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Sparse representation of multiscale data

In many real world applications, we often deal with signals with
ever-changing frequency, chirp signals, speech, etc.

It is advantageous to use an adaptive sparse representation of these
signals that preserve the intrinsic physical properties.

This calls for the need to develop local and adaptive data analysis
methods for nonlinear and nonstationary data.

Currently, most data analysis methods use pre-determined bases
(e.g. Fourier, wavelets, or polynomial bases).

Inspired by the EMD method and compressed sensing, we introduce
a new data-driven time-frequency analysis method based on
nonlinear optimization.
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Instantaneous Frequency

The Analytic Signal method by Van der Pol (1946) and Gabor (1946) was
one of the commonly used methods in defining instantaneous frequency.

Given a signal x(t), they define y(t) = H(x)(t) (H is the Hilbert
transform) and an analytic signal z(t)

z(t) = x(t) + iy(t) = a(t)e iφ(t),

where a(t) =
√

x2(t) + y2(t) and φ(t) = tan−1 y(t)
x(t) .

Instantaneous Frequency is defined as ω(t) = d
dtφ(t).

This definition could be problemic if we do not remove the local
median from the signal. Let x1(t) = c0 + x(t). Then we have

φ1(t) = tan−1
H(c0 + x(t))

c0 + x(t)
= tan−1

H(x(t))

c0 + x(t)
6= tan−1

H(x(t))

x(t)
= φ(t).
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Empirical Mode Decomposition–continued

In EMD, one first subtracts the local median (or detrending) c1(t)
from the signal x(t) so that the residual x(t)− c1(t) has zero mean
and oscillates around zero.

Then, the instantaneous frequency is defined through the Analytic
Signal method using the Hilbert Transform:

z1(t) = c1(t) + iH(c1)(t) = a1(t)exp(iθ1(t)).

This gives
c1(t) = a1(t) cos(θ1(t)),

and the instantaneous frequency is defined as ω = dθ1(t)
dt .
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Instantaneous Fourier Modes (IFMs), joint with Dr. Z. Shi

Define an Instantaneous Fourier Mode (IFM) as cos(θ(t) with θ
chosen adaptively to the signal so that we obtain a sparsest
representation of the signal:

f (t) = a0(t) + a1(t) cos(θ1(t)),

where a0 is the local median of f (t) and a1(t) the amplitude of the
envelope, which are assumed to be smoother than cos(θ1(t)).

The Instantaneous Frequency is defined as ω(t) = d
dt θ1(t).

We can expand a0(t) to generate a sparse decomposition of f (t):

f (t) =
M∑
k=1

ak(t) cos(θk(t)) + rM(t),

with the smallest possible M among all possible IFMs
{cos(θk(t))}, where rM(t) is the residual which is either monotone
or has at most one extremum.
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Building the largest dictionary for IFMs

Definition

(Instantaneous Fourier Mode) g(t), t ∈ [a, b] is a Instantaneous Fourier
Mode (IFM for short), if there is a function θ(t) such that
g(t) = cos θ(t), where θ(t) satisfies the following conditions:

1. θ(t) is continuous;

2. θ(t) is monotonously increasing;

3. θ(t) is piecewise differentiable.

The instantaneous frequency is defined as

ω(t) =
d

dt
θ(t), θ(t) = arccos(g(t)). (1)

The concept of IFM generalizes the traditional concept of frequency
in a substantial way.
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General Framework

Now, the problem we need to solve is

Minimize M (2)

Subject to
M∑
k=1

ak(t) cos(θk(t)) = f (t)

cos(θk(t)) are IFMs,

ak(t) is smoother than cos θk .

