \mathcal{D}_{\mathbb{H}\cup\mathbb{H}^{*}}(\log\left|h'\right|) := rac{1}{\pi}\left(\int_{\mathbb{H}\cup\mathbb{H}^{*}}\left|\nabla\log\left|h'(z)
ight|\right|^{2}\,\mathrm{d}z^{2}
ight),$$

where *h* maps conformally  $\mathbb{H} \cup \mathbb{H}^*$  to the complement of  $\Gamma$  and fixes  $\infty$ .



The right-hand side does not involve Loewner iteration of conformal maps.

• Use the Polyakov-Alvarez conformal anomaly formula to compare determinants of Laplacians.

# Proof of the identity (sketch)

$$I^{L}(\Gamma,\Gamma(0)) = 12\lograc{\det_{\zeta}(-\Delta_{\mathbb{D}_{1},g_{0}})\det_{\zeta}(-\Delta_{\mathbb{D}_{2},g_{0}})}{\det_{\zeta}(-\Delta_{D_{1},g_{0}})\det_{\zeta}(-\Delta_{D_{2},g_{0}})}$$

• When  $\Gamma$  passes through  $\infty,$  we show

$$I^{L}(\Gamma,\infty) = \mathcal{D}_{\mathbb{H}\cup\mathbb{H}^{*}}(\log\left|h'\right|) := rac{1}{\pi}\left(\int_{\mathbb{H}\cup\mathbb{H}^{*}}\left|\nabla\log\left|h'(z)
ight|\right|^{2}\,\mathrm{d}z^{2}
ight),$$

where *h* maps conformally  $\mathbb{H} \cup \mathbb{H}^*$  to the complement of  $\Gamma$  and fixes  $\infty$ .



The right-hand side does not involve Loewner iteration of conformal maps.

 Use the Polyakov-Alvarez conformal anomaly formula to compare determinants of Laplacians.

# Polyakov-Alvarez conformal anomaly formula

Take  $g = e^{2\sigma}g_0$  a metric conformally equivalent to  $g_0$ . (Here think  $\sigma = \log |h'|$ .)

#### Theorem ([Polyakov 1981], [Alvarez 1983], [Osgood, et al. 1988])

For a compact surface M without boundary,

$$\left( \log \det_{\zeta}'(-\Delta_g) - \log \operatorname{vol}_g(M) \right) - \left( \log \det_{\zeta}'(-\Delta_0) - \log \operatorname{vol}_0(M) \right)$$
$$= -\frac{1}{6\pi} \left[ \frac{1}{2} \int_M |\nabla_0 \sigma|^2 \operatorname{dvol}_0 + \int_M K_0 \sigma \operatorname{dvol}_0. \right]$$

The analogue for a compact surface D with smooth boundary is:

$$\log \det_{\zeta}(-\Delta_{g}) - \log \det_{\zeta}(-\Delta_{0})$$
$$= -\frac{1}{6\pi} \left[ \frac{1}{2} \int_{D} |\nabla_{0}\sigma|^{2} \operatorname{dvol}_{0} + \int_{D} K_{0}\sigma \operatorname{dvol}_{0} + \int_{\partial D} k_{0}\sigma \operatorname{dl}_{0} \right] - \frac{1}{4\pi} \int_{\partial D} \partial_{n}\sigma \operatorname{dl}_{0}.$$

"Taking  $g_0 = dz^2$ ", we have  $K_0 \equiv 0$  and  $k_0 \equiv 0$ . We get:

$$I^{L}(\Gamma,\Gamma(0)) = \frac{1}{\pi} \left( \int_{\mathbb{H} \cup \mathbb{H}^{*}} \left| \nabla \log |h'(z)| \right|^{2} \mathrm{d}z^{2} \right) = 12\mathcal{H}(\Gamma,g_{0}) - 12\mathcal{H}(S^{1},g_{0}). \quad \Box$$

# Polyakov-Alvarez conformal anomaly formula

Take  $g = e^{2\sigma}g_0$  a metric conformally equivalent to  $g_0$ . (Here think  $\sigma = \log |h'|$ .)

#### Theorem ([Polyakov 1981], [Alvarez 1983], [Osgood, et al. 1988])

For a compact surface M without boundary,

$$\left( \log \det_{\zeta}'(-\Delta_g) - \log \operatorname{vol}_g(M) \right) - \left( \log \det_{\zeta}'(-\Delta_0) - \log \operatorname{vol}_0(M) \right)$$
$$= -\frac{1}{6\pi} \left[ \frac{1}{2} \int_M |\nabla_0 \sigma|^2 \operatorname{dvol}_0 + \int_M \mathcal{K}_0 \sigma \operatorname{dvol}_0. \right]$$

