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Filtering/Data Assimilation
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2. Analysis (Correction)

um+1 = f̃ (um) + ǫm+1, ǫm ∼ N (0,Q),

ṽm = g(um) + ǫ̃m, ǫ̃m ∼ N (0,R)



Filtering/Data Assimilation

Practically, filtering proceeds as follows:
◮ Prediction step: Given posterior statistical estimates

ū+m−1 ≡ E(Um−1),C
+
m−1 ≡ Cov(Um−1), compute prior

statistical estimates ū−m,C
−
m with

u−m = f̃ (u+m−1) + ǫm, ǫm ∼ N (0,Q).

Probabilistically, this can be generalize to

p(um−1|ṽm−1)
f̃−→ p(um|ṽm−1) ≡ p(um).
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ū+m−1 ≡ E(Um−1),C
+
m−1 ≡ Cov(Um−1), compute prior

statistical estimates ū−m,C
−
m with

u−m = f̃ (u+m−1) + ǫm, ǫm ∼ N (0,Q).

Probabilistically, this can be generalize to

p(um−1|ṽm−1)
f̃−→ p(um|ṽm−1) ≡ p(um).

◮ Correction Step: Given discrete-time data ṽm, apply Bayes’
theorem to obtain a posterior statistical estimates ū+m,C

+
m of

p(um|ṽm) ∝ p(um)p(ṽm|um)

∝ exp(−1

2
‖um − ū−m‖2C−1

m
− 1

2
‖ṽm − g(um)‖2R−1),

where

ṽm = g(um) + ǫ̃m, ǫ̃m ∼ N (0,R).
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◮ Observations from nature are often noisy, measured at
irregularly spaced and sparse locations, e.g., radiosondes in
the ocean. On the other hand, the typical predictor model is
resolved on regularly spaced grid points.

◮ The typical approach for filtering such a data set is based on
observation model,

ṽm = g(~um) + ǫ̃m, ǫ̃m ∼ N (0, ro),

where g is an observation operator that includes a change of
variables as well as interpolation. Here, g maps the model
state ~u to irregularly located observations ṽ .

◮ This approach assumes that ṽ are raw data.

◮ We often use the same approach to assimilate processed data,
ignoring the uncertainties associated with the processing
scheme.
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Motivation

◮ Processing data is often unavoidable since raw data can be
very noisy and uninformative. The processing scheme varies
from simple interpolations to inversion of complicated
nonlinear differential equations. e.g. cloud clearing algorithm
in satellite data [Chahine 1973].

◮ The goal of this talk is to understand the effect of filtering
processed data (from various interpolation schemes) in the
presence of model errors.

◮ First, we will assess various standard deterministic
interpolation schemes on a simple 1D test model to mimic
turbulence. Second, we will discuss a statistical interpolator
scheme, applied on a stiff 2D QG model.
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Hierarchical Bayesian framework

Consider vm to be the interpolated observations at the regular
model grid points. Filtering interpolated (processed) data can be
interpreted as follows:

p(um|vm, ṽm) ∝ p(um)p(ṽm|vm, um)p(vm|um)
∝ p(um)p(vm|um, ṽm)

In the presence of model errors, we filter with a surrogate prior
model:

p(um) ≈ p̃(um|θ)

There are various approaches for choosing surrogate prior. For this
talk, we will consider a simple, “Mean Stochastic Model”, whose
designed is based on various turbulent closure approximations.
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We consider a linear SPDE

∂u

∂t
=
∂u

∂x
+ f (x , t)− Γu + σ(x)Ẇ (t).

where, the damping and adding terms are added to mimic rapid
energy transfer due to nonlinearity [Majda & H 2012].
We consider Γ to alternate between damping and anti-damping to
simulate intermittent instability. Numerically, we model the
eigensolution of Γ for the first 20 resolved modes with a two-state
Markov jump process from the following sample spaces:

modes(k) stable unstable

1-10 γw = 1.3 γs = 1.6
11-20 γ+ = 2.27 γ− = −0.04
21-220 γ̄ = 1.5 γ̄ = 1.5

The noise amplitude, σ, is chosen such that the system has a
statistical steady state for f = 0.
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Mean Stochastic Model: A
simple prior model for filtering
with model errors is to use
average damping γ̄ that can be
extracted from the equilibrium
statistics. That is,

duk

dt
= (−γ̄k + iω)uk + fk + σk Ẇk

Such a poor man’s model is
motivated by the turbulent
closure approach [Del Sole 2004,
Majda & Timofeyev 2004].



