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Brownian local time: density of occupation measure at 0

L(t) = lim % Leb(A(¢) N [0, £])
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Brownian local time: 1/2-Minkowski content

|44

L() = lim 61% Leb(B() N[0, t])
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Brownian local time: counting measure random walk

@ Let W be a Brownian motion with local time L at O.
@ Let Z be a simple random walk with local time £ at 0.

Theorem 1 (Révész'81)

(iZ(n-), %ﬁ(n-)) = (W, L).

See also Csaki-Révész'83, Borodin'89, Bass-Koshnevisan'93.
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Brownian local time: axiomatic characterization

For W a Brownian motion let t — L(t, W) be
continuous,

increasing,

non-negative,

adapted,

constant outside the zero set of W/, and

additive (L(s + t, W) = L(t, W) + L(s, W(t +-)).

©0 0000

Then L is a deterministic multiple of the local time of W.

See e.g. McKean-Tanaka'61.
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Perspectives on Brownian local time

Minkowski Limit of counting
content measure
Axiomatic

characterization
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Natural measures on fractals

Minkowski Limit of counting
content measure

"/

Axiomatic
characterization

What natural measures are supported on other fractal sets?

@ Schramm-Loewner evolutions
@ SLEg pivotal points and Brownian cut points

@ Fractals in Liouville quantum gravity (LQG) environment
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Schramm-Loewner evolutions

An SLE, 7 is a random curve modulo time reparametrization satisfying
e Conformal invariance: ¢ o7 is an SLE in (5,3, E)
e Domain Markov property: 7|, 7,] is an SLE, in (D \ K¢, n(t), b).

a

Conformal invariance

Domain Markov
property
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SLE with the natural parametrization

An SLE, n with its natural parametrization is a random curve satisfying
e Conformal invariance: ¢ o7 is an SLE, in (D, a, b) such that
(¢ on)([O, t]) is traced in time

/Ot S ds,  d=(1+ g) A2,

o Domain Markov property
b

a
time curve spends in marked region
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The natural parametrization of SLE

Lawler-Sheffield'09:
@ introduced the natural parametrization
@ uniqueness for all k € (0,8) (under assumption of finite expectation)
@ existence for k < 5.021...

Lawler-Zhou'13, Lawler-Rezaei'15:
e For all k € (0,8) the natural parametrization exists and given by
1 + g-Minkowski content.

b

a

time curve spends in marked region
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Percolation interface = SLEg

Let 1 be an SLE¢ in (D, a, b).
Theorem 2 (Smirnov'01)

When n — oo, n, = n as a curve modulo reparametrization of time.
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Percolation interface = SLEg in natural parametrization

each face traversed

in time n~7/4+e(1)

Let n be an SLEs in (D, a, b) with its natural parametrization.

Theorem 3 (H.-Li-Sun’18)

When n — oo, n, = n for the uniform topology.

@ Garban-Pete-Schramm’13: Counting measure on the percolation interface has a
scaling limit.
@ Lawler-Viklund'17: Loop-erased random walk = SLE; in natural parametrization
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Percolation pivotal points
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Percolation pivotal points

Theorem 4 (H.-Li-Sun'18)
@ The e-important pivotal points (double points) of SLEs and CLEg
have a.s. non-trivial and finite 3/4-Minkowski content v.
e If v, is counting measure on discrete pivotal points, then v, = v as
n — oco. The convergence is joint with convergence to CLEg.

D

Interface Conformal loop
intersection points ensemble CLEg
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Brownian cut points

Theorem 5 (H.-Lawler-Li-Sun'18)

o (W;)ter a 2d Brownian excursion; A C R? is the set of cut-points.

@ Then A has a.s. locally finite and non-trivial 3/4-Minkowski content.

We also prove the analogous 3d result (but cut point dimension unknown).

Pair of interfaces Pair of SLEg Brownian excursion
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Random planar maps (RPM)

o Planar map: graph on the sphere, modulo continuous deformations.