The analogue for a compact surface D with smooth boundary is:

$$\begin{split} &\log \det_{\zeta}(-\Delta_{g}) - \log \det_{\zeta}(-\Delta_{0}) \\ &= -\frac{1}{6\pi} \left[ \frac{1}{2} \int_{D} |\nabla_{0}\sigma|^{2} \operatorname{dvol}_{0} + \int_{D} \mathcal{K}_{0}\sigma \operatorname{dvol}_{0} + \int_{\partial D} \mathcal{k}_{0}\sigma \operatorname{dl}_{0} \right] - \frac{1}{4\pi} \int_{\partial D} \partial_{n}\sigma \operatorname{dl}_{0}. \end{split}$$

"Taking  $g_0 = dz^2$ ", we have  $K_0 \equiv 0$  and  $k_0 \equiv 0$ . We get:

$$I^L(\Gamma,\Gamma(0)) = rac{1}{\pi} \left( \int_{\mathbb{H}\cup\mathbb{H}^*} \left| 
abla \log |h'(z)| \right|^2 \, \mathrm{d}z^2 
ight) = 12 \mathcal{H}(\Gamma,g_0) - 12 \mathcal{H}(S^1,g_0).$$
Introduced by Greg Lawler and Wendelin Werner.

[Following J. Dubédat] Let  $x \in M$ , t > 0, consider the sub-probability measure  $\mathbb{W}_x^t$  on the path of Brownian motion (diffusion generated by  $-\Delta_M$ ) on M started from x on the time interval [0, t], killed if it hits the boundary of M.

The measures  $\mathbb{W}_{x\to y}^t$  on paths from x to y are obtained from the disintegration of  $\mathbb{W}_x^t$  according to its endpoint y:

$$\mathbb{W}_x^t = \int_M \mathbb{W}_{x \to y}^t \operatorname{dvol}(y).$$

Define the **Brownian loop measure** on *M*:

$$\mu_M^{loop} := \int_0^\infty \frac{\mathrm{d}t}{t} \int_M \mathbb{W}_{x \to x}^t \operatorname{dvol}(x).$$

In particular,

$$\mathbb{W}_{x\to x}^t\Big|=p_t(x,x).$$

We consider  $\mu_M^{loop}$  as measure on **unrooted** Brownian loops by forgetting the starting point.

Introduced by Greg Lawler and Wendelin Werner.

[Following J. Dubédat] Let  $x \in M$ , t > 0, consider the sub-probability measure  $\mathbb{W}_x^t$  on the path of Brownian motion (diffusion generated by  $-\Delta_M$ ) on M started from x on the time interval [0, t], killed if it hits the boundary of M.

The measures  $\mathbb{W}_{x\to y}^t$  on paths from x to y are obtained from the disintegration of  $\mathbb{W}_x^t$  according to its endpoint y:

$$\mathbb{W}^t_x = \int_M \mathbb{W}^t_{x \to y} \operatorname{dvol}(y).$$

Define the **Brownian loop measure** on *M*:

$$\mu_M^{loop} := \int_0^\infty \frac{\mathrm{d}t}{t} \int_M \mathbb{W}_{x \to x}^t \operatorname{dvol}(x).$$

In particular,

$$\mathbb{W}_{x\to x}^t\Big|=p_t(x,x).$$

We consider  $\mu_M^{loop}$  as measure on **unrooted** Brownian loops by forgetting the starting point.

Introduced by Greg Lawler and Wendelin Werner.

[Following J. Dubédat] Let  $x \in M$ , t > 0, consider the sub-probability measure  $\mathbb{W}_x^t$  on the path of Brownian motion (diffusion generated by  $-\Delta_M$ ) on M started from x on the time interval [0, t], killed if it hits the boundary of M.

The measures  $\mathbb{W}_{x\to y}^t$  on paths from x to y are obtained from the disintegration of  $\mathbb{W}_x^t$  according to its endpoint y:

$$\mathbb{W}^t_x = \int_M \mathbb{W}^t_{x \to y} \operatorname{dvol}(y).$$

Define the **Brownian loop measure** on *M*:

$$\mu_M^{loop} := \int_0^\infty \frac{\mathrm{d}t}{t} \int_M \mathbb{W}_{x \to x}^t \operatorname{dvol}(x).$$

In particular,

$$\left|\mathbb{W}_{x\to x}^t\right|=p_t(x,x).$$

We consider  $\mu_M^{loop}$  as measure on **unrooted** Brownian loops by forgetting the starting point.

Introduced by Greg Lawler and Wendelin Werner.

[Following J. Dubédat] Let  $x \in M$ , t > 0, consider the sub-probability measure  $\mathbb{W}_x^t$  on the path of Brownian motion (diffusion generated by  $-\Delta_M$ ) on M started from x on the time interval [0, t], killed if it hits the boundary of M.

