Natural measures on random fractals

Nina Holden

ETH Zürich, Institute for Theoretical Studies

Based on works with: Xinyi Li and Xin Sun Greg Lawler, Xinyi Li, and Xin Sun Olivier Bernardi and Xin Sun Xin Sun

January 13, 2019

Brownian local time: density of occupation measure at 0

$$L(t) = \lim_{\epsilon \to 0} \frac{1}{\epsilon} \operatorname{Leb}(A(\epsilon) \cap [0, t])$$

Brownian local time: 1/2-Minkowski content

$$L(t) = \lim_{\epsilon o 0} rac{c}{\epsilon^{1/2}} \operatorname{Leb}(B(\epsilon) \cap [0, t])$$

Brownian local time: counting measure random walk

Let W be a Brownian motion with local time L at 0.
Let Z be a simple random walk with local time L at 0.

Theorem 1 (Révész'81)

$$\left(\frac{1}{\sqrt{n}}\mathcal{Z}(n\cdot),\frac{c}{\sqrt{n}}\mathcal{L}(n\cdot)\right)\Rightarrow(W,L).$$

See also Csáki-Révész'83, Borodin'89, Bass-Koshnevisan'93.

Brownian local time: axiomatic characterization

For W a Brownian motion let $t \mapsto L(t, W)$ be

- continuous,
- increasing,
- Inon-negative,
- adapted,
- \bigcirc constant outside the zero set of W, and
- additive $(L(s + t, W) = L(t, W) + L(s, W(t + \cdot)).$

Then L is a deterministic multiple of the local time of W.

See e.g. McKean-Tanaka'61.

Natural measures on fractals

What natural measures are supported on other fractal sets?

- Schramm-Loewner evolutions
- SLE₆ pivotal points and Brownian cut points
- Fractals in Liouville quantum gravity (LQG) environment

Schramm-Loewner evolutions

An SLE_{κ} η is a random curve **modulo time reparametrization** satisfying

- Conformal invariance: $\phi \circ \eta$ is an SLE_{κ} in $(\widetilde{D}, \widetilde{a}, \widetilde{b})$.
- Domain Markov property: $\eta|_{[t,T_{\eta}]}$ is an SLE_{κ} in $(D \setminus K_t, \eta(t), b)$.

SLE with the natural parametrization

An SLE_{κ} η with its **natural parametrization** is a random curve satisfying

Conformal invariance: φ ∘ η is an SLE_κ in (D̃, ã, b̃) such that (φ ∘ η)([0, t]) is traced in time

$$\int_0^t |\phi'(\eta(s))|^d \, ds, \qquad d = \left(1 + rac{\kappa}{8}
ight) \wedge 2.$$

Domain Markov property

The natural parametrization of SLE

Lawler-Sheffield'09:

- introduced the natural parametrization
- uniqueness for all $\kappa \in (0,8)$ (under assumption of finite expectation)
- existence for $\kappa < 5.021...$

Lawler-Zhou'13, Lawler-Rezaei'15:

• For all $\kappa \in (0,8)$ the natural parametrization exists and given by $1 + \frac{\kappa}{8}$ -Minkowski content.

Percolation interface \Rightarrow SLE₆

Let η be an SLE₆ in (D, a, b).

Theorem 2 (Smirnov'01)

When $n \to \infty$, $\eta_n \Rightarrow \eta$ as a curve modulo reparametrization of time.

$Percolation \ interface \Rightarrow SLE_6 \ in \ natural \ parametrization$

each face traversed in time $n^{-7/4+o(1)}$

Let η be an SLE₆ in (D, a, b) with its natural parametrization.

Theorem 3 (H.-Li-Sun'18)

When $n \to \infty$, $\eta_n \Rightarrow \eta$ for the uniform topology.

- Garban-Pete-Schramm'13: Counting measure on the percolation interface has a scaling limit.
- Lawler-Viklund'17: Loop-erased random walk \Rightarrow SLE₂ in natural parametrization

Percolation pivotal points

4-arm event

Pair of interfaces

э

Image: A match a ma

Theorem 4 (H.-Li-Sun'18)

- The ε-important pivotal points (double points) of SLE₆ and CLE₆ have a.s. non-trivial and finite 3/4-Minkowski content ν.
- If ν_n is counting measure on discrete pivotal points, then $\nu_n \Rightarrow \nu$ as $n \rightarrow \infty$. The convergence is joint with convergence to CLE₆.