Effect of interpolation on the energy spectrum

Interpolated spectrum from irregularly spaced observations with
noise variance ro = 2× 10−5 < M−3 to the model resolved grid
points.
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Effect of interpolation on error covariance matrix

◮ The interpolation operator considered here is linear, so the
interpolated noises are Gaussian. This may not be true in
general.

◮ if one interpolates observations with i.i.d. noises, then the
interpolated error covariance matrix is not diagonal.

◮ For piecewise linear interpolated noises, we have:

Proposition. Let {σj = σ(xj)}2Mj=0 be i.i.d. noises with
variance ro at regularly spaced grid points. Let us perturb a
single observation site x̃j by δ, i.e., x̃j = xj + δ. Then the ratio
between the largest off-diagonal term and the smallest
diagonal term is,

Λ ≡
maxk 6=k′ |Ro

k,k′ |
mink |Ro

k,k |
≤ 2(δ2 + 2δh)

(2M + 1)(δ + h)2 − 2(δ2 + 2δh)
.
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For general linear
interpolation schemes, we
can compute Λ explicitly
but the computation is
rather involved.
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and second moments of the random variable for the processed
data, Vk,m, given raw data ṽm.
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For the second step in the hierachical Bayesian framework, we
consider the approximate diagonal filter

duk = (−γ̄k + iω)uk dt + fk dt + σk dWk , |k | ≤ M,

vk,m = uk(tm) + σok,m, σok,m ∼ N (0,C o)

where vk,m = E(Vk,m|ṽm) and C o = Cov(Vk,m|ṽm) are the first
and second moments of the random variable for the processed
data, Vk,m, given raw data ṽm.

◮ If Λ is small, we can ignore the cross-covariance terms in C o

and consider diagonal FDKF.

◮ Alternatively, one can consider observation model,

ṽm = g(uk(tm)) + ε̃m ε̃m ∈ N (0, ro),

and perform the coupled filtering problem in Fourier domain
with an appropriate g .



Effect of interpolation on the filtered solutions

Table: Weakly irregularly spaced observations: Average RMS errors and
spatial correlation for numerical experiments with sparse 2M + 1 = 21
observations and observation noise error 0.4583 with variance spectrum
r̂o = 0.01 > E5 = 5−3.

Schemes RMS error PCorr Λ

1. FDKF with piecewise linear interp 0.3835 0.91 0.16
2. FDKF with nearest nbd 0.4417 0.89
3. FDKF with cubic spline 0.4184 0.88 0.64

4. Physical space KF with linear interp 0.5136 0.87
5. Coupled FDKF with linear interp 0.4843 0.88
6. Decoupled FDKF with linear interp 0.5089 0.87
7. Coupled FDKF with trig interp 0.4618 0.89 1.08
8. Decoupled FDKF with trig interp 0.5010 0.85 1.08



Table: Extremely irregularly spaced and sparse observations: Average
RMS errors and spatial correlation for numerical experiments with sparse
2M + 1 = 21 observations and observation noise error r̂o = 0.01.

Schemes RMS error SCorr Λ

1. FDKF with piecewise linear interp 0.6774 0.83 1.55
2. FDKF with nearest nbd 1.4507 0.61
3. FDKF with cubic spline 1.0161 0.47 72.58

4. Physical space KF with linear interp 1.5488 0.57
5. Coupled FDKF with linear interp 0.9160 0.78
6. Decoupled FDKF with linear interp 3507.9 0
7. Coupled FDKF with trig interp 0.9198 0.77 O(105)
8. Decoupled FDKF with trig interp 1.7558 0 O(105)



Effect of interpolation on filtered solutions: extremely

irregularly spaced observations
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Summary from the 1D test model

◮ Processing data with interpolation will induce small scale
oscillatory artifact with higher order interpolation schemes.

◮ We find that the FDKF with linear interpolation is more
accurate than the higher order interpolation schemes or even
the standard physical space Kalman filter. This result is quite
surprising, considering that the approximate filter ignores the
non-diagonal terms in the processed error covariance matrix.

