The Ensemble Empirical Mode Decomposition: <u>A Noise-Assisted Data Analysis Method</u>

Zhaohua Wu¹, Norden E. Huang^{2, 3}, and Xianyao Chen³

¹Department of Earth, Ocean, and Atmospheric Science Florida State University

²Research Center for Adaptive Data Analysis National Central University, Taiwan

³The First Institute of Oceanography State Oceanic Administration, China

OUTLINE

 The Empirical Mode Decomposition (EMD)

- The Ensemble EMD (EEMD)
- Multi-dimensional EEMD

A SAMPLE INPUT

Task: To decompose this recorded vocal signal into "physically" meaningful components.

Jan. 28, 2013

IPAM/UCLA

SOME CRETERIA FOR DECOMPOSITION

• From Ingrid Daubechies (Dec. 2008)

- "natural" waveforms need not be of Fourier (or wavelet, or curvelet, ...) type
- nevertheless, it can still be useful to decompose signals into more elementary waveforms

IPAM, UCLA

- such a decomposition should be adaptive (of course)
- should produce meaningful components
- should also be robust to noise

"NATURAL" WAVEFORM

 $A(t) \cdot \cos\left[\int_{t_0}^t \omega(\tau) d\tau\right]$

Jan. 28, 2013

EMPIRICAL MODE DECOMP.

Norden E Huang

Jan. 28, 2013

EMPIRICAL MODE DECOMPOSITION

$$x(t) - m_{1} = h_{1},$$

$$h_{1} - m_{2} = h_{2},$$

$$\dots$$

$$h_{k-1} - m_{k} = h_{k}.$$

$$\Rightarrow h_{k} = c_{1}.$$

$$x(t) - c_1 = r_1$$
,
 $r_1 - c_2 = r_2$,

$$r_{n-1} - c_n = r_n .$$

$$\Rightarrow x(t) - \sum_{j=1}^{n} c_{j} = r_{n}$$

Jan. 28, 2013

V

$$x(t) - m_{1} = h_{1},$$

$$h_{1} - m_{2} = h_{2},$$

$$\dots$$

$$h_{k-1} - m_{k} = h_{k}.$$

$$\Rightarrow h_{k} = c_{1}.$$

IPAM, UCLA

$$x(t) - m_{1} = h_{1} ,$$

$$h_{1} - m_{2} = h_{2} ,$$

$$\dots$$

$$h_{k-1} - m_{k} = h_{k} .$$

$$\Rightarrow h_{k} = c_{1} .$$

IPAM, UCLA

Jan. 28, 2013

$$x(t) - m_{1} = h_{1} ,$$

$$h_{1} - m_{2} = h_{2} ,$$

....

$$h_{k-1} - m_{k} = h_{k} .$$

 $\Rightarrow h_k = c_1 .$

Black line Blue line $x(t) - m_1 = h_1$, $h_1 - m_2 = h_2$, $h_{k-1} - m_k = h_k$.

Jan. 28, 2013

$$x(t) - m_{1} = h_{1},$$

$$h_{1} - m_{2} = h_{2},$$

$$\dots$$

$$h_{k-1} - m_{k} = h_{k}.$$

$$\Rightarrow h_{k} = c_{1}.$$

IPAM, UCLA

$$x(t) - m_{1} = h_{1},$$

$$h_{1} - m_{2} = h_{2},$$

$$\dots$$

$$h_{k-1} - m_{k} = h_{k}.$$

$$\Rightarrow h_{k} = c_{1}.$$

IPAM, UCLA

$$x(t) - m_{1} = h_{1},$$

$$h_{1} - m_{2} = h_{2},$$

$$\dots$$

$$h_{k-1} - m_{k} = h_{k}.$$

$$\Rightarrow h_{k} = c_{1}.$$

$$x(t) - m_{1} = h_{1},$$

$$h_{1} - m_{2} = h_{2},$$

$$\dots$$

$$h_{k-1} - m_{k} = h_{k}.$$

$$\Rightarrow h_{k} = c_{1}.$$

IPAM, UCLA

 $x(t) - m_I = h_I ,$ $\boldsymbol{h}_1 - \boldsymbol{m}_2 = \boldsymbol{h}_2,$ h_k $\boldsymbol{h}_{k-1} - \boldsymbol{m}_k =$

 $h_k = c_1$.