Theorem 5 (H.-Lawler-Li-Sun'18)

- $(W_t)_{t\in\mathbb{R}}$ a 2d Brownian excursion; $A \subset \mathbb{R}^2$ is the set of cut-points.
- Then A has a.s. locally finite and non-trivial 3/4-Minkowski content.

We also prove the analogous 3d result (but cut point dimension unknown).

Pair of interfaces

Pair of SLE_6

• Planar map: graph on the sphere, modulo continuous deformations.

Random planar maps (RPM)

- Planar map: graph on the sphere, modulo continuous deformations.
- **Triangulation of a disk**: planar map where all the faces have three edges, except one distinguished face (the exterior face) with arbitrary degree and simple boundary.

Random planar maps (RPM)

- Planar map: graph on the sphere, modulo continuous deformations.
- **Triangulation of a disk**: planar map where all the faces have three edges, except one distinguished face (the exterior face) with arbitrary degree and simple boundary.
- Let *M* be a **uniform** triangulation with *n* vertices and boundary length *m*.

Random planar maps (RPM)

- Planar map: graph on the sphere, modulo continuous deformations.
- **Triangulation of a disk**: planar map where all the faces have three edges, except one distinguished face (the exterior face) with arbitrary degree and simple boundary.
- Let *M* be a **uniform** triangulation with *n* vertices and boundary length *m*.
- What is the scaling limit of M?

• The discrete Gaussian free field (GFF) $h_n: \frac{1}{n}\mathbb{Z}^2 \cap [0,1]^2 \to \mathbb{R}$ is a random function.

- The discrete Gaussian free field (GFF) $h_n: \frac{1}{n}\mathbb{Z}^2 \cap [0,1]^2 \to \mathbb{R}$ is a random function.
- $h_n(z)$ is a normal random variable such that

$$\mathbb{E}[h_n(z)] = 0, \qquad \operatorname{Var}(h_n(z)) \approx \log n, \qquad \operatorname{Cov}(h_n(z), h_n(w)) \approx \log |z - w|^{-1}.$$

- The discrete Gaussian free field (GFF) h_n : ¹/_nZ² ∩ [0, 1]² → ℝ is a random function.
- $h_n(z)$ is a normal random variable such that

 $\mathbb{E}[h_n(z)] = 0, \qquad \operatorname{Var}(h_n(z)) \approx \log n, \qquad \operatorname{Cov}(h_n(z), h_n(w)) \approx \log |z - w|^{-1}.$

- The discrete Gaussian free field (GFF) $h_n: \frac{1}{n}\mathbb{Z}^2 \cap [0,1]^2 \to \mathbb{R}$ is a random function.
- $h_n(z)$ is a normal random variable such that

 $\mathbb{E}[h_n(z)] = 0, \qquad \operatorname{Var}(h_n(z)) \approx \log n, \qquad \operatorname{Cov}(h_n(z), h_n(w)) \approx \log |z - w|^{-1}.$

• The Gaussian free field h is the limit of h_n when $n \to \infty$.

- The discrete Gaussian free field (GFF) h_n : ¹/_nZ² ∩ [0, 1]² → ℝ is a random function.
- $h_n(z)$ is a normal random variable such that

 $\mathbb{E}[h_n(z)] = 0, \qquad \operatorname{Var}(h_n(z)) \approx \log n, \qquad \operatorname{Cov}(h_n(z), h_n(w)) \approx \log |z - w|^{-1}.$

- The Gaussian free field h is the limit of h_n when $n \to \infty$.
- The GFF is a random distribution (generalized function).

January 13, 2019

16/31

If h: [0,1]² → ℝ smooth and γ ∈ (0,2), then e^{γh}(dx² + dy²) defines the metric tensor of a Riemannian manifold.

- If h: [0,1]² → ℝ smooth and γ ∈ (0,2), then e^{γh}(dx² + dy²) defines the metric tensor of a Riemannian manifold.
- γ -Liouville quantum gravity (LQG): *h* is the **Gaussian free field** (GFF).

LQG

- If h: [0,1]² → ℝ smooth and γ ∈ (0,2), then e^{γh}(dx² + dy²) defines the metric tensor of a Riemannian manifold.
- γ -Liouville quantum gravity (LQG): *h* is the **Gaussian free field** (GFF).
- Definition does not make rigorous sense since *h* is a distribution.