€0 €o eq
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Random planar maps (RPM)

o Planar map: graph on the sphere, modulo continuous deformations.

o Triangulation of a disk: planar map where all the faces have three
edges, except one distinguished face (the exterior face) with arbitrary
degree and simple boundary.
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Random planar maps (RPM)

o Planar map: graph on the sphere, modulo continuous deformations.

o Triangulation of a disk: planar map where all the faces have three
edges, except one distinguished face (the exterior face) with arbitrary
degree and simple boundary.

@ Let M be a uniform triangulation with n vertices and boundary
length m.
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Random planar maps (RPM)

o Planar map: graph on the sphere, modulo continuous deformations.

o Triangulation of a disk: planar map where all the faces have three
edges, except one distinguished face (the exterior face) with arbitrary
degree and simple boundary.

@ Let M be a uniform triangulation with n vertices and boundary
length m.

@ What is the scaling limit of M?

€0 €o eq
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The Gaussian free field (GFF)

@ The discrete Gaussian free field (GFF) h, : 1Z° N [0,1]> — R is a random
function.
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The Gaussian free field (GFF)

@ The discrete Gaussian free field (GFF) h, : 1Z°N[0,1]° — R is a random
function.

@ hp(z) is a normal random variable such that

E[ha(z)] = 0, Var(hn(z)) =~ log n, Cov(hn(2), hn(w)) ~ log |z — w| "

North of LA Yosemite Himalaya

increasing n
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The Gaussian free field (GFF)

@ The discrete Gaussian free field (GFF) h, : 2Z° N [0,1]> — R is a random
function.

@ hp(z) is a normal random variable such that

E[hn(2)] = 0, Var(hn(z)) = log n, Cov(hn(z), hn(w)) ~ log |z — w| ™.

n=20 n =100
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The Gaussian free field (GFF)

@ The discrete Gaussian free field (GFF) h,: 1Z*N[0,1]* — R is a random
function.

@ h,(z) is a normal random variable such that
E[ha(z)] =0, Var(hn(z)) =~ log n, Cov(hn(2), hn(w)) = log |z — w| "

@ The Gaussian free field h is the limit of h, when n — oo.

n=20 n =100
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The Gaussian free field (GFF)

@ The discrete Gaussian free field (GFF) h,: 1Z*N[0,1]* — R is a random
function.

@ h,(z) is a normal random variable such that

E[ha(z)] =0, Var(hn(z)) =~ log n, Cov(hn(2), hn(w)) = log |z — w| "
@ The Gaussian free field h is the limit of h, when n — oo.
@ The GFF is a random distribution (generalized function).
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Liouville quantum gravity

@ If h:[0,1]> — R smooth and v € (0,2), then e”"(dx? + dy?) defines the metric
tensor of a Riemannian manifold.
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Liouville quantum gravity

@ If h:[0,1]> — R smooth and v € (0,2), then e”"(dx? + dy?) defines the metric
tensor of a Riemannian manifold.

@ ~-Liouville quantum gravity (LQG): h is the Gaussian free field (GFF).

GFF
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Liouville quantum gravity

@ If h:[0,1]> — R smooth and v € (0,2), then e”"(dx? + dy?) defines the metric
tensor of a Riemannian manifold.
@ ~-Liouville quantum gravity (LQG): h is the Gaussian free field (GFF).

@ Definition does not make rigorous sense since h is a distribution.
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Liouville quantum gravity

@ If h:[0,1]> — R smooth and 7 € (0,2), then e”"(dx? + dy?) defines the metric
tensor of a Riemannian manifold.

@ ~y-Liouville quantum gravity (LQG): h is the Gaussian free field (GFF).
@ Definition does not make rigorous sense since h is a distribution.

