RAMANUJAN TYPE GRAPHS AND BIGRAPHS

Cristina M. Ballantine

College of the Holy Cross cballant@holycross.edu

February 2004

IPAM - Los Angeles

Problem: Construct a graph:

- well connected
- reasonable number of edges

Definition: An (n,k,c)-expander is a k-regular graph $X_{n,k}$ on n vertices: $\forall A \subset V$ with $|A| \leq \frac{n}{2}$ satisfies $|\partial A| \geq c|A|$. (c is called the expansion coefficient.)

 δ - adjacency matrix of X $\lambda(X)$ - eigenvalue of δ with second largest abs. value.

Proposition: A finite k-regular graph $X_{n,k}$ on n vertices is an (n,k,c)-expander with $2c=1-\frac{\lambda}{k}$.

good expanders $\leftrightarrow \lambda$ small.

Alon-Boppana:
$$\lim_{n\to\infty} \lambda(X_{n,k}) \geq 2\sqrt{k-1}$$

Definition (Lubotzky, Phillips, Sarnak): $X_{n,k}$ is called a Ramanujan graph if $|\lambda| \leq 2\sqrt{k-1}$.

$$G = GL_3(\mathbb{Q}_p)$$

 \mathcal{B} - Bruhat-Tits building associated with G - obtained by "gluing together" the apartments corresponding to different tori. G acts on \mathcal{B} .

Apartment $\mathcal{A}(G,T)$: canonical affine space under $X_* \otimes \mathbb{R}$.

Apartment of $SL_3(\mathbb{Q}_p)$: 2-dim'l simplicial complex. Maximal simplices are triangles.

Structure: facets, walls, half-apartments, chambers; special vertices.

Building: "ramify" along every edge. Each edge belongs to p+1 triangles. All vertices are special.

 $\mathcal{B} = \text{Building of } SL_3(\mathbb{Q}_p) \times \text{affine line.}$

 $SL_3(\mathbb{Q}_p)$ semisimple and simply connected \rightarrow maximal compact subgroups are the stabilizers of the vertices of \mathcal{B} .

 ${\cal B}$ is a labellable hypergraph with labelling $\{0,1,2\}$.

The underlying graph $\underline{\mathcal{B}}$ is $2(p^2 + p + 1)$ -regular.

$$G = GL_3(\mathbb{Q}_p)$$
:

- max'l compact subgps: $K = GL_3(\mathbb{Z}_p)$ and its conj.
- G acts transitively on vertices.
- vertices $\leftrightarrow G/K$
- $V = C_c(G/K)$

Hecke algebra $\mathcal{H}_p = C_c(K \backslash G/K)$.

ullet \mathcal{H}_p acts on V by convolution on the right.

$$(f \star \varphi)(x) = \int_{G(\mathbb{Q}_p)} \varphi(y) f(xy) \, dy, \quad \varphi \in \mathcal{H}_p, \quad f \in V.$$

• φ_i characteristic function of Kt_iK , i = 0, 1, 2, 3,

$$t_i = \left(\begin{array}{ccc} 1 & & \\ & \ddots & \\ & & p \end{array}\right)_{i}$$

are the generators of \mathcal{H}_p .

Theorem: φ_1 , φ_2 are the partial Laplacians for \mathcal{B} :

$$(\varphi_i(f))(x^{(0)}) = \sum_{x^{(i)} \sim x^{(0)}} f(x^{(i)}), \ i = 1, 2.$$

• φ_1 , φ_2 commute and $\delta = \varphi_1 + \varphi_2 \longrightarrow$

estimate spectrum of φ_1 , φ_2 .

1 dim'l representations of $\mathcal{H}_p \leftrightarrow$ irreducible unramified representations of G.

 $GL_n(\mathbb{Q}_p)$ - Tate: Fourier transform for φ_i (Satake) \to for each φ_i : eigenvalues determined by the unramified representations.

G' is a \mathbb{Q} -form of U(3):

 $G'(\mathbb{Q}_p) \cong GL_3(\mathbb{Q}_p) \& G'(\mathbb{R})$ compact.

Rogawski's classification of automorphic representations of $U(3) \to \text{unramified representations of } GL_3(\mathbb{Q}_p) \to \text{(Tate's Theorem) eigenvalues of } \varphi_i.$

 Γ_p discrete co-compact subgroup of $G'(\mathbb{Q}_p)$: Γ_p acts on $G'(\mathbb{Q}_p)$ without fixed points.

 $\mathbb B$ - quotient of the building of $G'(\mathbb Q_p)$ by Γ_p .

Main Theorem: \mathbb{B} is a Ramanujan type building quotient with

- $|\lambda| \le 6p$ if G' arises from a division algebra
- $|\lambda| \leq 2p(p^{1/2}+1+p^{-1/2})$ if G' arises from an unramified algebra

Idea of proof:

Tate:

 $\chi = (\chi_1, \dots, \chi_n)$ *n*-tuple of unram. characters of \mathbb{Q}_p^* .

 φ_i has eigenvalue $p^{\frac{1}{2}i(n-i)}\sigma_i(\chi_1(p),\ldots,\chi_n(\pi))$.