LQG

- If h: [0,1]² → ℝ smooth and γ ∈ (0,2), then e^{γh}(dx² + dy²) defines the metric tensor of a Riemannian manifold.
- γ-Liouville quantum gravity (LQG): h is the Gaussian free field (GFF).
- Definition does not make rigorous sense since h is a distribution.
- Area measure $\mu = e^{\gamma h} dx dy$ rigorously defined by regularizing h

 $\mu(U) = \lim_{\epsilon \to 0} \epsilon^{\gamma^2/2} \int_U e^{\gamma h_\epsilon} d\mathsf{x} d\mathsf{y}, \qquad h_\epsilon \text{ regularized verison of } h, \quad U \subset \mathbb{C}.$

Illustration of LQG area measure

$\gamma = 1$ $\gamma = 1.5$ $\gamma = 1.75$

Area measure of random surface $e^{\gamma h} dx dy$, by J. Miller

Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

What does it mean for a RPM to converge?

Random planar maps converge to LQG

Two models for random surfaces:

- Random planar maps (RPM)
- Liouville quantum gravity (LQG)

What does it mean for a RPM to converge?

- Metric structure (Le Gall'13, Miermont'13, ...)
- Conformal structure (H.-Sun'19)
- Statistical physics decorations (Duplantier-Miller-Sheffield'14, ...)

Conformally embedded uniform triangulation $\Rightarrow \sqrt{8/3}$ -LQG

- Uniform triangulation with *n* vertices and boundary length $\Theta(n^{1/2})$.
- Cardy embedding: uses properties of percolation on the RPM.
- Let μ_n be renormalized counting measure on the vertices in \mathbb{T} .
- Let μ be $\sqrt{8/3}$ -LQG area measure in \mathbb{T} .

Theorem 6 (H.-Sun'19)

In the above setting, $\mu_n \Rightarrow \mu$.

Discrete conformal embeddings

- Circle packing
- Riemann uniformization
- Tutte embedding
- Cardy embedding

Conformally embedded RPM converge to $\sqrt{8/3}$ -LQG

The proof is based on multiple works, including, but not limited to (*=in preparation):

- Percolation on triangulations: a bijective path to Liouville quantum gravity (Bernardi-H.-Sun)
- Minkowski content of Brownian cut points (Lawler-Li-H.-Sun)
- Natural parametrization of percolation interface and pivotal points (Li-H.-Sun)
- Uniform triangulations with simple boundary converge to the Brownian disk (Albenque-Sun-Wen)*
- Joint scaling limit of site percolation on random triangulations in the metric and peanosphere sense (Gwynne-H.-Sun)*
- Liouville dynamical percolation (Garban-H.-Sepúlveda-Sun)*
- Convergence of uniform triangulations under the Cardy embedding (H.-Sun)

Percolation on uniform triangulations \Rightarrow SLE₆

- Smirnov'01: The percolation interface for critical percolation on the triangular lattice converges to a Schramm-Loewner evolution (SLE₆).
- H.-Sun'19: The percolation interface for critical percolation on a Cardy embedded uniform triangulation converges to SLE₆ in a quenched sense.

embedded random planar map

• What is the "correct" position of v in \mathbb{T} ?

• What is the "correct" position of v in \mathbb{T} ?

• What is the "correct" position of v in \mathbb{T} ?

- What is the "correct" position of v in \mathbb{T} ?
- Map $v \in V(M)$ to $x \in \mathbb{T}$ such that

 $(p_A(x), p_B(x), p_C(x)) = (\widehat{p}_a(v), \widehat{p}_b(v), \widehat{p}_c(v)).$

$\gamma\text{-}\mathsf{LQG}$ measures on fractals

A ⊂ C fractal with d-Minkowski content m for d ∈ (0,2].
γ-LQG measure of A:

 $d\nu_h = \lim_{\epsilon \to 0} \epsilon^{\gamma_d^2/2} e^{\gamma_d h_\epsilon(z)} d\mathfrak{m}, \qquad h_\epsilon \text{ regularized verison of } h,$

where γ_d is chosen such that for any $U \subset D$,

$$\nu_h(U) = \nu_{\widetilde{h}}(\phi(U)).$$

$\gamma\text{-}\mathsf{LQG}$ measures on fractals

We get the $\gamma\text{-}\mathsf{LQG}$ size of

- (i) SLE_{κ} (\Rightarrow quantum natural parametrization) and
- (ii) pivotal points.

