Empirical Wavelet Transform Jérôme Gilles Department of Mathematics, UCLA jegilles@math.ucla.edu Adaptive Data Analysis and Sparsity Workshop January 31th, 2013 ### **Outline** - Introduction EMD - 1D Empirical Wavelets - Definition - Experiments - 2D Extensions - Tensor product case - Ridgelet case - Experiments Time-Frequency representations are useful to analyze signals. Time-Frequency representations are useful to analyze signals. Short-time Fourier transform: $$\mathcal{F}_f^W(m,n) = \int f(s)g(s-nt_0)e^{-\imath m\omega_0 s}ds.$$ Time-Frequency representations are useful to analyze signals. • Short-time Fourier transform: $$\mathcal{F}_f^W(m,n) = \int f(s)g(s-nt_0)e^{-\imath m\omega_0 s}ds.$$ • Wavelet transform: $\mathcal{WT}_f(m,n) = a_0^{-m/2} \int f(t) \psi(a_0^{-m}t - nb_0) dt$. Time-Frequency representations are useful to analyze signals. - Short-time Fourier transform: $\mathcal{F}_f^W(m,n) = \int f(s)g(s-nt_0)e^{-\imath m\omega_0 s}ds$. - Wavelet transform: $\mathcal{WT}_f(m,n) = a_0^{-m/2} \int f(t) \psi(a_0^{-m}t nb_0) dt$. - Wigner-Ville transform (quadratic → nonlinear + interference terms). Time-Frequency representations are useful to analyze signals. - Short-time Fourier transform: $\mathcal{F}_f^W(m,n) = \int f(s)g(s-nt_0)e^{-\imath m\omega_0 s}ds$. - Wavelet transform: $\mathcal{WT}_f(m,n) = a_0^{-m/2} \int f(t) \psi(a_0^{-m}t nb_0) dt$. - $\bullet \ \ \mbox{Wigner-Ville transform (quadratic} \rightarrow \mbox{nonlinear + interference terms)}.$ - Hilbert-Huang transform (EMD + Hilbert transform) ## Empirical Mode Decomposition (EMD): Principle Goal: decompose a signal f(t) into a finite sum of Intrinsic Mode Functions (IMF) $f_k(t)$: $$f(t) = \sum_{k=0}^{N} f_k(t)$$ where an IMF is an AM-FM signal: $$f_k(t) = F_k(t)\cos(\varphi_k(t))$$ where $F_k(t), \varphi'_k(t) > 0 \ \forall t$. Main assumption: F_k and φ'_k vary much slower than φ_k . Huang et al.¹ propose a pure algorithmic method to extract the different IMF. ``` Initialization: f^0 = f while all IMF are no extracted do r_0^k = f^k while r_n^k is not an IMF (Sifting process) do Upper envelope \bar{u}(t) (maxima + spline) of r_n^k(t) Lower envelope I(t) (minima + spline) of r_n^k(t) Mean envelope m(t) = (\bar{u}(t) + \underline{l}(t))/2 IMF candidate r_{n+1}^{k}(t) = r_{n}^{k}(t) - m(t) end while f^{k+1} = f^k - r_{n+1}^k end while 6 0.6 0.8 1.0 ``` ``` Initialization: f^0 = f while all IMF are no extracted do r_0^k = f^k while r_n^k is not an IMF (Sifting process) do Upper envelope \bar{u}(t) (maxima + spline) of r_n^k(t) Lower envelope \underline{I}(t) (minima + spline) of r_n^k(t) Mean envelope m(t) = (\bar{u}(t) + \underline{l}(t))/2 IMF candidate r_{n+1}^k(t) = r_n^k(t) - m(t) end while f^{k+1} = f^k - r_{n+1}^k end while 6 0.6 0.8 1.0 ``` ``` Initialization: f^0 = f while all IMF are no extracted do r_0^k = f^k while r_n^k is not an IMF (Sifting process) do Upper envelope \bar{u}(t) (maxima + spline) of r_n^k(t) Lower envelope \underline{I}(t) (minima + spline) of r_n^k(t) Mean envelope m(t) = (\bar{u}(t) + \underline{l}(t))/2 IMF candidate r_{n+1}^k(t) = r_n^k(t) - m(t) end while f^{k+1} = f^k - r_{n+1}^k end while 6 0.6 0.8 1.0 ``` ``` Initialization: f^0 = f while all IMF are no extracted do r_0^k = f^k while r_n^k is not an IMF (Sifting process) do Upper envelope \bar{u}(t) (maxima + spline) of r_n^k(t) Lower envelope I(t) (minima + spline) of r_n^k(t) Mean envelope m(t) = (\bar{u}(t) + \underline{l}(t))/2 IMF candidate r_{n+1}^k(t) = r_n^k(t) - m(t) end while f^{k+1} = f^k - r_{n+1}^k end while 6 0.6 0.8 1.0 ``` # Example of EMD: input signals # Example of EMD: f_{Sig1} # Example of EMD: f_{Sig2} # Example of EMD: f_{Sig3} # Example of EMD: f_{Sig4} - ECG ### Hilbert-Huang Transform #### Hilbert transform $$\mathcal{H}_f(t) = \frac{1}{\pi} p.v. \int_{-\infty}^{+\infty} \frac{f(\tau)}{t-\tau} d\tau$$ Property: if $f_k(t) = F_k(t) \cos(\varphi_k(t))$ then $$f_k^*(t) = f_k(t) + i\mathcal{H}_{f_k}(t) = F_k(t)e^{i\varphi_k(t)}$$ \Rightarrow we can extract $F_k(t)$ and the instantaneous frequency $\frac{d\varphi_k}{dt}(t)$. ### Hilbert-Huang Transform #### Hilbert transform $$\mathcal{H}_f(t) = \frac{1}{\pi} p.v. \int_{-\infty}^{+\infty} \frac{f(\tau)}{t-\tau} d\tau$$ Property: if $f_k(t) = F_k(t) \cos(\varphi_k(t))$ then $$f_k^*(t) = f_k(t) + i\mathcal{H}_{f_k}(t) = F_k(t)e^{i\varphi_k(t)}$$ \Rightarrow we can extract $F_k(t)$ and the instantaneous frequency $\frac{d\varphi_k}{dt}(t)$. #### **HHT** For each IMF k, we extract F_k and $\frac{d\varphi_k}{dt}(t)$ and accumulate the information in the time-frequency plane. # HHT of f_{sig2} # HHT of f_{sig4} - ECG ### **EMD: Issues and Properties** - Useful to analyze real signals. - Implementation dependent. - Experimental property: seems to behave as an adaptive filter bank (Flandrin et al.²) ² Empirical mode decomposition as a filter bank, IEEE Signal Processing Letters, vol.11, No.2, pp.112–114, ### Key ideas about wavelets ### Wavelets ⇔ filtering $$\mathcal{WT}_{f}(m,n) = a_{0}^{-m/2} \int f(t)\psi(a_{0}^{-m}t - nb_{0})dt$$ $$= a_{0}^{-m/2} \int f(t)\psi\left(\frac{t - na_{0}^{m}b_{0}}{a_{0}^{m}}\right)dt$$ $$= (f \star \psi_{m})(na_{0}^{m}b_{0})$$ where $$\psi_m(s) = \psi\left(\frac{-s}{a_0^{-m}}\right)$$. ### Key ideas about wavelets ### Wavelets ⇔ filtering $$\mathcal{WT}_{f}(m,n) = a_{0}^{-m/2} \int f(t)\psi(a_{0}^{-m}t - nb_{0})dt$$ $$= a_{0}^{-m/2} \int f(t)\psi\left(\frac{t - na_{0}^{m}b_{0}}{a_{0}^{m}}\right)dt$$ $$= (f \star \psi_{m})(na_{0}^{m}b_{0})$$ where $$\psi_m(s) = \psi\left(\frac{-s}{a_0^{-m}}\right)$$. ⇒ Wavelets can be built both in the temporal or Fourier domains. #### Idea: Combining the strength of wavelet's formalism with the adaptability of EMD. #### Idea: Combining the strength of wavelet's formalism with the adaptability of EMD. Wavelets are equivalent to filter banks \rightarrow (dyadic) decomposition of the Fourier line #### Idea: Combining the strength of wavelet's formalism with the adaptability of EMD. Wavelets are equivalent to filter banks \rightarrow (dyadic) decomposition of the Fourier line Does not necessarily correspond to "modes" positions. #### Idea: Combining the strength of wavelet's formalism with the adaptability of EMD. Wavelets are equivalent to filter banks \rightarrow (dyadic) decomposition of the Fourier line Does not necessarily correspond to "modes" positions. $\text{EWT} \rightarrow \text{adaptive decomposition of the Fourier line}$ ## EWT: finding the modes #### Fourier spectrum segmentation: - Find the local maxima. - Take support boundaries as the middle between successive maxima. ## EWT: finding the modes ### Fourier spectrum segmentation: - Find the local maxima. - Take support boundaries as the middle between successive maxima. ### EWT: finding the modes #### Fourier spectrum segmentation: - Find the local maxima. - Take support boundaries as the middle between successive maxima. ### EWT: filter bank construction (1/3) #### **Notations** - ω_n : support boundaries - τ_n : half the length of the "transition phase" ### EWT: filter bank construction (1/3) #### **Notations** - ω_n : support boundaries - τ_n : half the length of the "transition phase" In practice we choose $\tau_n = \gamma \omega_n$ ### EWT: filter bank construction (2/3) ### Scaling function spectrum $$\hat{\phi}_n(\omega) = \begin{cases} 1 & \text{if } |\omega| \leq (1-\gamma)\omega_n \\ \cos\left[\frac{\pi}{2}\beta\left(\frac{1}{2\gamma\omega_n}(|\omega|-(1-\gamma)\omega_n)\right)\right] & \text{if } (1-\gamma)\omega_n \leq |\omega| \leq (1+\gamma)\omega_n \\ 0 & \text{otherwise} \end{cases}$$ #### Wavelet spectrum $$\hat{\psi}_n(\omega) = \begin{cases} 1 & \text{if } (1+\gamma)\omega_n \leq |\omega| \leq (1-\gamma)\omega_{n+1} \\ e^{-\imath \frac{\omega}{2}} \cos \left[\frac{\pi}{2}\beta \left(\frac{1}{2\gamma\omega_{n+1}} (|\omega| - (1-\gamma)\omega_{n+1}) \right) \right] & \text{if } (1-\gamma)\omega_{n+1} \leq |\omega| \leq (1+\gamma)\omega_{n+1} \\ e^{-\imath \frac{\omega}{2}} \sin \left[\frac{\pi}{2}\beta \left(\frac{1}{2\gamma\omega_n} (|\omega| - (1-\gamma)\omega_n) \right) \right] & \text{if } (1-\gamma)\omega_n \leq |\omega| \leq (1+\gamma)\omega_n \\ 0 & \text{otherwise} \end{cases}$$ ## EWT: filter bank construction (3/3) ### Scaling function spectrum for $\omega_n = 1$ and $\gamma = 0.5$ ### Wavelet spectrum for $\omega_n = 1$, $\omega_{n+1} = 2.5$ and $\gamma = 0.2$ ### EWT: property and example (1/2) #### Proposition If $\gamma < \min_n \left(\frac{\omega_{n+1} - \omega_n}{\omega_{n+1} + \omega_n} \right)$, then the set $\{ \phi_1(t), \{ \psi_n(t) \}_{n=1}^N \}$ is an orthonormal basis of $L^2(\mathbb{R})$. ### EWT: property and example (1/2) ### Proposition If $\gamma < \min_n \left(\frac{\omega_{n+1} - \omega_n}{\omega_{n+1} + \omega_n} \right)$, then the set $\{\phi_1(t), \{\psi_n(t)\}_{n=1}^N\}$ is an orthonormal basis of $L^2(\mathbb{R})$. ### Filter Bank for $\omega_n \in \{0, 1.5, 2, 2.8, \pi\}$ with $\gamma = 0.05 < 0.057$ ### EWT: property and example (2/2) Detail coefficients: $$\mathcal{W}_{f}^{\mathcal{E}}(n,t) = \langle f, \psi_{n} \rangle = \int f(\tau) \overline{\psi_{n}(\tau - t)} d\tau$$ $$= \left(\hat{f}(\omega) \overline{\hat{\psi}_{n}(\omega)} \right)^{\vee},$$ Approximation coefficients (convention $\mathcal{W}_f^{\mathcal{E}}(0,t)$: $$\mathcal{W}_{f}^{\mathcal{E}}(0,t) = \langle f, \phi_{1} \rangle = \int f(\tau) \overline{\phi_{1}(\tau - t)} d\tau$$ $$= \left(\hat{f}(\omega) \overline{\hat{\phi}_{1}(\omega)} \right)^{\vee},$$ The reconstruction: $$f(t) = \mathcal{W}_{f}^{\mathcal{E}}(0, t) \star \phi_{1}(t) + \sum_{n=1}^{N} \mathcal{W}_{f}^{\mathcal{E}}(n, t) \star \psi_{n}(t)$$ $$= \left(\widehat{\mathcal{W}_{f}^{\mathcal{E}}}(0, \omega)\widehat{\phi}_{1}(\omega) + \sum_{n=1}^{N} \widehat{\mathcal{W}_{f}^{\mathcal{E}}}(n, \omega)\widehat{\psi}_{n}(\omega)\right)^{\vee}.$$ ## EWT: algorithm Input: f, N (number of scales) - Fourier transform of $f \rightarrow \hat{f}$. - ② Compute the local maxima of \hat{f} on $[0, \pi]$ and find the set $\{\omega_n\}$. - $\ \, \textbf{3} \ \, \textbf{Choose} \, \, \gamma < \min_{n} \Big(\frac{\omega_{n+1} \omega_{n}}{\omega_{n+1} + \omega_{n}} \Big).$ - Build the filter bank. - Filter the signal to get each component. # Experiment: f_{Sig1} # Experiment of EMD: f_{Sig2} **Empirical Wavelet Transform** # Experiment of EMD: f_{Sig3} Empirical Wavelet Transform ## **Experiment of EMD: ECG** ## Time-Frequency representation of f_{sig2} ## Time-Frequency representation of f_{sig4} # 2D - Extension joint work with Giang Tran and Stan Osher Like the "classic" wavelet transform \rightarrow process rows then columns but. . . Like the "classic" wavelet transform \rightarrow process rows then columns but. . . The number of detected scales can be different for each row Like the "classic" wavelet transform \rightarrow process rows then columns but... - The number of detected scales can be different for each row - The position of the Fourier boundaries can vary a lot from one row to the next (⇔ "information discontinuity") Like the "classic" wavelet transform \rightarrow process rows then columns but... - The number of detected scales can be different for each row - The position of the Fourier boundaries can vary a lot from one row to the next (⇔ "information discontinuity") ⇒ Idea: "Mean Filter Banks" ## 2D Extension - Example ### 2D Extension - Ridgelet approach ### Classic Ridgelets ### 