Rogawski:

Packet structure on G = U(3)

 \uparrow

Packets on the endoscopic group H

Global packet $\Pi = \otimes \Pi_v$ on G: $\pi = \otimes \pi_v$ with $\pi_v \in \Pi_v$ for all v and π_v unramified for a.a. v.

$$\Pi_a(\mathbf{G}) = \{ \Pi(\xi) : \xi \in \Pi(\mathbf{H}), \dim(\xi) = 1 \}$$

$$\Pi_e(\mathbf{G}) = \{\Pi(\varrho) : \varrho \in \Pi_o(\mathbf{H}), \varrho \neq \varrho(\theta) \text{ for } \theta \text{ s.r.}\}$$

$$\Pi_s(\mathbf{G}) = \{\Pi : \nexists \varrho \in \Pi(\mathbf{H}) \text{ with } \Pi_v = \Pi(\varrho_v) \text{ a.a. } v\}$$

 $\{ global packets on G' \}$ $\downarrow e.v.p.$

{global packets on G}

Eigenvalue package (e.v.p.): $t = t_S = \{t_v : v \notin S\}$ t_v homomorphism of \mathcal{H}_v into \mathbb{C} .

e.v.p.: can work with either ${\bf G}$ or ${\bf G}'$.

Rogawski's packets \leftrightarrow Arthur's parametrization

 $L_{\mathbb{O}}$ - hypothetical Langlands group

global packets on G

$$\downarrow \\
\psi: L_{\mathbb{Q}} \times SL(2, \mathbb{C}) \longrightarrow^{L} G$$

Consider $S_{\psi} = \text{Cent}(\text{Im}(\psi), \widehat{G}).$

Representations in the discrete spectrum

$$\psi$$
 with S_{ψ} finite

Attached representation:

$$\rho: A_{\mathbb{Q}} \times SL(2,\mathbb{C}) \longrightarrow GL(3,\mathbb{C})$$

 S_{ψ} finite $\iff \rho$ contains no irreducible factors with multiplicity > 1.

Proof: Case by case discussion of the parameters according to the decomposition of ρ .

- ullet different cases $\leftrightarrow \Pi_s$, Π_e and Π_a
- Tate's Theorem
- applications of Deligne's Theorem

Definition: A (k, l)-regular bigraph $B_{k, l}$ is a bipartite graph in which all vertices of one color have degree k and all vertices of the other color have degree l.

Trivial eigenvalues of adjacency matrix: \sqrt{kl} , $-\sqrt{kl}$

Feng and Li:
$$\liminf_{n\to\infty} \lambda(B_{n,k,l}) \geq \sqrt{k-1} + \sqrt{l-1}$$

Definition (Solé): A (k,l)-regular bigraph $B_{k,l}$ is a Ramanujan bigraph if any nontrivial eigenvalue α of $B_{k,l}$ satisfies

$$|\sqrt{k-1} - \sqrt{l-1}| \le |\alpha| \le \sqrt{k-1} + \sqrt{l-1}$$
.

Let E/\mathbb{Q} be a separable quadratic extension of global fields.

Let E_p/\mathbb{Q}_p be unramified. Let G be a \mathbb{Q} -form of U(3) such that $G(\mathbb{Q}_p)$ is isomorphic to $U_3(\mathbb{Q}_p)$ and $G(\mathbb{R})$ is compact.

T - Bruhat-Tits tree attached to $U_3(\mathbb{Q}_p)$ T is $(p^3+1,p+1)$ -regular.

Questions:

- 1) Combinatorial meaning of the Hecke operators of $U_3(\mathbb{Q}_p)$ relative to the maximal compact subgroups?
- 2) How does Tate's Theorem for GL_n translate to U_n ?

The vertices of T are stabilized by the maximal compact subgroups of $U_3(\mathbb{Q}_p)$. Up to conjugacy:

$$K_{1} = U_{3}(\mathbb{Q}_{p}) \cap GL_{3}(\mathbb{Z}_{p})$$

$$K_{2} = \left\{ \begin{pmatrix} * & * & p^{-1}* \\ * & * & p^{-1}* \\ p* & p* & * \end{pmatrix} : * \in \mathbb{Z}_{p} \right\}$$

Vertices of $T \leftrightarrow G/K_1 \cup G/K_2$.

Conjugates of K_1 stabilize vertices of degree $p^3 + 1$.

Conjugates of K_2 stabilize vertices of degree p + 1.

Consider the Hecke algebras $\mathcal{H}(G, K_1)$ and $\mathcal{H}(G, K_2)$.

For each i = 1, 2, generators of $\mathcal{H}(G, K_i)$:

- \bullet characteristic function of K_i
- ullet the characteristic function φ_i of $K_i t K_i$, where

$$t = \left(\begin{array}{ccc} p & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & p^{-1} \end{array}\right)$$

Each Hecke algebra acts on $C_c(G/K_1 \cup G/K_2)$ by right convolution.

If x is stabilized by K_1 , $(f \star \varphi_1)(x)$ is the sum of the values of f at p+1 of the p^3+1 neighbors of x.

If x is stabilized by K_2 , $(f \star \varphi_1)(x)$ is the sum of the values of f at all p+1 neighbors of x.

 φ_2 does not seem to give an interesting combinatorial object.

Cartwright and Steger: construction of T from the building of $SL_3(E_p)$. Keep vertices of type 0 and collapse adjacent vertices of type 1 and 2 (delete some collapsed pairs).

Is it possible to obtain an estimation of the spectrum of T in a purely combinatorial fashion? (using estimation of spectrum of SL_3)