This is a very difficult optimization problem. Notice that the smoother a
signal is, the fewer IMFs it would contain. Based on this observation, we
propose two nonlinear optimization methods to decompose the signal
sequentially. The first method is based on nonlinear Basis Pursuit
(L1-minimization), and the second on nonlinear Matching Pursuit
(Greedy Algorithms).
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Nonlinear Basis Pursuit using 3rd order Total Variation

To measure the smoothness of the envelope function and the median, we
use the 3rd order total variation norm and solve the following nonlinear
optimization problem to obtain a sparsest decomposition of a given signal
f ,

(P) minimize TV 3(a0(t)) + TV 3(a1(t)), (3)

subject to: a0(t) + a1(t)φ(t) = f (t)

φ(t) = cos(θ(t)) is an IFM.

where the 3rd order total variation is defined as follows:

TV 3(g) =

∫ b

a

|g (4)(t)|dt (4)

where g (4)(t) is the 4th derivative. TV 3-based optimization tends to
favor cubic splines, which give properties similar to those of EMD.
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Optimization-Projection Iteration

φ0 = Φ[f ], φ0 = cos θ0, ψ0 = sin θ0.

Step 1: Get an0 , an1 , bn
1 by solving following linear optimization problem:

minimize TV 3(an0) + TV 3(an1) + λn−1TV (bn
1),

Subject to : an0 + an1φ
n−1(t) + bn

1ψ
n−1(t) = f (t).

Step 2: Update the IFM:

θn = θn−1 − arctan

(
bn
1

an1

)
, φn = cos θn, ψn = sin θn.

Step 3: If φn is not an IFM

φn = Φ[f − an0].

Step 4: If ‖b1‖2 < ε, stop. Otherwise, go to Step 1.
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Numerical Results

Example 1:

a0 = sin 2πt + 0.5 cos 4πt + 0.2 + cos 6πt, (5)

a1 = 2 + cos(2πt) + 0.5 cos(4πt) + 0.3 sin(6πt), (6)

θ = 5 sin(2πt) + 0.4 cos(4πt) + 20π(t + 0.5)2 + 2, (7)

f = a0 + a1 cos θ (8)
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Numerical Results
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Figure: Original data and local median, Example 1.
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Numerical Results
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Figure: Instantaneous frequency, Example 1.
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Numerical Results

Example 2:

a0 =
1

1.1 + cos 2πt
, (9)

a1 = 2 + cos(2πt) + 0.5 cos(4πt) + 0.3 sin(6πt), (10)

θ1 = sin(2πt) + 0.4 cos(4πt) + 30πt + 2, (11)

θ2 = sin(2πt) + 0.4 cos(4πt) + 60πt + 2, (12)

f = a0 + a1 cos θ1 + a1 cos θ2 (13)
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Numerical Results
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Figure: Original data and local median, Example 2.
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Numerical Results
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Length of the day
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Figure: Length of the day.
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Length of the day
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Figure: The IMFs decomposed by our method.
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Length of the day

The oscillations in different IMFs are dominated by the tides of both
lunar and solar origin.
C1: semi-monthly tides;
C2: monthly tides;
C3: semi-annual cycle;
C4: annual cycle.
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Global Surface Temperature
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Figure: Annual global surface temperature from 1880 to 2009.
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Global Surface Temperature
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Global Surface Temperature
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Figure: Adaptive and linear trends. Black: original data; Blue: multidecadal
trend; Red: overall adaptive trend; Green: linear trend.
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Exact Recovery of Nonlinear Sparse Data

If we assume that a0, a1 and θ are sparse under the Fourier or Wavelet
basis, then we can design a nonlinear l1 minimization of the coefficients
of a0, a1 and θ. This gives rise to the following nonlinear l1 optimization
algorithm:

(Pw
n ) minimize |ωa0 ân+1

0 |1 + |ωa1 ân+1
1 |1 + |ωθ δ̂θ

n+1
|1, (14)

Subject to: an+1
0 + an+1

1 cos θn − an1δ
n+1
θ sin θn = f .
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Exact Recovery of Nonlinear Sparse Data

Theorem

Let T = supp
(

â0, â1, θ̂ − θ̂n
)

. µi = max
j∈T , j 6=i

µij , where µij =
|<An

i ,A
n
j >|

‖An
i ‖2‖A

n
j ‖2

.