The measures  $\mathbb{W}_{x\to y}^t$  on paths from x to y are obtained from the disintegration of  $\mathbb{W}_x^t$  according to its endpoint y:

$$\mathbb{W}_x^t = \int_M \mathbb{W}_{x \to y}^t \operatorname{dvol}(y).$$

Define the **Brownian loop measure** on *M*:

$$\mu_M^{loop} := \int_0^\infty \frac{\mathrm{d}t}{t} \int_M \mathbb{W}_{x \to x}^t \operatorname{dvol}(x).$$

In particular,

$$\left|\mathbb{W}_{x\to x}^t\right|=p_t(x,x).$$

We consider  $\mu_M^{\rm loop}$  as measure on  ${\bf unrooted}$  Brownian loops by forgetting the starting point.

The Brownian loop measure satisfies the following two remarkable properties

• (*Restriction property*) If  $M' \subset M$ , then

$$d\mu_{M'}^{loop}(\delta) = 1_{\delta \in M'} d\mu_M^{loop}(\delta).$$

(Conformal invariance) On the surfaces M<sub>1</sub> = (M, g) and M<sub>2</sub> = (M, e<sup>2σ</sup>g) be two conformally equivalent Riemann surface, where σ ∈ C<sup>∞</sup>(M, ℝ), then

$$\mu_{M_1}^{loop} = \mu_{M_2}^{loop}.$$

#### Loop measure vs. determinant of Laplacian

"  $\left|\mu_{M}^{loop}\right| = -\log \det_{\zeta}(\Delta)$ ."

If we compute formally, the total mass of  $\mu_{M}^{loop}$  is given by

" 
$$\left|\mu_{M}^{loop}\right| = \int_{0}^{\infty} \frac{\mathrm{d}t}{t} \int_{M} p_{t}(x, x) \operatorname{dvol}(x) = \int_{0}^{\infty} t^{-1} \mathrm{Tr}\left(e^{-t\Delta}\right) \, \mathrm{d}t.$$
"

On the other hand,  $1/\Gamma(s)$  is analytic and has the expansion near 0 as

$$1/\Gamma(s)=s+O(s^2).$$

Therefore for any analytic function f in a neighborhood of 0,

$$\left(\frac{f(s)}{\Gamma(s)}\right)'\Big|_{s=0}=f(0).$$

Take formally  $f(s) = \int_0^\infty t^{s-1} {
m Tr}(e^{-t\Delta}) \, {
m d} t$ , we have

" - log det<sub>$$\zeta$$</sub>( $\Delta$ ) =  $\zeta'_{\Delta}(0) = \left(\frac{f(s)}{\Gamma(s)}\right)' \Big|_{s=0} = \int_0^\infty t^{-1} \operatorname{Tr}(e^{-t\Delta}) dt = \left|\mu_M^{loop}\right|$ ". (2)

## Loop measure vs. Loewner energy (heuristic)

" 
$$\left|\mu_{M}^{loop}\right| = -\log \det_{\zeta}(\Delta)$$
."

The determinant expression of Loewner energy suggests that we have formally

However, both terms diverge due to the small and large Brownian loops (from the conformal invariance).

#### Loop measure vs. Loewner energy



For a Brownian loop  $\delta \subset D$ , where  $D \subset \mathbb{D}$  is simply connected, we denote  $\delta^{out}$  its outer boundary (therefore of  $SLE_{8/3}$  type). Let  $A, B \subset \mathbb{C}$  be disjoint compact sets,

$$\mathcal{W}(A, B; D) := \left| \mu^{loop} \{ \delta \subset D; \delta^{out} \text{ intersects both } A \text{ and } B \} \right| < \infty.$$

Introduced by W. Werner.

# Theorem (W., 2018) For all Jordan curve $\Gamma$ (no regularity asso $\frac{1}{12}I^L(\Gamma) = \lim_{r \to 1} \mathcal{W}$

Yilin Wang (ETH Zürich)

Loewner energy

#### Loop measure vs. Loewner energy



For a Brownian loop  $\delta \subset D$ , where  $D \subset \mathbb{D}$  is simply connected, we denote  $\delta^{out}$  its outer boundary (therefore of  $SLE_{8/3}$  type). Let  $A, B \subset \mathbb{C}$  be disjoint compact sets,

$$\mathcal{W}(A, B; D) := \left| \mu^{loop} \{ \delta \subset D; \delta^{out} \text{ intersects both } A \text{ and } B \} \right| < \infty.$$

Introduced by W. Werner.