2D Extension - Ridgelet approach ### **Empirical Ridgelets** ### Conclusion - Get the ability of EMD under the Wavelet theory. - Fast algorithm. - Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets. ### Conclusion - Get the ability of EMD under the Wavelet theory. - Fast algorithm. - Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets. #### Future work Investigate different strategies to "segment" the spectrum. ### Conclusion - Get the ability of EMD under the Wavelet theory. - Fast algorithm. - Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets. - Investigate different strategies to "segment" the spectrum. - Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands. #### Conclusion - Get the ability of EMD under the Wavelet theory. - Fast algorithm. - Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets. - Investigate different strategies to "segment" the spectrum. - Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands. - Generalization to any kind of Fourier based wavelets (e.g. Splines). #### Conclusion - Get the ability of EMD under the Wavelet theory. - Fast algorithm. - Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets. - Investigate different strategies to "segment" the spectrum. - Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands. - Generalization to any kind of Fourier based wavelets (e.g. Splines). - 2D (nD) extension: finish ridgelet idea, curvelet, "true" spectrum segmentation. #### Conclusion - Get the ability of EMD under the Wavelet theory. - Fast algorithm. - Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets. - Investigate different strategies to "segment" the spectrum. - Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands. - Generalization to any kind of Fourier based wavelets (e.g. Splines). - 2D (nD) extension: finish ridgelet idea, curvelet, "true" spectrum segmentation. - Explore the applications (denoising, deconvolution, ...). #### Conclusion - Get the ability of EMD under the Wavelet theory. - Fast algorithm. - Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets. - Investigate different strategies to "segment" the spectrum. - Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands. - Generalization to any kind of Fourier based wavelets (e.g. Splines). - 2D (nD) extension: finish ridgelet idea, curvelet, "true" spectrum segmentation. - Explore the applications (denoising, deconvolution, ...). - Solve PDEs (cf. Stan's talk). #### Conclusion - Get the ability of EMD under the Wavelet theory. - Fast algorithm. - Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets. - Investigate different strategies to "segment" the spectrum. - Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands. - Generalization to any kind of Fourier based wavelets (e.g. Splines). - 2D (nD) extension: finish ridgelet idea, curvelet, "true" spectrum segmentation. - Explore the applications (denoising, deconvolution, ...). - Solve PDEs (cf. Stan's talk). - Impact on existing functional spaces (Sobolev, Besov, Triebel-Lizorkin, ...); adaptive harmonic analysis. #### Conclusion - Get the ability of EMD under the Wavelet theory. - Fast algorithm. - Adaptive wavelets is not a completely new idea: Malvar-Wilson wavelets, Brushlets. - Investigate different strategies to "segment" the spectrum. - Possibility of using a "best-basis" pursuit approach to find the optimal number of subbands. - Generalization to any kind of Fourier based wavelets (e.g. Splines). - 2D (nD) extension: finish ridgelet idea, curvelet, "true" spectrum segmentation. - Explore the applications (denoising, deconvolution, ...). - Solve PDEs (cf. Stan's talk). - Impact on existing functional spaces (Sobolev, Besov, Triebel-Lizorkin, ...); adaptive harmonic analysis. - ... ### THANK YOU! PS: Jack, I'm from UCLA and on the job market ;-)