µ0 = max
i∈T

µi , and the weight is choosing according to ωi = max
{µi

λ
, 1
}

,

λ is a constant. If the support T satisfies that

K0 = |T | ≤ 1

2 max {µ0, λ}
(15)

then

‖en+1‖1 ≤ C‖en‖21 (16)

where en = (a0 − an0 , a1 − an1 , θ − θn) and C is a constant.
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Numerical Results

a0 = sin 2πt + 0.5 cos 4πt + 0.2 + cos 6πt, (17)

a1 = 2 + cos(2πt) + 0.5 cos(4πt) + 0.3 sin(6πt), (18)

θ = sin(2πt) + 0.4 cos(4πt) + 20πt + 2, (19)

f = a0 + a1 cos θ (20)
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Numerical Results

Figure: error of a0, a1 and θ.
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Optimization based on nonlinear Matching Pursuit

Let V (θ, λ) (λ ≤ 1/2) be an overcomplete Fourier basis given below:

V (θ, λ) = span

{
1,

(
cos

(
kθ

2Lθ

))
1≤k≤2λLθ

,

(
sin

(
kθ

2Lθ

))
1≤k≤2λLθ

}
,

where Lθ = b θ(1)−θ(0)2π c. We start with r0 = f and an initial guess for θ0.

Step 1: Solve the following l1-regularized nonlinear least-square problem:

P2 : (ak , θk) ∈ Argmin γ‖â‖l1 + ‖rk−1 − a cos θ‖2l2a,θ

Subject to: a ∈ V (θ, λ), θ′ ≥ 0, ∀t ∈ R,

where γ > 0 is a parameter and â is the representation of a in the
overcomplete Fourier basis.
Step 2: Update the residual rk = f −

∑k
j=1 aj cos θj .

Step 3: If ‖rk‖l2 < ε0, stop. Otherwise, set k = k + 1 and go to Step 1.
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An l1 regularized nonlinear least-sqaure solver

Step 1: Solve for (an+1
k , bn+1

k ) from the following l1 regularized
least-square problem:

Min(a,b) γ(‖â‖l1 + ‖b̂‖l1) + ‖rk−1 − a cos θnk − b sin θnk‖2l2
Subject to: a ∈ V (θnk , λ), b ∈ V (θnk , λ),

where â, b̂ are the representations of a, b in the V (θnk , λ) space.
Step 2: Update θnk :

∆θ′ = PV (θn; η)

(
d

dt

(
arctan

(
bn+1
k

an+1
k

)))
, θn+1

k = θnk − β∆θ,

where β ∈ [0, 1] is chosen to make sure that θn+1
k is monotonically

increasing, PV (θnk ; η)
is the projection operator to the space V (θnk ; η).

Step 3: If ‖θn+1
k − θnk‖2 > ε0, set n = n + 1 and go to Step 1.

Otherwise, go to Step 4.
Step 4: If η ≥ λ, stop. Otherwise, set η = η + ∆η and go to Step 1.
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A fast algorithm based on FFT for periodic data

For periodic data, we can use a standard Fourier basis to construct the
V (θ, λ) space instead of the overcomplete Fourier basis:

Vp(θ, λ) = span

{
1,

(
cos

(
kθ

Lθ

))
1≤k≤λLθ

,

(
sin

(
kθ

Lθ

))
1≤k≤λLθ

}
.

Since the standard Fourier basis is an orthogonal basis, the l1 regularized
term is not necessary in our nonlinear optimization.

min
a,b

‖rk − a cos θnk − b sin θnk‖2l2 .

Subject to a, b ∈ Vp(θnk , λ).
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Gauss-Newton type iteration

θ0k = θ0, r0 = f .

Step 1: Solve the following linear least-square problem:

Minimize ‖rk−1 − an+1
k (t) cos θnk(t)− bn+1

k (t) sin θnk(t)‖22
Subject to an+1

k (t), bn+1
k (t) ∈ V (θnk).

Step 2: Update θnk ,

θn+1
k = θnk − λ arctan

(
bn+1
k

an+1
k

)
, (21)

where λ ∈ [0, 1] is chosen to make sure that θn+1
k is a monotonely

increasing function.