#### Theorem (W., 2018)

For all Jordan curve  $\Gamma$  (no regularity assumption),

$$\frac{1}{12}I^{L}(\Gamma) = \lim_{r \to 1} \mathcal{W}(S^{1}, rS^{1}; \mathbb{C}) - \mathcal{W}(\Gamma, \Gamma^{r}; \mathbb{C}).$$

Yilin Wang (ETH Zürich)

# **Proof: Chordal Conformal restriction**

#### Lemma 1: Chordal Conformal restriction

Let (D, a, b) and (D', a, b) be two simply connected domains in  $\mathbb{C}$  coinciding in a neighborhood of a and b, and  $\Gamma$  a simple curve in both (D, a, b) and (D', a, b). Then we have

$$\begin{split} I_{D',a,b}(\Gamma) &- I_{D,a,b}(\Gamma) = & I_{D,a,b}(\psi(\Gamma)) - I_{D,a,b}(\Gamma) \\ &= & 3 \log \left| \psi'(a)\psi'(b) \right| + 12\mathcal{W}(\Gamma, D \backslash D'; D) - 12\mathcal{W}(\Gamma, D' \backslash D; D'), \end{split}$$

where  $\psi: D' \to D$  is a conformal map fixing *a* and *b*.

Deterministic proof, similar computation as in SLE conformal restriction. Intuition: The SLE partition function is

$$\mathcal{Z}^{\mathsf{SLE}_{\kappa}}_{(D,a,b)} = H_D(a,b)^{\beta} \det_{\zeta}(\Delta)^{-c/2},$$

where as  $\kappa \to 0$ ,

$$eta = rac{6-\kappa}{2\kappa} \sim rac{3}{\kappa}, \quad c = rac{(3\kappa-8)(6-\kappa)}{2\kappa} \sim -rac{24}{\kappa}.$$

The Energy =  $(-\kappa \log(\cdot))$ 

## **Proof: Loop Conformal restriction**

#### Lemma 2: Loop conformal restriction

If  $\eta$  is a Jordan curve with finite energy and  $\Gamma = f(\eta)$ , where  $f : A \to \tilde{A}$  is conformal on a neighborhood A of  $\eta$ , then

$$I^{L}(\Gamma) - I^{L}(\eta) = 12\mathcal{W}(\eta, A^{c}; \mathbb{C}) - 12\mathcal{W}(\Gamma, \tilde{A}^{c}; \mathbb{C}).$$

Proof of Lemma 2:



## **Proof: Equipotentials**

When  $\eta = rS^1$ ,  $\Gamma^r = f(rS^1)$  is the equipotential, and  $A = \mathbb{D}$ .



#### We deduce

$$I^{L}(\Gamma^{r}) = 12\mathcal{W}(rS^{1}, S^{1}; \mathbb{C}) - 12\mathcal{W}(\Gamma^{r}, \Gamma; \mathbb{C}).$$

#### Lemma 3

We have: 
$$I^{L}(\Gamma^{r}) \xrightarrow{r \to 1} I^{L}(\Gamma)$$
.

In fact,  $r \mapsto l^{L}(\Gamma^{r})$  is increasing if  $l^{L}(\Gamma) > 0$ , namely when  $\Gamma$  is not a circle. It will follow from the flow-line coupling for finite energy curve [Viklund, W. 2019+].

## **Proof: Equipotentials**

When  $\eta = rS^1$ ,  $\Gamma^r = f(rS^1)$  is the equipotential, and  $A = \mathbb{D}$ .



We deduce

$$I^{L}(\Gamma^{r}) = 12\mathcal{W}(rS^{1}, S^{1}; \mathbb{C}) - 12\mathcal{W}(\Gamma^{r}, \Gamma; \mathbb{C}).$$



In fact,  $r \mapsto I^{L}(\Gamma^{r})$  is increasing if  $I^{L}(\Gamma) > 0$ , namely when  $\Gamma$  is not a circle. It will follow from the flow-line coupling for finite energy curve [Viklund, W. 2019+].

# **Proof: Equipotentials**

When  $\eta = rS^1$ ,  $\Gamma^r = f(rS^1)$  is the equipotential, and  $A = \mathbb{D}$ .



We deduce

$$I^{L}(\Gamma^{r}) = 12\mathcal{W}(rS^{1}, S^{1}; \mathbb{C}) - 12\mathcal{W}(\Gamma^{r}, \Gamma; \mathbb{C}).$$



In fact,  $r \mapsto l^{L}(\Gamma^{r})$  is increasing if  $l^{L}(\Gamma) > 0$ , namely when  $\Gamma$  is not a circle. It will follow from the flow-line coupling for finite energy curve [Viklund, W. 2019+].

