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There are several examples of complexes built

up from groups:

• The Cayley graph of a group G and a set

of generators S.

• The spherical building of a reductive group

over a finite field, of dimension rankG− 1.

• The affine building of a reductive group

over a local field, of dimension rankG, and

its quotients by discrete groups.
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Here we give a different example. Set

G = PGL2(Fq) = GL2(Fq)/center

It acts on its spherical complex (of dim = 0)

P = P1(Fq) = Fq ∪ {∞}

by

[
α β
γ δ

]
z =

αz + β

γz + δ
.

This is boring: P has more symmetries than

G! However, G acts simply triply transitively:

for any distinct a, b, c in P there exists a unique

g = ga,b,c ∈ G

mapping ∞,0,1 to a, b, c.

When {a, b} ∩ {c, d} = ∅, the cross-ratio

λ(a, b, c, d) =
(c− a)(d− b)

(c− b)(d− a)
(where ∞

∞ = 1)

is defined and is G-invariant.
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The complex X(q, d)

The 2-skeleton Σ2P of the simplex on P is the
simplicial complex with vertices P , edges the
unordered pairs ab, and triangles the unordered
triples abc of distinct vertices. This is still bor-
ing, since all of PerP acts, not just G.

For d|q − 1 we build X(q, d) by replacing each
edge of Σ2P by d ones, while leaving the ver-
tices and the triangles unchanged. The trian-
gles abc and abd have the same edge in X(q, d)
above ab iff λ(a, b, c, d) is a dth power in Fq.
This is a G-equivariant equivalence relation, in-
dependent of the order on {a, b}, since

λ(a, b, c, c) = 1 (reflexivity)
λ(a, b, d, c) = λ(a, b, c, d)−1 (symmetry)
λ(a, b, c, d)λ(a, b, d, e) = λ(a, b, c, e) (transitivity)
λ(b, a, c, d) = λ(a, b, c, d)−1 (order invariance)
λ(ga, gb, gc, gd) = λ(a, b, c, d) (G-equivariance).

We have a G-equivariant map X(q,2) → Σ2P .
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A presentation of π1(X(q, d),∞)

In the barycentric subdivision of X(q, d) let ∆

be the triangle with vertices

• v1 = ∞;

• v2 = the barycenter of ∞0;

• v3 = the barycenter of ∞01.
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∆ is a fundamental domain for the action of

G on Σ2P by the simple triple transitivity of G

on P .
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The stabilizer of ∆ in G is trivial. The stabi-
lizers Si of vi and Sij of vivj are

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

#
#

B Nd

S3

T d

〈w〉〈
w′

〉
∆cg

q,d :

1

with B the upper triangular matrices, T d the
dth powers of the diagonal T , w ∈ G the invo-
lution z 7→ 1/z, w′ the involution z 7→ 1− z, S3

the stabilizer in G of the set {∞,0,1}, and Nd

the group generated by T d and w.

The orbifold data ∆, Si, Sij and the inclusions

ιi,j : Sij → Sj

form a triangle with groups denoted ∆cg
q,d.
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The theory of complexes with groups (Bass-

Serre for graphs, Stallings for triangles, Ha-

effliger in general) presents the fundamental

group π1(∆
cg
q,d,∞) of ∆cg

q,d as the free product

S1 ∗ S2 ∗ S3 (1)

divided by the relations

ιi,jx = ιj,ix

for all x ∈ Sij, where

ιi,j : Sij → Sj

are the inclusions. Its crucial property is the

existence of an exact sequence

0 → π1(X(q, d),∞) → π1(∆
cg
q,d,∞) → G → 1,

where the map to G is the natural one.

Since S2 = Nd is generated by ι1,2(T
d) and by

ι3,2(w), we can remove it from the generators,

adding the relation wtw = t−1 for any t ∈ T d.
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Since S3 =
〈
w, w′|w2 = (w′)2 = (ww′)3 = 1

〉
,

and since w′ comes from B, the presentation

for π1(∆
cg
q,d,∞) becomes the free product

B ∗ 〈w〉
modulo the relations

• wtw = t−1 for all t ∈ T d;

• (ww′)3 = 1 (viewing w′ in B).

Since X(q,1) = Σ2P we get π1(∆
cg
q,1,∞) =

G. The relations above on B ∗ 〈w〉 are then

precisely those coming from the multiplication

table of G relative to the Bruhat decomposition

G = B tNwB

where N is the group of translations z 7→ z + b.

The relations defining π1(∆
cg
q,d,∞) are thus a

natural weakening of the Bruhat relations.
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Finiteness and non-finiteness of π1(X(q, d),∞)

GAP computations by A. Besser (suggested by

D. Wise) proved that π1(X(q,2),∞) has order

6 if 43 ≥ q ≥ 11 for a prime q ≡ 3 (mod 4).