Jan. 28, 2013

IPAM, UCLA

DECOMPOSITION OF BAT VOICE

TIME-FREQUENCY-AMPLITUDE DIAGRAM OF BAT VOICE

SOME CRETERIA FOR DECOMPOSITION

• From Ingrid Daubechies (Dec. 2008)

- "natural" waveforms need not be of Fourier (or wavelet, or curvelet, ...) type
- nevertheless, it can still be useful to decompose signals into more elementary waveforms
- such a decomposition should be adaptive (of course)
- should produce meaningful components
- should also be robust to noise

SOME CRETERIA FOR DECOMPOSITION

• From Ingrid Daubechies (Dec. 2008)

- "natural" waveforms need not be of Fourier (or wavelet, or curvelet, ...) type
- nevertheless, it can still be useful to decompose signals into more elementary waveforms

IPAM, UCLA

- such a decomposition should be adaptive (of course)
- should produce meaningful components
- should also be robust to noise

PHYSICAL MEANING

Imagined Story (physical hypothesis to be tested):

The brown bat first stretched tightly its vocal cord, and then let it relax. After some time, an extra "finger" touched the cord, like a violinist plays his/her music, and a second tone came. The vocal cord continued to relax and both tones shifted to lower frequency.

Jan. 28, 2013

SOME CRETERIA FOR DECOMPOSITION

• From Ingrid Daubechies (Dec. 2008)

- "natural" waveforms need not be of Fourier (or wavelet, or curvelet, ...) type
- nevertheless, it can still be useful to decompose signals into more elementary waveforms
- such a decomposition should be adaptive (of course)
- should produce meaningful components
- should also be robust to noise

SCALE MIXING PROBLEM

Jan. 28, 2013

SCALE MIXING PROBLEM

Jan. 28, 2013

IMPLICATION OF SCALE MIXING

Jan. 28, 2013

PHYSICAL UNIQUENESS

• The Physical Uniqueness (P-U)

the decompositions of a data set and of the same data set with added noise perturbation of small but not infinitesimal amplitude bear little quantitative and no qualitative change

- Does <u>P-U</u> Matter in Data Analysis?
 - <u>Yes</u>, since a data set from real world always contains random noise
- Does a method currently available satisfy <u>P-U</u>
 - Fourier Transform <u>does</u>
 - Wavelet decomposition does
 - EMD often does not, and is not stable and hard to interpret

AGAIN, WHAT IS DATA ?

• Definition

 A <u>collection</u> or <u>representation</u> of <u>facts</u>, concepts, or instructions in a manner suitable for communication, interpretation, analysis, or processing

<u>data = facts + distortion</u>

X(t) = S(t) + N(t)

- Observations
 - Observation I

 $X_{l}(t) = X(t) + N_{l}(t)$

- Observation II

DECOMPOSITION OF DIRAC DELTA DUNCTION

EMD is, in this case, an adaptive wavelet.

IPAM, UCLA

DECOMPOSITION OF NOISE

PERIODS OF WHITE NOISE COMPONENTS

• A Million Data Points

Мо	ode	1	2	3	4	5	6	7	8	9
	# peaks	347042	168176	83456	41632	20877	10471	5290	2658	1348
Noise	period	2.881	5.946	11.98	24.02	47.90	95.50	189.0	376.2	741.8

Period Doubling !!!!!

FOURIER SPECTRA OF IMFs

Jan. 28, 2013

DISTRIBUTIONS OF IMFs

Normal Distribution

USE NOISE TO ASSISTS DECOMPOSITION

- Two qualities
 - The true signals in data should not be affected by the observations
 - White noise, as a dyadic filter bank in EMD, should provide some control of the width of spectral window of real data decomposition, consequently robust decomposition
- One wishful thinking

(NADA) ?