# SLE/GFF coupling analogs: A Dictionary

Work in progress with F. Viklund. With  $\gamma = \sqrt{\kappa}$ ,  $\chi = \gamma/2 - 2/\gamma$ :

#### Random Conformal Geometry $\longleftrightarrow$ Action Functional Analogs

Neumann GFF on  $\mathbb{H} \longleftrightarrow 2u_1 : \mathbb{H} \to \mathbb{R}$  with finite Dirichlet energy; Neumann GFF on  $\mathbb{H}^* \longleftrightarrow 2u_2 : \mathbb{H}^* \to \mathbb{R}$  with finite Dirichlet energy;  $\gamma$ -LQG measure on  $\mathbb{H}, e^{\gamma GFF} dz^2 \longleftrightarrow e^{2u_1(z)} dz^2$ ;  $\gamma$ -LQG boundary measure on  $\mathbb{R} = \partial \mathbb{H} \longleftrightarrow e^{u_1(z)} |dz|$ ,  $u_1|_{\mathbb{R}} \in H^{1/2}(\mathbb{R})$ ; "SLE<sub> $\kappa$ </sub> loop"  $\longleftrightarrow$  finite energy loop  $\Gamma$ ;  $\gamma$ -LQG on  $\mathbb{C} \longleftrightarrow e^{2\varphi(z)} dz^2$ ;  $\gamma$ -guantum chaos wrt.  $\longleftrightarrow$  trace of  $\varphi$  on  $\Gamma \in H^{1/2}(\Gamma)$ ;

natural parametrization on SLE loop

independent couple  $\leftrightarrow$  sum up their rate functions;

 $e^{iGFF/\chi} \leftrightarrow e^{i\varphi(z)}$  unit vector field;

Let  $D_1$ ,  $D_2 \subset \mathbb{C}$  be Jordan domains bounded respectively by rectifiable curves  $\Gamma_1$  and  $\Gamma_2$  of same total length. Let  $\psi : \Gamma_1 \to \Gamma_2$  be an isometry (preserves the arc-length).

- [Huber 1976] The solution does not always exist.
- [Bishop 1990] Even if the solution exists,  $\Gamma$  can be a curve of positive area  $\implies$  non-uniqueness of solution.
- [David 1982, Zinsmeister 1982...] If D<sub>1</sub> and D<sub>2</sub> are chord-arc, then the solution exists and is unique, which is an quasi-circle. [Bishop 1990] The Hausdorff dimension of Γ can take any value in 1 < d < 2.</li>
- [David 1982] If the chord-arc constant of domains are close enough to 1,  $\Gamma$  is also chord-arc.
- [Viklund, W. 2019+] We will see that isometric welding of two finite energy domains has also finite energy (solution exists and is unique).

Let  $D_1$ ,  $D_2 \subset \mathbb{C}$  be Jordan domains bounded respectively by rectifiable curves  $\Gamma_1$  and  $\Gamma_2$  of same total length. Let  $\psi : \Gamma_1 \to \Gamma_2$  be an isometry (preserves the arc-length).

- [Huber 1976] The solution does not always exist.
- [Bishop 1990] Even if the solution exists,  $\Gamma$  can be a curve of positive area  $\implies$  non-uniqueness of solution.
- [David 1982, Zinsmeister 1982...] If  $D_1$  and  $D_2$  are chord-arc, then the solution exists and is unique, which is an quasi-circle. [Bishop 1990] The Hausdorff dimension of  $\Gamma$  can take any value in 1 < d < 2.
- [David 1982] If the chord-arc constant of domains are close enough to 1,  $\Gamma$  is also chord-arc.
- [Viklund, W. 2019+] We will see that isometric welding of two finite energy domains has also finite energy (solution exists and is unique).

# Welding coupling identity



Let  $\varphi \in W^{1,2}_{loc}(\mathbb{C})$  with finite Dirichlet energy:

$$\mathcal{D}_{\mathbb{C}}(arphi):=rac{1}{\pi}\int_{\mathbb{C}}\left|
abla arphi(oldsymbol{z})
ight|^{2}doldsymbol{z}^{2}<\infty,$$

 $\Gamma$  an infinite Jordan curve, f, g the conformal maps from  $\mathbb{H}, \mathbb{H}^*$  onto  $H, H^*$ , respectively.

#### Theorem (Welding coupling 2019+)

We have  $e^{2\varphi} \in L^1_{loc}(\mathbb{C})$ , so the measure  $e^{2\varphi}dz^2$  is well-defined and locally finite. The pull-back measures  $e^{2u_1}$  by f on  $\mathbb{H}$  (resp.  $e^{2u_2}$  by g on  $\mathbb{H}^*$ ) satisfy

$$u_1(z) = \varphi \circ f(z) + \log |f'(z)|, \quad u_2(z) = \varphi \circ g(z) + \log |g'(z)|.$$

We have the identity

$$\mathcal{D}_{\mathbb{H}}(u_1) + \mathcal{D}_{\mathbb{H}^*}(u_2) = I^L(\Gamma) + \mathcal{D}_{\mathbb{C}}(\varphi).$$

Yilin Wang (ETH Zürich)

# Welding-coupling uniqueness



#### Theorem (Welding-coupling uniqueness, 2019+)

Suppose  $u_1$  and  $u_2$  with finite Dirichlet energy are given. Then there exist unique  $\Gamma, \varphi, f$ , and g such that the following holds:

