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@ Introduction - EMD
@ 1D Empirical Wavelets

@ Definition
e Experiments

@ 2D Extensions

e Tensor product case
o Ridgelet case
o Experiments
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Time-frequency signal analysis

Time-Frequency representations are useful to analyze signals.

° Short time Fourier transform:
FY( = [f(s)g(s — nty)e~"™0sds.

° Wavelet transform
WTe(m, n) = a;™? [ f(t)p(ag™t — nby)dt.

@ Wigner-Ville transform (quadratic — nonlinear + interference
terms).

@ Hilbert-Huang transform (EMD + Hilbert transform)
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Empirical Mode Decomposition (EMD): Principle

Goal: decompose a signal f(t) into a finite sum of Intrinsic Mode
Functions (IMF) fi(t):

N
f(t) =) k(D)
k=0
where an IMF is an AM-FM signal:
f (1) = Fk(t) cos (pk(t)) where Fi(t), QD;((I') > 0 Vt.

Main assumption: Fx and ¢} vary much slower than ¢.

Huang et al.! propose a pure algorithmic method to extract the
different IMF.

1 The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series
analysis, Proc. Royal Society London A., vol.454, pp.903-995,1998
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Empirical Mode Decomposition (EMD): Algorithm

Initialization: f0 = f
while all IMF are no extracted do
fé( = fk
while r¥ is not an IMF (Sifting process) do
Upper envelope T(t) (maxima + spline) of rf(t)
Lower envelope /(t) (minima + spline) of rk(t)
Mean envelope m(t) = (u(t) + I(t))/2
IMF candidate r¥, , (t) = rk(t) — m(t)

end while
k+1 _ fk _ ok H
fer _7f — I b
end while L
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Example of EMD: input signals

N 6 i £
wil % " : i
A & | i J
Mgl W i ‘MW T [ \
A W/ | I 3 /
r L,\AV/V - I &M Fw[\M“V\M ! ) 2t / \,\ I (\
\ o) S el Ve e o5 g A/\/ | ‘
< Voez e Q ! ° HIAA 1] \
§ z + TATA vh UL
<} S T 02 04 os | \dB\/\/ 1c
~ 6 s ~o 6| _1f
2 4 / /\§ 4 8
o 7 =3 ; € i A\
E ol vl 5 [
7 TP e b /A
£ i 10 + 2F /
5 AN A + N ‘ ( - \.
I \\ A “‘/ \ / \ }, § osf| ,\ }\ (\\‘ H ‘[\ (“ \\‘ H‘ § ¥ S/ N -
= BRI T L ‘\umm -3
&% T \‘na““ \ns“ u4\ | 3 \ J “‘ \‘\‘\ H“MW g 02 04 06 08 1c
e VY ARV ARV A AR BN T L1 s
VAV VY. & y N 2 W (\
I >
g - & | \f“ A
g . M\MM/\H
VVJ@// va\‘\‘qs\‘}/ic
A \/ ‘}
St

Empirical Wavelet Transform



Example of EMD: fs;g;
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Example of EMD: fsjgo
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Example of EMD: fsjg3
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Example of EMD: fsjg4 - ECG
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Hilbert-Huang Transform
Hilbert transform

He(t) = %p.v. /ﬁo ) gy

oo =T

Property: if fx(t) = Fk(t) cos (¢k(t)) then

fr (1) = fic(t) + 1Hy, (1) = Fi(t)ex"

= we can extract Fx(t) and the instantaneous frequency %(t).
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Hilbert-Huang Transform
Hilbert transform

He(t) = %p.v. /ﬁo ) gy

oo =T

Property: if fx(t) = Fk(t) cos (¢k(t)) then

fr (1) = fic(t) + 1Hy, (1) = Fi(t)ex"

= we can extract Fx(t) and the instantaneous frequency %(t).

For each IMF k, we extract Fx and %(t) and accumulate the
information in the time-frequency plane.

Empirical Wavelet Transform



o
w0

w
Q
=]
8
S 0.4
c
@
=}
=3
5]
=

o
w

Empirical Wavelet Transform



2500 3000

®
Q
=]
8
>
(8]
<
5]
=}
=~
5]
e
=

2000 2500 3000 3500
time

Empirical Wavelet Transform



EMD: Issues and Properties

@ Useful to analyze real signals.
@ Implementation dependent.

@ Problem: it's a nonlinear algorithm which has no
mathematical theory = difficult to predict and understand
its output and behavior in the general case.

@ Experimental property: seems to behave as an adaptive
filter bank (Flandrin et al.?)

2Empirical mode decomposition as a filter bank, IEEE Signal Processing Letters, vol.11, No.2, pp.112-114,
2004
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Key ideas about wavelets

Wavelets < filtering

WT(m,n) = a;™? / F(t)b(ag™t — nbo)dt

a; ™’ / () (Z:O b°> dt

= (f*¥m)(nag'bo)

where m(8s) = ¢ (‘_?n>

a
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Key ideas about wavelets

Wavelets < filtering

WT(m,n) = a;™? / F(t)b(ag™t — nbo)dt

a; ™’ / () (Z:O b°> dt

= (f*¥m)(nag'bo)

where m(8s) = ¢ (‘_?n>

a

= Wavelets can be built both in the temporal or Fourier domains.
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Empirical wavelet transform (EWT): Concept

Combining the strength of wavelet’s formalism with the adaptability of EMD. \
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Empirical wavelet transform (EWT): Concept

Combining the strength of wavelet’s formalism with the adaptability of EMD.