$\gamma\text{-}\mathsf{LQG}$ measures on fractals

We get the $\gamma\text{-}\mathsf{LQG}$ size of

- (i) SLE_{κ} (\Rightarrow quantum natural parametrization) and
- (ii) pivotal points.

Quantum natural parametrization: unique parametrization of SLE which is

- (i) invariant under conformal maps and
- (ii) **locally** determined by η and h.

Percolation on RPM \Rightarrow SLE₆ on $\sqrt{8/3}$ -LQG

- μ_n = counting measure on vertices; $\mu = \sqrt{8/3}$ -LQG area measure
- η_n = percolation interface; $\eta = SLE_6 \text{ w/quantum natural param.}$
- ν_n = counting measure pivotals; $\nu = \sqrt{8/3}$ -LQG pivotal measure

Theorem 7 (H.-Sun'19, Bernardi-H.-Sun'18)

$$(\mu_n,\eta_n,\nu_n) \Rightarrow (\mu,\eta,\nu)$$

Bijection between percolated maps and walks

Bernardi-H.-Sun'18:

babcbbabccacc

Bijection between percolated maps and walks

Bijection between percolated maps and walks

• Convergence to ${\sf SLE}_\kappa$ in natural parametrization for $\kappa\neq 2,6$

- ∢ /⊐ >

- Convergence to ${\sf SLE}_\kappa$ in natural parametrization for $\kappa\neq 2,6$
- Convergence of counting measure on special points of statistical physics models
 - e.g. FK pivotal points, k-arm points percolation, random walk events

- Convergence to SLE_κ in natural parametrization for $\kappa \neq 2,6$
- Convergence of counting measure on special points of statistical physics models
 - e.g. FK pivotal points, k-arm points percolation, random walk events
- Renormalization factor for Euclidean percolation convergence results
 - precise 2- and 4-arm event probability

- Convergence to SLE_κ in natural parametrization for $\kappa \neq 2,6$
- Convergence of counting measure on special points of statistical physics models
 - e.g. FK pivotal points, k-arm points percolation, random walk events
- Renormalization factor for Euclidean percolation convergence results
 - precise 2- and 4-arm event probability
- Minkowski content of other fractals
 - e.g. CLE_{κ} gasket, SLE_{κ} cut and double points

- Convergence to SLE_κ in natural parametrization for $\kappa \neq 2,6$
- Convergence of counting measure on special points of statistical physics models
 - e.g. FK pivotal points, k-arm points percolation, random walk events
- Renormalization factor for Euclidean percolation convergence results
 - precise 2- and 4-arm event probability
- Minkowski content of other fractals
 - e.g. CLE_{κ} gasket, SLE_{κ} cut and double points
- Hausdorff measure gauge function
 - e.g. SLE_{κ}

- Convergence to SLE_κ in natural parametrization for $\kappa \neq 2,6$
- Convergence of counting measure on special points of statistical physics models
 - e.g. FK pivotal points, k-arm points percolation, random walk events
- Renormalization factor for Euclidean percolation convergence results
 - precise 2- and 4-arm event probability
- Minkowski content of other fractals
 - e.g. CLE_{κ} gasket, SLE_{κ} cut and double points
- Hausdorff measure gauge function
 - e.g. SLE_{κ}
- Conformal embedding of random planar maps
 - other random planar maps
 - other embeddings (e.g. uniformization, circle packings, Tutte)

- Convergence to ${\sf SLE}_\kappa$ in natural parametrization for $\kappa
 eq 2,6$
- Convergence of counting measure on special points of statistical physics models
 - e.g. FK pivotal points, k-arm points percolation, random walk events
- Renormalization factor for Euclidean percolation convergence results
 - precise 2- and 4-arm event probability
- Minkowski content of other fractals
 - e.g. CLE_{κ} gasket, SLE_{κ} cut and double points
- Hausdorff measure gauge function
 - e.g. SLE_{κ}
- Conformal embedding of random planar maps
 - other random planar maps
 - other embeddings (e.g. uniformization, circle packings, Tutte)
- Random walk on triangulation converges to Liouville Brownian motion

Thanks!

æ

メロト メポト メヨト メヨト