- **(**)  $\Gamma$  is an infinite Jordan curve passing through 0 and 1;
- O If H and H<sup>\*</sup> are the connected components of C\Γ, then f : H → H is the conformal map fixing 0, 1 and ∞ and g : H<sup>\*</sup> → H<sup>\*</sup> is the conformal map fixing 0, ∞;

$$\ \, \bullet \in W^{1,2}_{loc}(\mathbb{C}) \ \, \text{and} \ \, \mathcal{D}_{\mathbb{C}}(\varphi) < \infty;$$

• 
$$u_1(z) = \varphi \circ f(z) + \log |f'(z)|, z \in \mathbb{H};$$

3 
$$u_2(z) = \varphi \circ g(z) + \log |g'(z)|, z \in \mathbb{H}^*$$

In fact,  $\Gamma$  is obtained from the isometric conformal welding of  $\mathbb{H}$  and  $\mathbb{H}^*$  according to the boundary lengths  $e^{u_1}|dz|$  and  $e^{u_2}|dz|$ . Moreover,  $I^L(\Gamma) < \infty$ .

# Isometric welding of finite energy domains

Assume  $I^{L}(\Gamma_{1}) < \infty$ ,  $I^{L}(\Gamma_{2}) < \infty$ , both curves pass through  $\infty$ .

#### Corollary

The isometric conformal welding of Euclidean domain  $H_1$  bounded by  $\Gamma_1$  and  $H_2$  bounded by  $\Gamma_2$  has a unique solution  $\Gamma$  up to Möbius transformation. Moreover,

$$I^{L}(\Gamma) < I^{L}(\Gamma_{1}) + I^{L}(\Gamma_{2})$$

 $\text{ if } I^L(\Gamma_1)+I^L(\Gamma_2)\neq 0.$ 



In fact, let  $u_1 = \log |f_1'|$ ,  $u_2 = \log |g_2'|$ ,

 $\mathcal{D}(u_1) \leq I^L(\Gamma_1), \quad I^L(\Gamma) \leq \mathcal{D}(u_1) + \mathcal{D}(u_2) \leq I^L(\Gamma_1) + I^L(\Gamma_2).$ 

The first equality holds only when  $I^{L}(\Gamma_{1})=0$ .

Yilin Wang (ETH Zürich)

Loewner energy

# Isometric welding of finite energy domains

Assume  $I^{L}(\Gamma_{1}) < \infty$ ,  $I^{L}(\Gamma_{2}) < \infty$ , both curves pass through  $\infty$ .

#### Corollary

The isometric conformal welding of Euclidean domain  $H_1$  bounded by  $\Gamma_1$  and  $H_2$  bounded by  $\Gamma_2$  has a unique solution  $\Gamma$  up to Möbius transformation. Moreover,

$$I^{L}(\Gamma) < I^{L}(\Gamma_{1}) + I^{L}(\Gamma_{2})$$

 $\text{ if } I^L(\Gamma_1)+I^L(\Gamma_2)\neq 0.$ 



In fact, let  $u_1 = \log |f_1'|$ ,  $u_2 = \log |g_2'|$ ,

$$\mathcal{D}(u_1) \leq I^L(\Gamma_1), \quad I^L(\Gamma) \leq \mathcal{D}(u_1) + \mathcal{D}(u_2) \leq I^L(\Gamma_1) + I^L(\Gamma_2).$$

The first equality holds only when  $I^{L}(\Gamma_{1}) = 0$ .

## Elements of proof of welding coupling identity

#### Welding coupling identity

$$\mathcal{D}_{\mathbb{H}}(u_1) + \mathcal{D}_{\mathbb{H}^*}(u_2) = I^L(\Gamma) + \mathcal{D}_{\mathbb{C}}(\varphi).$$



- Recall that  $u_1(z) = \varphi \circ f(z) + \log |f'(z)|$ ,  $u_2(z) = \varphi \circ g(z) + \log |g'(z)|$ .
- Use the identity  $I^{L}(\Gamma) = \mathcal{D}_{\mathbb{H}}(\log |f'|) + \mathcal{D}_{\mathbb{H}^{*}}(\log |g'|).$
- Prove that the cross-terms cancel out.

Notice that since the harmonic conjugate  $\arg(f')$  has the same Dirichlet energy as  $\log |f'|$ . We have the identity

$$I^{L}(\Gamma) = \mathcal{D}_{\mathbb{H}}(\arg f') + \mathcal{D}_{\mathbb{H}^{*}}(\arg g').$$

 $\Rightarrow$  the analog to the forward SLE/GFF coupling (flow-line coupling).