Wavelets are equivalent to filter banks — (dyadic) decomposition of the Fourier line

‘f‘-.7r:/8 7T:/4 7r:/2 71' w

Does not necessarily correspond to “modes” positions.

EWT — adaptive decomposition of the Fourier line
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EWT: finding the modes

Fourier spectrum segmentation:
@ Find the local maxima.

@ Take support boundaries as the middle between successive
maxima.
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EWT: finding the modes

Fourier spectrum segmentation:
@ Find the local maxima.

@ Take support boundaries as the middle between successive
maxima.
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EWT: filter bank construction (1/3)

@ wp: support boundaries
@ 7,: half the length of the “transition phase”
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EWT: filter bank construction (1/3)

@ wp: support boundaries
@ 7,: half the length of the “transition phase”
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In practice we choose 7, = ywn
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EWT: filter bank construction (2/3)

Scaling function spectrum

1 if jw| < (1 —7)wn
Golw) = § 008 [38 (1wl = (1 = )wn)) | I (1 = Vwn < o] < (1 + 7)o
0 otherwise

Wavelet spectrum

1 if (1 +7)wn < |w| < (1 —7)wnit
6% c0s 38 (5= (vl = (1 = 7))
if (1 — Vw1 < Jw| < (1 +7)wnis
1//’!7(‘”)_ w o,
e sin [38 (5L (Il — (1 = 7)wn) )]
if (1 —79)wn < |w| < (14 7)wn
otherwise

0
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EWT: filter bank construction (3/3)

Scaling function spectrum for w, =1 and v = 0.5

Empirical Wavelet Transform



EWT: property and example (1/2)

Proposition

If v < min, (Zﬁilliﬁ) then the set {#1(t), {¥n(t)}N_,} is an
orthonormal basis of L?(R).
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EWT: property and example (1/2)

Proposition

If v < min,, (“nﬂ —n

Wny{+wn

orthonormal basis of L?(R).

), then the set {#1(t), {¥n(t)}N_,} is an

o
=

Filter Bank for w, € {0,1.5,2,2.8, 7} with v = 0.05 < 0.057
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EWT: property and example (2/2)

Detail coefficients:
Wf n t 'l,/)n /f T/Jn T *t
= (Hw)da(@))

Approximation coefficients (convention W (0, t):
WE(0,8) = (F, ) — / f()or (r — Dy
\Y%
(

= (f)d1@)

The reconstruction:
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EWT: algorithm

Input: f, N (number of scales)

@ Fourier transform of f — 7.

@ Compute the local maxima of 7 on [0, 7] and find the set
{wn}.

H Wnii1—Wn
© Choose v < min,, (Wn+1 +w”).

© Build the filter bank.
© Filter the signal to get each component.
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Experiment: fsjg
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Experiment of EMD: fgjy»
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Experiment of EMD: fsjy3
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Experiment of EMD: ECG
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Time-Frequency representation of fsjgo
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Time-Frequency representation of fsjg4
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2D - Extension

joint work with Giang Tran and Stan Osher
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2D Extension - “Tensor product” approach

Like the “classic” wavelet transform — process rows then columns

but...
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2D Extension - “Tensor product” approach
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@ The number of detected scales can be different for each row

@ The position of the Fourier boundaries can vary a lot from one
row to the next (< “information discontinuity”)
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2D Extension - “Tensor product” approach

Like the “classic” wavelet transform — process rows then columns |

but...

@ The number of detected scales can be different for each row

@ The position of the Fourier boundaries can vary a lot from one
row to the next (< “information discontinuity”)

= |dea: “Mean Filter Banks” )
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2D Extension - Tensor product algorithm
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2D Extension - Tensor product algorithm

‘ ¥

Empirical Wavelet Transform



‘ ¥

2D Extension - Tensor product algorithm
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2D Extension - Tensor product algorithm

Average N ’m‘

Empirical Wavelet Transform



2D Extension - Tensor product algorithm
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2D Extension - Tensor product algorithm
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2D Extension - Example
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2D Extension - Ridgelet approach

Classic Ridgelets
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2D Extension - Ridgelet approach

Empirical Ridgelets
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2D Extension - Ridgelet: a first example
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2D Extension - Ridgelet: a first example
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2D Extension - Ridgelet: a first example

Empirical Wavelet Transform



2D Extension - Ridgelet: a first example

Empirical Wavelet Transform



2D Extension - Ridgelet: a noisy example
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2D Extension - Ridgelet: a noisy example
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Conclusion - Future work

@ Get the ability of EMD under the Wavelet theory.
@ Fast algorithm.
@ Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets.
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THANK YOU!

PS: Jack, I'm from UCLA and on the job market ;-)

Empirical Wavelet Transform



