
Natural measures on random fractals

Nina Holden
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Brownian local time: density of occupation measure at 0
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t
2ε

A(ε)
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Brownian local time: 1/2-Minkowski content

B(ε)
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ε→0
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Brownian local time: counting measure random walk

Let W be a Brownian motion with local time L at 0.
Let Z be a simple random walk with local time L at 0.

Theorem 1 (Révész’81)
( 1√

n
Z(n·), c√

n
L(n·)

)
⇒ (W , L).

See also Csáki-Révész’83, Borodin’89, Bass-Koshnevisan’93.

Z

L
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Brownian local time: axiomatic characterization

For W a Brownian motion let t 7→ L(t,W ) be

1 continuous,

2 increasing,

3 non-negative,

4 adapted,

5 constant outside the zero set of W , and

6 additive (L(s + t,W ) = L(t,W ) + L(s,W (t + ·)).

.
Then L is a deterministic multiple of the local time of W .
.
See e.g. McKean-Tanaka’61.
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Perspectives on Brownian local time

.

.

content measure

Axiomatic

Minkowski

characterization

Limit of counting
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Natural measures on fractals

content measure

Axiomatic

Minkowski

characterization

Limit of counting

What natural measures are supported on other fractal sets?

1 Schramm-Loewner evolutions

2 SLE6 pivotal points and Brownian cut points

3 Fractals in Liouville quantum gravity (LQG) environment
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Schramm-Loewner evolutions

An SLEκ η is a random curve modulo time reparametrization satisfying

Conformal invariance: φ ◦ η is an SLEκ in (D̃, ã, b̃).

Domain Markov property: η|[t,Tη] is an SLEκ in (D \ Kt , η(t), b).

a

b

b̃

ã

φ

D D̃

η
φ ◦ η

a

b

D
Kt = η([0, t])

η([t, Tη])

Conformal invariance Domain Markov
property
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SLE with the natural parametrization

An SLEκ η with its natural parametrization is a random curve satisfying

Conformal invariance: φ ◦ η is an SLEκ in (D̃, ã, b̃) such that
(φ ◦ η)([0, t]) is traced in time

∫ t

0
|φ′(η(s))|d ds, d =

(
1 +

κ

8

)
∧ 2.

Domain Markov property

a

b

b̃

ã

φ

D D̃

η
φ ◦ η

ε
ε|φ′|d

time curve spends in marked region
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The natural parametrization of SLE

Lawler-Sheffield’09:

introduced the natural parametrization
uniqueness for all κ ∈ (0, 8) (under assumption of finite expectation)
existence for κ < 5.021...

Lawler-Zhou’13, Lawler-Rezaei’15:

For all κ ∈ (0, 8) the natural parametrization exists and given by
1 + κ

8 -Minkowski content.

a

b

b̃

ã

φ

D D̃

η
φ ◦ η

ε
ε|φ′|d

time curve spends in marked region
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Percolation interface ⇒ SLE6

b

a

ηn

Let η be an SLE6 in (D, a, b).

Theorem 2 (Smirnov’01)

When n→∞, ηn ⇒ η as a curve modulo reparametrization of time.
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Percolation interface ⇒ SLE6 in natural parametrization

b

a

each face traversed

in time n−7/4+o(1)

ηn

Let η be an SLE6 in (D, a, b) with its natural parametrization.

Theorem 3 (H.-Li-Sun’18)

When n→∞, ηn ⇒ η for the uniform topology.

Garban-Pete-Schramm’13: Counting measure on the percolation interface has a
scaling limit.

Lawler-Viklund’17: Loop-erased random walk ⇒ SLE2 in natural parametrization
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Percolation pivotal points

4-arm event Pair of interfaces Interface
intersection points
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Percolation pivotal points

Theorem 4 (H.-Li-Sun’18)

The ε-important pivotal points (double points) of SLE6 and CLE6

have a.s. non-trivial and finite 3/4-Minkowski content ν.

If νn is counting measure on discrete pivotal points, then νn ⇒ ν as
n→∞. The convergence is joint with convergence to CLE6.

Interface
intersection points

Conformal loop

ensemble CLE6
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Brownian cut points

Theorem 5 (H.-Lawler-Li-Sun’18)

(Wt)t∈R a 2d Brownian excursion; A ⊂ R2 is the set of cut-points.

Then A has a.s. locally finite and non-trivial 3/4-Minkowski content.

We also prove the analogous 3d result (but cut point dimension unknown).

Pair of SLE6 Brownian excursionPair of interfaces
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Random planar maps (RPM)

Planar map: graph on the sphere, modulo continuous deformations.

=

M
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M
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M
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Random planar maps (RPM)

Planar map: graph on the sphere, modulo continuous deformations.

Triangulation of a disk: planar map where all the faces have three
edges, except one distinguished face (the exterior face) with arbitrary
degree and simple boundary.

=

M
e0

M
e0

M
e0

6=
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Random planar maps (RPM)

Planar map: graph on the sphere, modulo continuous deformations.