Notice that since the harmonic conjugate  $\arg(f')$  has the same Dirichlet energy as  $\log |f'|$ . We have the identity

$$I^{L}(\Gamma) = \mathcal{D}_{\mathbb{H}}(\arg f') + \mathcal{D}_{\mathbb{H}^{*}}(\arg g').$$

 $\Rightarrow$  the analog to the forward SLE/GFF coupling (flow-line coupling).

## Analog to flow-line coupling

Let  $\eta$  be a bounded  $C^1$  Jordan curve and  $\Gamma := \mu(\eta)$ , where  $\mu$  is a Möbius function mapping one point of  $\eta$  to  $\infty$ .

For  $z = \Gamma(s)$ , define the function  $\tau : \Gamma \to \mathbb{R}$  such that  $\tau$  is continuous and

$$\tau(z):=\arg(\Gamma'(s))=-\arg(f^{-1})'(z).$$

We denote by  $\mathcal{P}[\tau](z) = -\arg(f^{-1})'(z)$  the Poisson integral of  $\tau$  in  $\mathbb{C}$  (defined from both sides of  $\Gamma$ ).

#### Theorem (Flowline coupling analog 2019+)

We have the identity

$$l^{L}(\Gamma) = \mathcal{D}_{\mathbb{C}}(\mathcal{P}[\tau]) = \min_{arphi, arphi|_{\Gamma} = au} \mathcal{D}_{\mathbb{C}}(arphi).$$

Conversely, under regularity condition of  $\varphi$  and  $\mathcal{D}_{\mathbb{C}}(\varphi) < \infty$ , then for all  $z_0 \in \mathbb{C}$ , the solution to the differential equation

$$\Gamma'(t) = \exp\left(iarphi(\Gamma(t))
ight),\,orall t\in\mathbb{R}$$
 and  $\Gamma(0)=z_0$ 

is an infinite arclength parametrized simple curve and

$$I^{L}(\Gamma) \leq \mathcal{D}_{\mathbb{C}}(\varphi).$$

## Analog to flow-line coupling

Let  $\eta$  be a bounded  $C^1$  Jordan curve and  $\Gamma := \mu(\eta)$ , where  $\mu$  is a Möbius function mapping one point of  $\eta$  to  $\infty$ .

For  $z = \Gamma(s)$ , define the function  $\tau : \Gamma \to \mathbb{R}$  such that  $\tau$  is continuous and

$$\tau(z) := \arg(\Gamma'(s)) = -\arg(f^{-1})'(z).$$

We denote by  $\mathcal{P}[\tau](z) = -\arg(f^{-1})'(z)$  the Poisson integral of  $\tau$  in  $\mathbb{C}$  (defined from both sides of  $\Gamma$ ).

#### Theorem (Flowline coupling analog 2019+)

We have the identity

$$I^{L}(\Gamma) = \mathcal{D}_{\mathbb{C}}(\mathcal{P}[\tau]) = \min_{\varphi, \varphi \mid \Gamma = \tau} \mathcal{D}_{\mathbb{C}}(\varphi).$$

Conversely, under regularity condition of  $\varphi$  and  $\mathcal{D}_{\mathbb{C}}(\varphi) < \infty$ , then for all  $z_0 \in \mathbb{C}$ , the solution to the differential equation

$$\Gamma'(t) = \exp\left(iarphi(\Gamma(t))
ight), \, orall t \in \mathbb{R} \quad ext{and} \quad \Gamma(0) = z_0$$

is an infinite arclength parametrized simple curve and

$$I^{L}(\Gamma) \leq \mathcal{D}_{\mathbb{C}}(\varphi).$$

## Equipotential energy decrease



#### Corollary

We have  $I^{L}(\Gamma^{y}) \leq I^{L}(\Gamma)$ . The equality holds if and only if  $I^{L}(\Gamma) = 0$ .

**Proof:** Since on  $\Gamma^{y}$ ,  $\tau^{y} = \mathcal{P}[\tau]$ . We have

$$\mathcal{P}^{L}(\Gamma^{y}) = \mathcal{D}_{\mathbb{C}}(\mathcal{P}[\tau^{y}]) \leq \mathcal{D}_{\mathbb{C}}(\mathcal{P}[\tau]) = I^{L}(\Gamma).$$



# Contents

Introduction

**2** Part I: Overview on the Loewner energy

3 Part II: Applications



# Action functionals vs. Random objects



- What is the random model naturally associated to the WP-Teichmüller space? Malliavin's measure on diffeomorphisms of the circle?
- In which space does the random welding belong to? (What analytic framework beyond quasiconformal geometry?)
- What is the gradient flow of the Loewner energy and what meaning in Loewner's framework? Other natural dynamics? Stochastic gradient flow?
- Random model  $\implies$  an intrinsic description of SLE loop ( $\kappa \le 4$ )?  $\implies$  Reversibility?