@ Area measure ;= " dxdy rigorously defined by regularizing h

w(U) = Iin}] 572/2/ e"he dxdy, he regularized verison of h, U C C.
€—> U

GFF
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[llustration of LQG area measure

v=1.75

Area measure of random surface e?""dxdy, by J. Miller
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Random planar maps converge to LQG

Two models for random surfaces:
e Random planar maps (RPM)
e Liouville quantum gravity (LQG)

What does it mean for a RPM to converge?
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Random planar maps converge to LQG

Two models for random surfaces:
e Random planar maps (RPM)
e Liouville quantum gravity (LQG)

What does it mean for a RPM to converge?

@ Metric structure (Le Gall'13, Miermont'13, ...)
e Conformal structure (H.-Sun'19)

@ Statistical physics decorations (Duplantier-Miller-Sheffield'14, ...)
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Conformally embedded uniform triangulation =/8/3-LQG
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@ Uniform triangulation with n vertices and boundary length @(n1/2).
e Cardy embedding: uses properties of percolation on the RPM.

@ Let u, be renormalized counting measure on the vertices in T.

o Let 1 be \/8/3-LQG area measure in T.

Theorem 6 (H.-Sun'19)
In the above setting, (i, = p.
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Discrete conformal embeddings

Circle packing

Riemann uniformization
Tutte embedding
Cardy embedding

\/
25

e
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:
3
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Conformally embedded RPM converge to +/ LQG

The proof is based on multiple works, including, but not
limited to (*=in preparation):

@ Percolation on triangulations: a bijective path to
Liouville quantum gravity (Bernardi-H.-Sun)

Minkowski content of Brownian cut points
(Lawler-Li-H.-Sun)

Natural parametrization of percolation interface
and pivotal points (Li-H.-Sun)

@ Uniform triangulations with simple boundary
converge to the Brownian disk
(Albenque-Sun-Wen)*

@ Joint scaling limit of site percolation on random
triangulations in the metric and peanosphere sense
(Gwynne-H.-Sun)*

Liouville dynamical percolation
(Garban-H.-Sepilveda-Sun)*

@ Convergence of uniform triangulations under the
Cardy embedding (H.-Sun)
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Percolation on uniform triangulations = SLEg

A

@ Smirnov'01: The percolation interface for critical percolation on the
triangular lattice converges to a Schramm-Loewner evolution (SLEg).
@ H.-Sun'19: The percolation interface for critical percolation on a

Cardy embedded uniform triangulation converges to SLEg in a
quenched sense.
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Cardy embedding: percolation-based embedding
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random planar map
embedded random planar map

Holden (ETH Ziirich) Januarn y 13, 2019 24 /31



Cardy embedding: percolation-based embedding
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Cardy embedding: percolation-based embedding

@ What is the “correct” position of v in T?
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Cardy embedding: percolation-based embedding

@ What is the “correct” position of v in T?
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Cardy embedding: percolation-based embedding

@ What is the “correct” position of v in T?

blue
crossing
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Cardy embedding: percolation-based embedding

@ What is the “correct” position of v in T?
e Map v € V(M) to x € T such that

(Pa(x), pa(x), pc(x)) = (Pa(v), Pb(v); Pe(Vv))-
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~v-LQG measures on fractals

e A C C fractal with d-Minkowski content m for d € (0, 2].
@ 7-LQG measure of A:

. 2 . .
dvp = Imz) V4/27ahe(2) g he regularized verison of h,
€E—>

where 74 is chosen such that for any U C D,

h h=ho¢™' = (v/2+2/7)log|¢/|
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~v-LQG measures on fractals

We get the v-LQG size of
(i) SLE, (= quantum natural parametrization) and

(i) pivotal points.

h h=ho¢ —(v/2+2/7)log|¢|
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~v-LQG measures on fractals

We get the v-LQG size of
(i) SLE. (= quantum natural parametrization) and

(ii) pivotal points.