Triangulation of a disk: planar map where all the faces have three
edges, except one distinguished face (the exterior face) with arbitrary
degree and simple boundary.

Let M be a uniform triangulation with n vertices and boundary
length m.
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Random planar maps (RPM)

Planar map: graph on the sphere, modulo continuous deformations.

Triangulation of a disk: planar map where all the faces have three
edges, except one distinguished face (the exterior face) with arbitrary
degree and simple boundary.

Let M be a uniform triangulation with n vertices and boundary
length m.

What is the scaling limit of M?

=

M
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M
e0

M
e0
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The Gaussian free field (GFF)

The discrete Gaussian free field (GFF) hn : 1
n
Z2 ∩ [0, 1]2 → R is a random

function.

1

1

1
n
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The Gaussian free field (GFF)

The discrete Gaussian free field (GFF) hn : 1
n
Z2 ∩ [0, 1]2 → R is a random

function.

hn(z) is a normal random variable such that

E[hn(z)] = 0, Var(hn(z)) ≈ log n, Cov(hn(z), hn(w)) ≈ log |z − w |−1.

North of LA Yosemite Himalaya

increasing n
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Holden (ETH Zürich) January 13, 2019 16 / 31



The Gaussian free field (GFF)

The discrete Gaussian free field (GFF) hn : 1
n
Z2 ∩ [0, 1]2 → R is a random

function.

hn(z) is a normal random variable such that

E[hn(z)] = 0, Var(hn(z)) ≈ log n, Cov(hn(z), hn(w)) ≈ log |z − w |−1.

The Gaussian free field h is the limit of hn when n→∞.

The GFF is a random distribution (generalized function).
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Liouville quantum gravity

If h : [0, 1]2 → R smooth and γ ∈ (0, 2), then eγh(dx2 + dy 2) defines the metric
tensor of a Riemannian manifold.
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Liouville quantum gravity

If h : [0, 1]2 → R smooth and γ ∈ (0, 2), then eγh(dx2 + dy 2) defines the metric
tensor of a Riemannian manifold.

γ-Liouville quantum gravity (LQG): h is the Gaussian free field (GFF).

GFF LQG
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Liouville quantum gravity

If h : [0, 1]2 → R smooth and γ ∈ (0, 2), then eγh(dx2 + dy 2) defines the metric
tensor of a Riemannian manifold.

γ-Liouville quantum gravity (LQG): h is the Gaussian free field (GFF).

Definition does not make rigorous sense since h is a distribution.
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Liouville quantum gravity

If h : [0, 1]2 → R smooth and γ ∈ (0, 2), then eγh(dx2 + dy 2) defines the metric
tensor of a Riemannian manifold.

γ-Liouville quantum gravity (LQG): h is the Gaussian free field (GFF).

Definition does not make rigorous sense since h is a distribution.

Area measure µ = eγhdxdy rigorously defined by regularizing h

µ(U) = lim
ε→0

εγ
2/2

∫
U

eγhεdxdy , hε regularized verison of h, U ⊂ C.

GFF LQG
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Illustration of LQG area measure

γ = 1 γ = 1.5 γ = 1.75

Area measure of random surface eγhdxdy , by J. Miller
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Random planar maps converge to LQG

Two models for random surfaces:

Random planar maps (RPM)

Liouville quantum gravity (LQG)

.
What does it mean for a RPM to converge?
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Random planar maps converge to LQG

Two models for random surfaces:

Random planar maps (RPM)

Liouville quantum gravity (LQG)

.
What does it mean for a RPM to converge?

Metric structure (Le Gall’13, Miermont’13, ...)

Conformal structure (H.-Sun’19)

Statistical physics decorations (Duplantier-Miller-Sheffield’14, ...)
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Conformally embedded uniform triangulation⇒
√

8/3-LQG

A

B C

embedding φ

random planar map
embedded random planar map

T

scaling limit

I ⇒
√

8/3-LQG

Cardy

Uniform triangulation with n vertices and boundary length Θ(n1/2).

Cardy embedding: uses properties of percolation on the RPM.

Let µn be renormalized counting measure on the vertices in T.

Let µ be
√

8/3-LQG area measure in T.

Theorem 6 (H.-Sun’19)

In the above setting, µn ⇒ µ.
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Discrete conformal embeddings

Circle packing

Riemann uniformization

Tutte embedding

Cardy embedding
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Conformally embedded RPM converge to
√

8/3-LQG

The proof is based on multiple works, including, but not
limited to (*=in preparation):

Percolation on triangulations: a bijective path to
Liouville quantum gravity (Bernardi-H.-Sun)

Minkowski content of Brownian cut points
(Lawler-Li-H.-Sun)

Natural parametrization of percolation interface
and pivotal points (Li-H.-Sun)

Uniform triangulations with simple boundary
converge to the Brownian disk
(Albenque-Sun-Wen)*

Joint scaling limit of site percolation on random
triangulations in the metric and peanosphere sense
(Gwynne-H.-Sun)*

Liouville dynamical percolation
(Garban-H.-Sepúlveda-Sun)*

Convergence of uniform triangulations under the
Cardy embedding (H.-Sun)
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Percolation on uniform triangulations ⇒ SLE6

A

B

C

B

C A

Smirnov’01: The percolation interface for critical percolation on the
triangular lattice converges to a Schramm-Loewner evolution (SLE6).