In all other cases with d ≥ 2, including X(3,2)

and X(7,2), the machine failed to compute the

order of π1(X(q,2),∞), suggesting it might be

infinite. (q > 45 is too big for the machine.)

We can explain these results completely. Con-

sider first d = 2 and q ≡ 3 (mod 4):

• X(3,2) is a tetrahedron slit along its six

edges. Its π1 is infinite, free of rank 5.

• X(7,2) is a quotient of an A2 building. Its

π1 is an infinite, S-arithmetic group.

On the other hand we have the following
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Theorem 1 For q ≡ 3 (mod 4) a prime power

≥ 11 we have

π1(X(q,2),∞) ' Z/6Z.

Since det gb,a,c = −det ga,b,c, we orient canoni-

cally an edge above ab as (a, b) if det ga,b,c is a

square. Let (a, a) be the constant path at a,

let (a, b) be the path backing along (a, b) from

b to a. Let γa
b,c be the loop based at a given by

a
b

c
(b, a)

(b, c)

(c, b)

-

¾
¾

-
• • •

Or γa
b,c = (b, a)∗(b, c)∗(c, b)∗(b, a). Let [γa

b,c] be

the class of γa
b,c in π1(X(q,2), a). G-equivariance

takes the form

gγa
a,b =





γ
ga
ga,gb if det g is a square,

(γga
ga,gb)

−1 otherwise.
(2)
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Step 1. By induction on the length, a loop on

X(q,2) based at ∞ is homotopic to a product

of γ∞ab ’s, so these generate π1(X(q, d),∞).

The induction step replaces a loop starting by

going from ∞ to b in two steps through a, by a

product of γ∞∗,∗’s followed by going from ∞ to b

in one step. The picture shows this is possible.
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Step 2. Four distinct points a, b, c and d in P
span the 2-skeleton Σ = Σ2abcd of a tetrahe-
dron in Σ2P . In X(q,2) some of the edges are
slit (the others have an extra edge connected
to their endpoints). We have the following

Lemma 2 1. The edge ab is slit in X(q,2) iff
its opposite edge cd is.
2. The number of pairs of slit edges is 3 or 1.
(It is 0 or 2 if q ≡ 1 (mod 4).)
3. Σ2abcd is slit precisely along ab and cd iff

−λ(a, b, c, d) and λ(a, c, b, d)

are both squares in F×q .

The first two assertions follow from
1. λ(c, d, a, b) = λ(a, b, c, d)
2. λ(a, b, c, d)λ(a, c, d, b)λ(a, d, b, c) = −1
respectively. Together they imply Part 3.

A tetrahedron with 3 slit edge-pairs is four tri-
angles meeting at the vertices; for 2 slits, join
two squares at their corresponding vertices and
divide each square into two triangles.
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The picture shows Σ2abcd slit along the ab and

cd edge-pair, with the left and right (a, c) sides

glued so as to form a ring. We see that in this

case we have [γa
a,b] = [γa

c,d].

Lemma 3 [γ∞∞,0] = [γ∞∞,1].

Assuming this we will show the crucial claim:

The [γ∞a,b]’s are all equal in π1(X(q,2),∞).

Sketch: For general a, b, c, d the Lemma gives,

by G-equivariance, [γa
a,b] = [γa

a,c]. Adding a tail

to ∞ gives [γ∞a,b] = [γ∞a,c]. One directly checks

[γa
c,a] = [γa

a,c]. Thus [γ∞a,b] = [γ∞a,∞] = [γ∞∞,a] =

[γ∞∞,c] = [γ∞c,∞] = [γ∞c,d], proving the claim.
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To show that γ∞∞0 = γ∞∞1, we will find a, b ∈ P ,

such that a, b, ∞, 0, and 1 are all distinct and

both tetrahedra ∞0ab and ∞1ab are slit along

ab and ∞0 (respectively along ab and ∞1). Up

to interchanging a and b, this happens iff

a, a− 1, a− b, 1− b, −b are all squares, and

a, b, ∞, 0, and 1 are all distinct.

Take a = 25/9; the conditions on a hold (any

other such choice for a leads to a similar situ-

ation). The other conditions boil down to the

existence of u and k 6= ∞,0,±1 in Fq so that

u2 = k4 − 14

25
k2 + 1.

Here b = −4k2(k2 − 1)−2. This is an algebraic

curve of genus 1, so the Hasse bound gives for

its number of points Nq (which includes the

two points above k = ∞) the inequality

Nq ≥ q + 1− 2
√

q
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Thus a solution for which k avoids the above 4

values exists if Nq ≥ 9, which holds for q ≥ 19.

For q = 11 we take a = 5, b = −4. For q = 7

the method fails.