λ = max

{
α ∈ [0, 1] :

d

dt

(
θnk − α arctan

(
bn+1
k

an+1
k

))
≥ 0

}
. (22)

Step 3: If ‖θn+1
k − θnk‖2 < ε0, stop. Otherwise, go to Step 1.
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Fast algorithm for periodic data

The least square problem can be solved approximately by FFT in θ space
by using the fact that cos θ and sin θ are single Fourier basis in θ space:

Step 1: Interpolate rk−1 from {ti}Ni=1 in the physical space to a uniform
mesh in the θnk -coordinate to get rθnk and compute the Fourier
transform r̂θnk :

rθnk , j = Interpolate
(
rk−1, θ

n
k, j

)
, (23)

where θnk, j , j = 0, · · · ,N − 1 are uniformly distributed in the
θnk -coordinate,i.e. θnk, j = 2πLθnk j/N. And the Fourier transform of
rθnk is given as follows

r̂θnk (ω) =
1

N

N∑
j=1

rθnk , je
−i2πωθnk, j , ω = −N/2 + 1, · · · ,N/2, (24)

where θ
n

k, j =
θnk, j−θ

n
k, 0

2πLθn
k

.
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Fast algorithm for periodic data

Step 2: Apply a cutoff function to the Fourier Transform of rθnk to compute a
and b on the mesh of the θnk -coordinate, denoted by aθnk and bθnk :

aθnk = F−1
[(

r̂θnk
(
ω + Lθnk

)
+ r̂θnk

(
ω − Lθnk

))
· χλ

(
ω/Lθnk

)]
,

bθnk = F−1
[
i ·
(
r̂θnk
(
ω + Lθnk

)
− r̂θnk

(
ω − Lθnk

))
· χλ

(
ω/Lθnk

)]
.

F−1 is the inverse Fourier transform defined in the θnk coordinate:

F−1
(
r̂θnk
)

=
1

N

N/2∑
ω=−N/2+1

r̂θnk e i2πωθ
n
k, j , j = 0, · · · ,N − 1.

Step 3: Interpolate aθnk and bθnk from the uniform mesh {θnk, j}Nj=1 in the

θnk -coordinate back to the physical grid points {ti}Ni=1:

a(ti ) = Interpolate
(
aθnk , ti

)
, i = 0, · · · ,N − 1,

b(ti ) = Interpolate
(
bθnk , ti

)
, i = 0, · · · ,N − 1, .
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Fast algorithm for periodic data

Step 4: Update θn in the t-coordinate:

∆θ′ = PV (θ; η)

(
d

dt

(
arctan

(
bn+1
k

an+1
k

)))
, ∆θ(t) =

∫ t

0

∆θ′(s)ds,

θn+1
k = θnk − β∆θ,

where β ∈ [0, 1] is chosen to make sure that θn+1
k is monotonically

increasing:

β = max

{
α ∈ [0, 1] :

d

dt
(θnk − α∆θ) ≥ 0

}
.

and PVp(θ; η) is the projection operator to the space Vp(θ; η).

Step 5: If ‖θn+1
k − θnk‖2 < ε0, go to step 6. Otherwise, set n = n + 1 and go

to Step 1.

Step 6: If η ≥ λ, stop. Otherwise, set η = η + ∆η and go to step 1.
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Numerical example: periodic data

Signal I:

f (t) = cos(60πt + 15 sin(2πt)) (25)

where X (t) is a white noise with zero mean and variance σ2 = 1.
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Figure: Original data without noise and its instantaneous frequency.
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Numerical example: periodic data
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Figure: Noised signal f (t) + 3X (t) and its instantaneous frequency, ,
corresponding SNR is −12.55 dB. The Signal-Noise Ratio (SNR, measured in
dB) is defined by SNR[dB] = 10 log10

(varf
σ2

)
.
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Numerical example: periodic data
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Figure: The IMFs extracted by our method and EMD method for f (t) without
noise, where f (t) is signal I.
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Numerical example: periodic data
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Figure: The IMFs extracted by our method and EEMD method for
f (t) + 3X (t), where f (t) is signal I.