H.-Sun’19: The percolation interface for critical percolation on a
Cardy embedded uniform triangulation converges to SLE6 in a
quenched sense.
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Cardy embedding: percolation-based embedding

A

B C

Cardy embedding φ

random planar map

embedded random planar map

T

Holden (ETH Zürich) January 13, 2019 24 / 31



Cardy embedding: percolation-based embedding

A

B C

Cardy embedding φ

random planar map

embedded random planar map

T

a

b

c
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Cardy embedding: percolation-based embedding

What is the “correct” position of v in T?

v

b

c

a
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Cardy embedding: percolation-based embedding

What is the “correct” position of v in T?

A

B

C

x

blue
crossing
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Cardy embedding: percolation-based embedding

What is the “correct” position of v in T?

A

B

C

x

blue
crossing

pA(x) = P

B

C A

x
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Cardy embedding: percolation-based embedding

What is the “correct” position of v in T?

Map v ∈ V (M) to x ∈ T such that

(pA(x), pB(x), pC (x)) = (p̂a(v), p̂b(v), p̂c(v)).

pA(x) = P

B

C A

x
v

b

c

ap̂a(v) = P
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γ-LQG measures on fractals

A ⊂ C fractal with d-Minkowski content m for d ∈ (0, 2].

γ-LQG measure of A:

dνh = lim
ε→0

εγ
2
d/2eγdhε(z) dm, hε regularized verison of h,

where γd is chosen such that for any U ⊂ D,

νh(U) = ν
h̃
(φ(U)).

φ

D D̃

h h̃ = h ◦ φ−1 − (γ/2 + 2/γ) log |φ′|

U

φ(U)

A φ(A)
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γ-LQG measures on fractals

We get the γ-LQG size of

(i) SLEκ (⇒ quantum natural parametrization) and

(ii) pivotal points.

φ

D D̃

h h̃ = h ◦ φ−1 − (γ/2 + 2/γ) log |φ′|

U

φ(U)

A φ(A)
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γ-LQG measures on fractals

We get the γ-LQG size of

(i) SLEκ (⇒ quantum natural parametrization) and

(ii) pivotal points.

.
Quantum natural parametrization: unique parametrization of SLE which is

(i) invariant under conformal maps and

(ii) locally determined by η and h.

φ

D D̃

h h̃ = h ◦ φ−1 − (γ/2 + 2/γ) log |φ′|

U

φ(U)

A φ(A)
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Percolation on RPM ⇒ SLE6 on
√

8/3-LQG

µn = counting measure on vertices; µ =
√

8/3-LQG area measure

ηn = percolation interface; η = SLE6 w/quantum natural param.

νn = counting measure pivotals; ν =
√

8/3-LQG pivotal measure

Theorem 7 (H.-Sun’19, Bernardi-H.-Sun’18)

(µn, ηn, νn)⇒ (µ, η, ν)

I ⇒

√
8/3-LQG SLE6 and CLE6

Cardy embedded (M,P )
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Quantum natural parametrization

measure on interface

Axiomatic characterization of

eγhdm

quantum natural parametrization

Limit of counting
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Bijection between percolated maps and walks

Bernardi-H.-Sun’18:

a

b

babcbbabccacc

W

(M,P )

I⇔
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Bijection between percolated maps and walks

I⇔
W

(M,P )

Z

I⇔

(M,P )

(h,Γ)

| ⇔

| ⇔

walk (Wk)k∈[3n]

Brownian excursion
(Zt)t∈[0,1]

⇓

bijection

“bijection”

convergence

√
8/3-LQG h CLE6 Γ

2d walk

2d Brownian excursion

⇓
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Bijection between percolated maps and walks

I⇔
W

(M,P )

Z

I⇔

(M,P )

(h,Γ)

| ⇔

| ⇔

walk (Wk)k∈[3n]

Brownian excursion
(Zt)t∈[0,1]

⇓

bijection

“bijection”

convergence

√
8/3-LQG h CLE6 Γ

2d walk

2d Brownian excursion

of walk and
observables

encodedby walk
⇓
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Open problems

Convergence to SLEκ in natural parametrization for κ 6= 2, 6

Convergence of counting measure on special points of statistical
physics models

e.g. FK pivotal points, k-arm points percolation, random walk events

Renormalization factor for Euclidean percolation convergence results

precise 2- and 4-arm event probability

Minkowski content of other fractals

e.g. CLEκ gasket, SLEκ cut and double points

Hausdorff measure gauge function

e.g. SLEκ

Conformal embedding of random planar maps

other random planar maps
other embeddings (e.g. uniformization, circle packings, Tutte)

Random walk on triangulation converges to Liouville Brownian motion
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.

Thanks!
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