Quantum natural parametrization: unique parametrization of SLE which is
(i) invariant under conformal maps and

(ii) locally determined by 1 and h.

h h=ho¢™' = (v/2+2/7)log|¢|
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Percolation on RPM =- SLEg on /8/3-LQG

® [, = counting measure on vertices; u = 1/8/3-LQG area measure
@ 1), = percolation interface; n = SLEg w/quantum natural param.
® v, = counting measure pivotals; v = 1/8/3-LQG pivotal measure

Theorem 7 (H.-Sun'19, Bernardi-H.-Sun’18)

(Mn’ Tn, Vn) = (,LL, m, Z/)

Cardy embedded (M, P)

SLEG and CLE@
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Quantum natural parametrization

Limit of counting
measure on interface

N Y

Axiomatic characterization of
quantum natural parametrization

ePdm
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Bijection between percolated maps and walks

Bernardi-H.-Sun’18:

A
b
w
<~
>
(M, P) a
babcbbabecace
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Bijection between percolated maps and walks

=1
bijection
(M,P) = walk (Wi)iesn
(M, P) 2d walk
|} convergence )
“bijection”
Brownian excursion

h, T’
(h,T) (Zt)teo.1)

g

V8/3-LQG CLEg I 2d Brownian excursion
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Bijection between percolated maps and walks

(h,T)

(M, P)

bijection
< walk (Wi)iejsn
tonvergence
of walk and
U observables
“bijection” encoded by walk
Brownian excursion

(Zt)teo.1)

Holden (ETH Ziirich)

V/3/3-LQG h

=
(M, P) 2d walk
Z
=
CLEg I

2d Brownian excursion
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Open problems

@ Convergence to SLE, in natural parametrization for x # 2,6
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Open problems

@ Convergence to SLE, in natural parametrization for x # 2,6

@ Convergence of counting measure on special points of statistical
physics models

e e.g. FK pivotal points, k-arm points percolation, random walk events
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Open problems

@ Convergence to SLE, in natural parametrization for x # 2,6

@ Convergence of counting measure on special points of statistical
physics models

e e.g. FK pivotal points, k-arm points percolation, random walk events
@ Renormalization factor for Euclidean percolation convergence results
e precise 2- and 4-arm event probability
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Open problems

Convergence to SLE,; in natural parametrization for x # 2,6

Convergence of counting measure on special points of statistical
physics models

e e.g. FK pivotal points, k-arm points percolation, random walk events
@ Renormalization factor for Euclidean percolation convergence results
e precise 2- and 4-arm event probability
@ Minkowski content of other fractals
o e.g. CLE,; gasket, SLE,; cut and double points
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physics models

e e.g. FK pivotal points, k-arm points percolation, random walk events
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Open problems

Convergence to SLE,; in natural parametrization for x # 2,6

Convergence of counting measure on special points of statistical
physics models

e e.g. FK pivotal points, k-arm points percolation, random walk events
@ Renormalization factor for Euclidean percolation convergence results
e precise 2- and 4-arm event probability
@ Minkowski content of other fractals
o e.g. CLE,; gasket, SLE,; cut and double points

Hausdorff measure gauge function
e eg. SLE,
Conformal embedding of random planar maps

e other random planar maps
e other embeddings (e.g. uniformization, circle packings, Tutte)
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Open problems

Convergence to SLE,; in natural parametrization for x # 2,6

Convergence of counting measure on special points of statistical
physics models

e e.g. FK pivotal points, k-arm points percolation, random walk events
@ Renormalization factor for Euclidean percolation convergence results
e precise 2- and 4-arm event probability
@ Minkowski content of other fractals
o e.g. CLE,; gasket, SLE,; cut and double points

Hausdorff measure gauge function
e eg. SLE,
Conformal embedding of random planar maps

e other random planar maps
e other embeddings (e.g. uniformization, circle packings, Tutte)

@ Random walk on triangulation converges to Liouville Brownian motion
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Thanks!