T. Y. Hou, Applied Mathematics, Caltech Adaptive Data Analysis



Numerical example: periodic data

f (t) =
1

1.5 + cos(2πt)
cos(60πt + 15 sin(2πt))

+
1

1.5 + sin(2πt)
cos(160πt + sin(16πt)) (26)
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Figure: Upper row: left: signal defined in (26) without noise; right:
Instantaneous frequencies; red: exact frequencies; blue: numerical results.
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Numerical example: periodic data
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Figure: Upper row: left: signal defined in (26) with Gaussian noise X (t); right:
Instantaneous frequencies; red: exact frequencies; blue: numerical results.
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Numerical example: non-periodic data

Signal II:

θ1 = 20π(t + 1)2 + 1, θ2 = 161.4πt + 4(1− t)2 sin(16πt),

f (t) =
1

1.5 + sin(1.5πt)
+ (2t + 1) cos θ1 + (2− t)2 cos θ2. (27)
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Figure: IMF (left) and Instantaneous frequency (right) of the signal obtained
from different methods. Red: exact; Blue: l1 regularized least square; Black:
Fourier transform with mirror reflection.
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Length of the day

The method based on FFT is very effective in computation, so we can
handle data with large size, for example the length of the day data, from
20 January 1962 to 6 January 2001, for a total of 14,232 days.
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Figure: The length of the day data.
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Length of the day
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Figure: The IMFs decomposed by our method based on FFT.
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Convergence analysis

Theorem

For the data f = f0 + f1 cos θ, assume that the instantaneous frequency
θ′ is M0-sparse over the Fourier basis in physical space,
θ′ ∈ VM0 = span

{
e i2kπt/T , k = −M0, · · · , 1, · · · ,M0

}
,

mean f0 and envelop f1 are M1-sparse over the Fourier basis in θ-space,

f̂0,θ(k) = f̂1,θ(k) = 0, ∀|k | > M1.

If the initial guess of θ satisfies

‖F
((
θ0 − θ

)′) ‖1 ≤ πM0/2, (28)

then there exist η0 > 0 such that

‖F
((
θm+1 − θ

)′) ‖1 ≤ 1

2

∥∥F ((θm − θ)′
)∥∥

1
, (29)

provided L ≥ η0, where η0 is a constant determined by M0, M1, where

L = θ(T )−θ(0)
2π .
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Numerical Validation

θ = 20πt + 2 cos 2πt + 2 sin 4πt, θ = θ/10

a0 = 2 + cos θ + 2 sin 2θ + cos 3θ, a1 = 3 + cos θ + sin 3θ

f = a0 + a1 cos θ.
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Figure: Original data and errors of IMF and phase function.
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Data with sparse samples
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Figure: Left: original samples, red: exact; blue: recovered; ’*’ represent the
sample points. Right: instantaneous frequency, red: exact; blue: numerical.

In this example, the number of samples is 64, the number of periods is
60. There is approximately one sample point in one period of the signal.
The location ti is chosen randomly in [0, 1].
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Data with sparse samples

Theorem

If the samples points are selected at random, under the same assumption
in Theorem 3, we have there exist η0 > 0, η1 > 0, such that with
overwhelming probability

‖F
((
θm+1 − θ

)′) ‖1 ≤ 1

2

∥∥F ((θm − θ)′
)∥∥

1
, (30)

provided L ≥ η0 and Ns ≥ η1 max(θ)′ (log Nb)6, Ns is the number of
samples, Nb is the number of basis.
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Data with poor scale-separation

Suppose, we have a set of data f which has following sparse
decomposition over dictionary D:

f (t) =
M∑
k=1

ak cos θk , ak cos θk ∈ D, (31)

where D is defined as following

D = {a(t) cos θ(t) : θ′(t) ≥ 0, a(t) ∈ V (θ)} , (32)

But now the instantaneous frequencies θ′k(t) are not well separated, so
f (t) does not satisfy the scale-separation condition.