<u>adding noise</u> to the targeted data during data analysis could be helpful — <u>Noise-Assisted Data Analysis</u>

SCALE MIXING PROBLEM

Jan. 28, 2013

NADA — PRELIMINARY TEST (I)

NADA — PRELIMINARY TEST (II)

NOISE-ASSISTED DATA ANALYSIS

• Ensemble EMD

- STEP 1: add a noise series to the targeted data
- STEP 2: decompose the data with added noise into IMFs
- STEP 3: <u>repeat STEP 1 and STEP 2 again and again</u>, but with different noise series each time
- STEP 4: obtain the (ensemble) means of corresponding IMFs of the decompositions as the final result

• Effects

- In the mean IMFs, the added noise canceled with each other
- The mean IMFs stays within the natural filter period windows (significantly reducing the chance of scale mixing and preserving dyadic property)

Jan. 28, 2013

EEMD — NADA (I)

EEMD — NADA (II)

DEMONSTRATION OF STABILITY

Jan. 28, 2013

VOICE: WPD

VOICE: EMD

			EMD					
		IN THE PARTY AND A DAY OF A DA				S		
a am. a u								
	~v				₩ ₩₩₩ ₩ <u>₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩</u>	СЗ		
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	**************************************	anning an a g		•••••	C4		
		~~~~~~		····		C5		
						C6		
						C7		
				<u> </u>		C8		
						R		
	Γ	1	I	I	I			
ł	2000	4000 Tim	6000 e: Second / 220	8000 050	10000	120		

IPAM, UCLA

VOICE: EEMD

Ensemble EMD: 100 Trials

IPAM, UCLA

VOICES

IPAM, UCLA

EXTENSION TO 2D

- Find extrema in 2D
- Replace 1D envelopes with 2D membranes

Jan. 28, 2013

DIFFICULTIES IN DIRECT EXTENSION

- 2D: extrema to membranes
 - Is a saddle point a maximum or minimum?
 - Should the ridge (trough) be considered a line of maximum (minimum)
 - Scale mixing problem
 - Scale unconvertible in temporal-spatial data

• 3D: ...

No known surface fitting

Jan. 28, 2013

DIRECT 2D EEMD

• 2D EEMD

- Add noise to 2D data, and decompose noise added 2D data
- Repeat the processes many times
- Taking ensemble mean
- Problems
 - Computationally demanding
 - Extrema definition difficulty remains
 - Extension to multi-dimensional EMD unimaginable

MULTI-DIMENSIONAL EMD/EEMD TEMPORAL-SPATIAL 2D

MULTI-DIMENSIONAL EMD/EEMD TEMPORAL-SPATIAL 2D

MULTI-DIMENSIONAL EMD/EEMD TEMPORAL-SPATIAL 2D

Jan. 28, 2013

EVOLUTION OF ENSO

TRIGGER OF ENSO

First Interannual Component (2-3yr)

FEB2001

160W

160E

30N

15N

15S

EQ-

305 + 120E

Order of grid points along the path

5

SPATIAL 2D EMD

IPAM, UCLA

SCHEMATIC OF DECOMPOSITION

SCHEMATIC OF DECOMPOSITION

DECOMPOSITION EXAMPLE

Jan. 28, 2013

MINIMUM SCALE STRATEGY

Among all the components resulted from applying of EEMD in two orthogonal directions, the components that have approximately the same minimal scales are combined to one component

MINIMUM SCALE STRATEGY

Jan. 28, 2013

THE FINAL COMPONENTS

OCEAN COLOR PICTURE

Jan. 28, 2013

EXTENSION TO MULTI-DIMENSIONAL EEMD

COMPUTATIONAL SPEED: O(NlogN), N the total data points

Mar. 6, 2012

PHYSICAL CONSTRAINTS

- 1. Later evolution can not change the past
- 2. What matter to a dynamic system's future evolution are its initial condition boundary condition, and external forcing

TEMPORAL LOCALITY

Suppose that the data *BC* contains physically meaningful oscillation (signal) and an analysis method extracts that oscillation. If the data is extended to *AD* and the same method is applied to *AD*, the physically meaningful oscillation within BC should not be changed.

When a scientific data analysis method is designed, "temporal locality" should be checked.

Jan. 28, 2013

CONCLUSION

Jan. 28, 2013