◮ How robust is the linear interpolation in 2D?

◮ Next, we’ll consider a popular spatial statistical interpolator,
kriging, on a more realistic problem in 2D setup.



Two Layer Quasi-Geostrophic Model

The dynamical equations for the perturbed variables about uniform
shear with stream function Ψ1 = −Uy ,Ψ2 = Uy :

∂q1
∂t

+ J(ψ1, q1) + U
∂q1
∂x

+ (β + k2dU)
∂ψ1

∂x
+ ν∇8q1 = 0

∂q2
∂t

+ J(ψ2, q2)− U
∂q2
∂x

+ (β − k2dU)
∂ψ2

∂x
+ ν∇8q2 + κ∇2ψ2 = 0

qj is the quasi-geostrophic potential vorticity given as

qj = ∇2ψj +
k2d
2
(ψ3−j − ψj), j = 1, 2,

with ~u = ∇⊥ψ, kd =
√
8/Ld [see Smith et al. 2002].

We’ll consider numerically stiff regime F = 1/Ld = 40 [Kleeman &

Majda 2005].



The two-layer QG model with baroclinic instability
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In this regime, we’ll have two competing
behavior (zonal jet mode vs Rossby
mode blocking).



The two-layer QG model with baroclinic instability

1 2 3 4 5 6

1

2

3

4

5

6
−1

−1

−1

−1

−0
.8

−0.8

−0.8

−0
.6

−0.6

−0.6

−0.4

−0
.4

−0.4

−0
.2

−0.2

−0.2

0

0

0

0

0.
2

0.2

0.2

0.
4

0.4

0.4

0.6

0.
6

0.6

0.
8

0.8

0.8

1

1

1

1

X

Y

Ocean Regime F=40 at Time = 100

1 2 3 4 5 6

1

2

3

4

5

6

−1

−1

−1

−1

−0.8

−0.8

−0.8

−0.8

−0.6

−0.6

−0.6

−0.6

−0.4

−0.4

−0.4

−0.4

−0.2

−0.2

−0.2

−0.2

0

0

0

0

0.2

0.2

0.2

0.2

0.4

0.4

0.4

0.4

0.6

0.6

0.6

0.6

0.8

0.8

0.8

0.8

1

1

1

1

X

Y

Ocean Regime F=40 at Time = 200

1 2 3 4 5 6

1

2

3

4

5

6

−
0.6

−0.4

−0
.4

−0.4

−0.4

−
0.4

−0.4 −0.4

−0.2

−0
.2−0.2

−0
.2

−0.2

−0.2

−0.2

−0.2

−0.2

0

00

0

0

0

0

0 0

0

0

0

0

0

0
0

0

0

0

0

0

0

0.2 0.2

0.2

0.2

0.2

0.2

0.
2

0.2

0.2
0.2

0.2

0.2

0.2

0.4

0.4
0.4

0.4

0.4

0.4

0.
4

0.4

0.4

0.
6

X

Y

Ocean Regime F=40 at Time = 100

1 2 3 4 5 6

1

2

3

4

5

6

−0.6 −0
.4

−0
.2

−0
.2

−0.2−0.2

−0.2

0

0

0

0

0

0 0

0 0

0

0

0

0
0.2

0.2

0.2

0.2

0.2

0.4

X

Y

Ocean Regime F=40 at Time = 200

Barotropic mode ψb =
ψ1+ψ2

2
(top),

baroclinic mode ψc =
ψ1−ψ2

2
(bottom)

Resolve on 128 × 128 grid points

In this regime, we’ll have two competing
behavior (zonal jet mode vs Rossby
mode blocking).