- What is the random model naturally associated to the WP-Teichmüller space? Malliavin's measure on diffeomorphisms of the circle?
- In which space does the random welding belong to? (What analytic framework beyond quasiconformal geometry?)
- What is the gradient flow of the Loewner energy and what meaning in Loewner's framework? Other natural dynamics? Stochastic gradient flow?
- Random model  $\implies$  an intrinsic description of SLE loop ( $\kappa \leq 4$ )?  $\implies$  Reversibility?

- What is the random model naturally associated to the WP-Teichmüller space? Malliavin's measure on diffeomorphisms of the circle?
- In which space does the random welding belong to? (What analytic framework beyond quasiconformal geometry?)
- What is the gradient flow of the Loewner energy and what meaning in Loewner's framework? Other natural dynamics? Stochastic gradient flow?
- Random model  $\implies$  an intrinsic description of SLE loop ( $\kappa \leq 4$ )?  $\implies$  Reversibility?

- What is the random model naturally associated to the WP-Teichmüller space? Malliavin's measure on diffeomorphisms of the circle?
- In which space does the random welding belong to? (What analytic framework beyond quasiconformal geometry?)
- What is the gradient flow of the Loewner energy and what meaning in Loewner's framework? Other natural dynamics? Stochastic gradient flow?
- Random model  $\implies$  an intrinsic description of SLE loop ( $\kappa \leq 4$ )?  $\implies$  Reversibility?

# Exploring the connection

- How is the Kähler structure on the WP-Teichmüller space encoded in the Loewner's driving function? Why there is such a coincidence?
- Topological group structure on WP-Teichmüller space  $\implies$  what meaning in the Loewner setting?
- Use driving function to find purely geometric characterization of WP-quasicircles? (Jones' Conjecture)
- [TT06] WP-quasicircle  $\Leftrightarrow$  associated Grunsky operator G is Hilbert-Schmidt. Moreover,

 $I^{L}(\Gamma) \propto \log \det_{F}(I - G^{*}G),$ 

where det<sub>F</sub> is the Fredholm determinant (only well-defined when G is HS). Is it a better object to look at than zeta-regularized determinant of Laplacian? Interpretation of Grunsky operator?

# Exploring the connection

- How is the Kähler structure on the WP-Teichmüller space encoded in the Loewner's driving function? Why there is such a coincidence?
- Topological group structure on WP-Teichmüller space  $\implies$  what meaning in the Loewner setting?
- Use driving function to find purely geometric characterization of WP-quasicircles? (Jones' Conjecture)
- [TT06] WP-quasicircle  $\Leftrightarrow$  associated Grunsky operator G is Hilbert-Schmidt. Moreover,

 $I^{L}(\Gamma) \propto \log \det_{F}(I - G^{*}G),$ 

where det<sub>F</sub> is the Fredholm determinant (only well-defined when G is HS). Is it a better object to look at than zeta-regularized determinant of Laplacian? Interpretation of Grunsky operator?

# Exploring the connection

- How is the Kähler structure on the WP-Teichmüller space encoded in the Loewner's driving function? Why there is such a coincidence?
- Topological group structure on WP-Teichmüller space  $\implies$  what meaning in the Loewner setting?
- Use driving function to find purely geometric characterization of WP-quasicircles? (Jones' Conjecture)
- [TT06] WP-quasicircle  $\Leftrightarrow$  associated Grunsky operator G is Hilbert-Schmidt. Moreover,

 $I^{L}(\Gamma) \propto \log \det_{F}(I - G^{*}G),$ 

where det<sub>F</sub> is the Fredholm determinant (only well-defined when G is HS). Is it a better object to look at than zeta-regularized determinant of Laplacian? Interpretation of Grunsky operator?
## Exploring the connection

- How is the Kähler structure on the WP-Teichmüller space encoded in the Loewner's driving function? Why there is such a coincidence?
- Topological group structure on WP-Teichmüller space  $\implies$  what meaning in the Loewner setting?
- Use driving function to find purely geometric characterization of WP-quasicircles? (Jones' Conjecture)
- [TT06] WP-quasicircle  $\Leftrightarrow$  associated Grunsky operator G is Hilbert-Schmidt. Moreover,

 $I^{L}(\Gamma) \propto \log \det_{F}(I - G^{*}G),$ 

where  $det_F$  is the Fredholm determinant (only well-defined when G is HS). Is it a better object to look at than zeta-regularized determinant of Laplacian? Interpretation of Grunsky operator?

- Multiple-chord Loewner energy, large deviation of multiple SLE (work in progress with E. Peltola).
- Energy of (multiple) loops in higher genus surface?
- Probabilistic interpretation of Weil-Petersson metric on Teichmüller space of compact surfaces (genus ≥ 2)? Natural measure on Teichmüller/moduli space?
- Conformal field theory (SLE, statistical mechanics models) (Kähler geometry on universal Teichmüller space)???

## Thanks for your attention!