It is known that for the data consist of components with close
frequencies, matching pursuit with Gabor dictionary may not get the
sparse decomposition. Our method is based on the matching pursuit, so
it may not get the right sparsest decomposition neither.
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Data with poor scale-separation

f (t) = cos(20πt + 40πt2 + sin(2πt)) + cos(40πt) (33)
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Data with poor scale-separation
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Figure: Left: Instantaneous frequencies; red: exact frequencies; blue: numerical
results. Middle and Right: IMFs extracted by previous method .
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Data with poor scale-separation

For this kind of signals, we have to decompose these components
simultaneously, since they have strong correlation. Following this idea,
the signal should be decomposed by solving following optimization
problem:

min ‖f (t)−
K∑

k=1

ak cos θk‖2, s.t. ak cos θk ∈ D. (34)

Here, we assume that K is known.

This problem is much more difficult to solve than the original one, since
the different components may have strong correlation.

Based on the idea of l1 regularized least square, we have developed a
method to solve above optimization problem.

Here we give an example to demonstrate that this new method has
capability to deal with the signal without scale separation.
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Data with poor scale-separation
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Figure: Left: Instantaneous frequencies; Middle and right: IMFs extracted by
extracting two IMFs together. red: exact results; blue: numerical results.
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Data with Intra-wave frequency modulation

In the previous approach, we want to decompose the signal to the form

f (t) =
M∑
k=1

ak(t) cos θk(t). (35)

For some applications, decompositions of above form are too restrictive.
For example, the decomposition of following ECG data is not sparse at all.

Figure: Typical ECG data
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Data with Intra-wave frequency modulation

Inspired by the work of Prof. Daubechies and Wu, we decompose the
signal to the following form

f (t) =
M∑
k=1

ak(t)sk (θk(t)) . (36)

where sk(·) is any 2π-period function, which is called the shape function
or the oscillatory pattern. Based on the method looking for the

instantaneous frequency, we have developed an algorithm to find the
shape function sk and decompose the signal.
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Data with intra-wave frequency modulation: Duffing
equation
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Figure: Left: The solution of the Duffing equation; Right: The shape function
obtain by our method.
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Nonlinearity Analysis

Once the shape function has been obtained, we can conduct nonlinearity
analysis to identify its nonlinearity.

The basic idea is that for each shape function (or IMF), assume that
there exists an ODE such that the shape function (or IMF) is the solution
of this ODE with proper initial conditions. More repcisely, we assume
that this ODE is of second order and has following form:

ẍ + a(x , t)ẋ + b(x , t) = 0 (37)

and a(x , t), b(x , t) are slowly varying with respect to t.

a(x , t) and b(x , t) can be recovered by solving an optimization problem
under the assumption that they are sparse over some basis.
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Nonlinearity Analysis

The Duffing equation is a nonlinear ODE which has the following form:

ü + u + u3 = 0 (38)

u(0) = 1, u̇(0) = 0.
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Figure: Top: the solution of the Duffing equation; Middle: Coefficients of
polynomials; Bottom: Degrees of nonlinearity.
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Nonlinearity Analysis

Consider a ODE with varying coefficients,

ü + a(t)(u2 − 1)u̇ + (1− a(t))u3 + u = 0 (39)

where a(t) = 1
2

(
1− t−100√

(t−100)2+400

)
. The initial condition is that

u̇(0) = 0, u(0) = 1 and the equation is solved over t ∈ [0, 200].
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Concluding Remarks

We introduce a sparse time-frequency analysis method to study
Trend and Instantaneous Frequency of multiscale signals.

By combining ideas from EMD and compressed sensing, we develop
effective nonlinear optimization methods which give a sparsest
representation of multiscale signals, which preserves some intrinsic
physical properties of the original signal.

This method gives a rigorous definition of Instantatneous Frequency
and can be considered as a nonlinear version to Compressed Sensing
and a mathematical foundation for the EMD method.

Convergence analysis has been performed under some scale
separation assumption on the mutiscale data.

Applications to biomedical problems, climate data, and geophysical
problems are under investigation.
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