We’ll consider sparse observations of
only the barotropic streamfunction.
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and our task is to parameterize d , ω, σ.
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Recall that

∂qb
∂t

+ J(ψb, qb) + β
∂ψb

∂x
+ κ∇2ψb + ν∇8qb + s(ψc , qc ) = 0

where qb = ∇2ψb.
Define ψ(x , y , t) =

∑

k,ℓ ψ̂k,ℓ(t)e
i(kx+ℓy) such that each horizontal

mode has the following form

d ψ̂(t) = (−d + iω)ψ̂(t)dt + f̂ (t)dt + NL terms

Replace the nonlinear terms and all of the baroclinic components
by Ornstein-Uhlenbeck processes. That is,

d ψ̂(t) = (−d + iω)ψ̂(t)dt + f̂ (t)dt + σdW (t)

and our task is to parameterize d , ω, σ.
Offline Parameterization Strategy: Regression to empirical
statistics from a long time series (Mean Stochastic Models).
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Regularly Spaced Sparse Observations [H & Majda 2009]

RMS errors and energy spectrum recovery on regularly spaced 36
observations. Here, we also consider different nonlinear filter
SPEKF [Gershgorin, H & Majda 2010].
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The MSM is better than Ensemble Kalman Filter with perfect
model!



Regularly Spaced Sparse Obs.

Numerically less stiff with F = 4 (larger radius of deformation)!
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Ordinary Kriging [Cressie 1993]

◮ Kriging is a maximum likelihood estimator of a random field
modeled by a stationary Gaussian process,

Z (s) = µ(s) + δ(s), δ(s) ∼ N (0,C (s, s)).
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◮ The main idea is to fit observations

~Z = [Z (~x1), . . . ,Z (~xM)]T

to an empirically chosen isotropic parametric function
C (~x , ~y) = C (‖~x − ~y‖; θ). Computationally, it involves solving
low-dimensional nonlinear optimization problem, “on-the-fly”,
so, kriging is data-driven.

◮ Ordinary kriging assumes µ(s) is locally constant. The
estimator for Z at grid point ~x is given by E(Z (~x)|~Z ) with
uncertainties characterized by Cov(Z (~x),Z (~x ′)|~Z ).
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◮ Use the variogram, 2γ(~x − ~y) ≡ Var(Z (~x)− Z (~y)) to obtain

C (~x , ~y) = C (‖~x − ~y‖) = ro − γ(~x − ~y).
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the residual with estimator µ̂(~x) obtain via median polishing
(this estimator is a local average value over the same
rows/columns.).



Implementation

◮ Use the variogram, 2γ(~x − ~y) ≡ Var(Z (~x)− Z (~y)) to obtain

C (~x , ~y) = C (‖~x − ~y‖) = ro − γ(~x − ~y).

◮ Use the available observations to construct

2γ̂(r) =
1

|N(r)|
∑

i ,j∈N(r)

(

δ̂(~xi )− δ̂(~xj )
)2
,

where N(r) ≡ {i , j : ‖~xi − ~xj‖ ≤ r} and δ̂(~x) ≡ Z (~x)− µ̂(~x) is
the residual with estimator µ̂(~x) obtain via median polishing
(this estimator is a local average value over the same
rows/columns.).

◮ Fit γ̂ to an appropriate parametric function. We choose

γ̂∗(r) = σ2 exp(−ρr), r ≥ 0.



Covariance Estimators

Linear Interp Covariance
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Filtering Skill (averaged RMS errors from 50 random

choices of irregularly spaced observation networks)
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comparable when observations are
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The dynamical constraints through the
MSM become important when
observation noise is large.



Filtering skill at regularly spaced 6× 6 grid points
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Case M=36, r o = 6.9 = 10%E

Truth at T=230.072
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Case M=36, r o = 17.1 = 25%E

Truth at T=61
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Case M=36, r o = 17.1 = 25%E

Truth at T=363.28
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◮ We consider filtering sparse observations of a numerically stiff
two-layer QG model with baroclinic instability with a ”poor
man’s” linear stochastic prior model, MSM.
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Summary from the 2D test model

◮ We consider filtering sparse observations of a numerically stiff
two-layer QG model with baroclinic instability with a ”poor
man’s” linear stochastic prior model, MSM.

◮ For regularly spaced observations, MSM beats LLS-EAKF.
◮ For irregularly spaced observations, MSM filtering processed

data from kriging performs the best. However, the filtered
accuracy is rather poor compared to that with regularly
spaced observations.

◮ The filtering skill of MSM can be improved with denser
observation network. When observations are really sparse, the
filtering skill of MSM on the processed data from linear
interpolation and kriging are comparable.

◮ When observations are very noisy, the dynamical constraints
through the MSM become more important.

◮ Obviously, there are many issues that can be improved in the
future: Gaussianity, kriging type, resolutions, models, etc
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