Step 3. We now know that π1(X(q,2),∞)

is cyclic with generator γ∞∞,0. In a tetrahedron

abcd with all edges slit, say ∞,0,1,−9/16, the

1-cycle represented by the sum

γ∞a,b + γ∞a,c + γ∞a,d + γ∞b,c + γ∞b,d + γ∞c,d ∼ 6γ∞∞,0

bounds, so π1(X(q,2),∞) is a quotient of Z/6Z.

Step 4. A study of the homology of the map

X(q,2) → Σ2P shows that H1(X(q,2),Z) is the

quotient of the group generated by the classes

of the γ∞a,b’s modulo the relations coming from

the tetrahedra. It follows readily that

π1(X(q,2),∞) ' H1(X(q,2),Z) ' Z/6Z,

concluding the proof of Theorem 1.
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Remarks: 1. X(q,2) is not K(π,1) for q
large with respect to d, since it contains oc-
tahedra (and tetrahedra for q ≡ 1 (mod 4).)
The proof uses the Hasse-Weil bounds as in
Theorem 1, but for a curve of higher genus. Is
our use of these bounds essential? They also
underlie the Ramanujan property.

2. The link of a vertex of X(q,2) is a graph
with dq vertices; the vertices break naturally
into d sets of q indexed by t ∈ F×q /(F×q )d, and
the vertices of the t’th set connect only with
those of the −t’th set. In particular, the link is
connected iff d = 2 and q ≡ 3 (mod 4). One
gets a retraction of X(q, d) onto the subgraph
spanned by ∞ and 0. Hence π1(X(q, d),∞) is
infinite except in the cases of Theorem 1.

3. The 1-skeleton of X(q,2) is a Ramanujan
2q-regular graph on q + 1 vertices with eigen-
values 2q − 2,−2, . . . ,−2. G. Dogon verified
by machine that many covers of X(7,2) are
Ramanujan, but results of J. Rogawski imply
there are covers of X(7,2) which are not.
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Mumford’s complex

In 1979 Mumford constructed a maximal S-

arithmetic group Γ1, acting on the building B
of PGL3(Q2), an affine building of type A2.

There is a surjection of Γ1 on G0 = PSL2(F7),

yielding an exact sequence

1 → Γ2 → Γ1 → G0 → 1.

Γ1 is on Kantor, Solomon, and Tits’ list for

acting “very transitively” on B. Hence G0 acts

“very transitively” on Γ2\B. One can prove

that Γ2\B has the same number of vertices,

edges, and triangles as X(7,2), and that the

transitivity is strong enough to determine com-

pletely a G0-complex of this size. We conclude:

Theorem 4 Γ2\B and X(7,2) are isomorphic

G0-equivariantly. Hence π1(X(7,2),∞) ' Γ2,

and Γ1 $ π1(∆
cg
q,d,∞) is not maximal in AutB.

The outer automorphism of Γ1 reverses the

mod 3 cyclic order on the vertices of B.
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Let Γ be the inverse image in Γ1 of a 2-Sylow
subgroup S of G0. Mumford proved that Γ acts
freely on B and transitively on its vertices. Set
Y = Γ\B = S\X(7,2). We obtain the following
(later verified by G. Dogon on a machine):

Theorem 5 The complex Y has one vertex ∗.
Its edges eu are the images of (∞, u) for u ∈ F7.
Representatives in X(7,2) for its triangles σi
and the boundaries ∂σi are

σ1 : (∞,0,1) ∂σ1 = (e0, e6, e6) (sic!)
σ2 : (∞,0,2) ∂σ2 = (e0, e3, e2)
σ3 : (∞,0,4) ∂σ3 = (e0, e5, e4)
σ4 : (∞,1,2) ∂σ4 = (e1, e4, e2)
σ5 : (∞,1,3) ∂σ5 = (e1, e5, e3)
σ6 : (∞,1,5) ∂σ6 = (e1, e2, e5)
σ7 : (∞,4,1) ∂σ7 = (e4, e3, e6).

Corollary 6 Let x, y be the classes of e3 and
e6. Then Γ = π1(Y, ∗) admits the presentation

〈
x, y | y2 = x2y3xyx, xy2xyx = y4xy

〉
.

Mumford’s challenge, to draw Y , still stands.
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The work described here was initiated by S.

Mozes’s expressed hope for a simple descrip-

tion of Mumford’s complex. His interest and

comments were very encouraging and helpful.

In particular, he suggested to “normalize” the

complexes X(q, d) by replacing each vertex by

one per component of its link. If −1 is in (F×q )d

the result X̃(q, d) has 2 isomorphic components

X(q, d)±. Otherwise it is connected.

For instance X(q,2)+, for q ≡ 1 (mod 4), is

the subcomplex of Σ2P obtained by gluing to

Σ1P only those triangles abc for which det ga,b,c

is a square. We have π1(X(q,2),∞) = Z/2Z for

q > 13 (again using the Hasse bound).

It still remains to look at the other cases. Also,

at other 3-transitive groups (or some similar

condition). Using the classification of the finite

simple groups these groups are known.
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