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General Framework: sparsest decomposition

Basic idea: Looking for the sparest decomposition over a huge
dictionary, D.

Minimize M (1)

Subject to: f (t) =
M∑
k=1

ak(t) cos θk(t), ak(t) cos θk(t) ∈ D,
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General Framework: Dictionary

The dictionary is

D = {a(t) cos θ(t) : θ′(t) ≥ 0, a(t) ∈ V (θ)} , (2)

where V (θ) is a linear space consisting of functions smoother than
cos θ(t).

V (θ) is chosen to be

V (θ) = span

{
1, cos

(
kθ

2Lθ

)
, sin

(
kθ

2Lθ

)
: k = 1, · · · , 2λLθ

}
,

where λ ≤ 1/2 is a parameter to control the smoothness of
functions in V (θ) and Lθ = (θ(T )− θ(0))/2π..
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Algorithm based on l1 regularized nonlinear least square

r0 = f (t).

Step 1: Solve the following constraint nonlinear least-square problem (P2):

Minimize γ‖âk‖1 + ‖rk−1 − ak(t) cos θk(t)‖22 (3)

Subject to: θ′k ≥ 0, ak(t) ∈ V (θk).

where âk is the representation of ak in V (θk) space

Step 2: Update residual

rk = f (t)−
k∑

j=1

aj(t) cos θj(t) (4)

Step 3: If ‖rk‖2 < ε0, stop. Otherwise, go to Step 1.
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l1 regularized Gauss-Newton iteration

θ0k = θ0.
Step 1: Get an+1

k and bn+1
k by solving following least square problem:

Minimize ‖rk−1 − an+1
k cos θnk(t)− bn+1

k sin θnk‖22
+γ(‖ân+1

k ‖1 + ‖b̂n+1
k ‖1), (5)

Subject to an+1
k (t), bn+1

k (t) ∈ V (θnk).

where ân+1
k , b̂n+1

k is the coefficients of an+1
k , bn+1

k in V (θnk) space.
Step 2: Update θnk :

θn+1
k = θnk − λ arctan

(
bn+1
k

an+1
k

)
, (6)

where λ ∈ [0, 1] is chosen to ensure that θn+1
k is monotonically

increasing,

λ = max

{
α ∈ [0, 1] :

d

dt

(
θnk − α arctan

(
bn+1
k

an+1
k

))
≥ 0

}
. (7)

Step 3: If ‖θn+1
k − θnk‖2 < ε0, stop. Otherwise, go to Step 1.
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Fast algorithm for periodic data

The least square problem can be solved approximately by FFT in θ space,
then we get the following more efficient algorithm:

Step 1: Interpolate rk−1 from {ti}Ni=1 in the physical space to a uniform
mesh in the θnk -coordinate to get rθnk and compute the Fourier
transform r̂θnk :

rθnk , j = Interpolate
(
rk−1, θ

n
k, j

)
, (8)

where θnk, j , j = 0, · · · ,N − 1 are uniformly distributed in the
θnk -coordinate,i.e. θnk, j = 2πLθnk j/N. And the Fourier transform of
rθnk is given as follows

r̂θnk (ω) =
1

N

N∑
j=1

rθnk , je
−i2πωθnk, j , ω = −N/2 + 1, · · · ,N/2, (9)

where θ
n

k, j =
θnk, j−θ

n
k, 0

2πLθn
k

.
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Fast algorithm for periodic data

Step 2: Apply a cutoff function to the Fourier Transform of rθnk to compute a
and b on the mesh of the θnk -coordinate, denoted by aθnk and bθnk :

aθnk = F−1
[(

r̂θnk
(
ω + Lθnk

)
+ r̂θnk

(
ω − Lθnk

))
· χλ

(
ω/Lθnk

)]
,

bθnk = F−1
[
i ·
(
r̂θnk
(
ω + Lθnk

)
− r̂θnk

(
ω − Lθnk

))
· χλ

(
ω/Lθnk

)]
.

F−1 is the inverse Fourier transform defined in the θnk coordinate:

F−1
(
r̂θnk
)

=
1

N

N/2∑
ω=−N/2+1

r̂θnk e i2πωθ
n
k, j , j = 0, · · · ,N − 1.

Step 3: Interpolate aθnk and bθnk from the uniform mesh {θnk, j}Nj=1 in the

θnk -coordinate back to the physical grid points {ti}Ni=1:

a(ti ) = Interpolate
(
aθnk , ti

)
, i = 0, · · · ,N − 1,

b(ti ) = Interpolate
(
bθnk , ti

)
, i = 0, · · · ,N − 1, .
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Fast algorithm for periodic data

Step 4: Update θn in the t-coordinate:

∆θ′ = PV (θ; η)

(
d

dt

(
arctan

(
bn+1
k

an+1
k

)))
, ∆θ(t) =

∫ t

0

∆θ′(s)ds,

θn+1
k = θnk − β∆θ,

where β ∈ [0, 1] is chosen to make sure that θn+1
k is monotonically

increasing:

β = max

{
α ∈ [0, 1] :

d

dt
(θnk − α∆θ) ≥ 0

}
.

and PVp(θ; η) is the projection operator to the space Vp(θ; η).

Step 5: If ‖θn+1
k − θnk‖2 < ε0, go to step 6. Otherwise, set n = n + 1 and go

to Step 1.

Step 6: If η ≥ λ, stop. Otherwise, set η = η + ∆η and go to step 1.
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Convergence analysis

Theorem (Exact recovery)

For the data f = f0 + f1 cos θ + σ(t), |σ(t)| ≤ ε which is noise. Assume
that the instantaneous frequency θ′ is M0-sparse over the Fourier basis in
physical space, θ′ ∈ VM0 = span

{
e i2kπt/T , k = −M0, · · · , 1, · · · ,M0

}
,

mean f0 and envelop f1 are M1-sparse over the Fourier basis in θ-space,

f̂0,θ(k) = f̂1,θ(k) = 0, ∀|k | > M1.

If the initial guess of θ satisfies

‖F
((
θ0 − θ

)′) ‖1 ≤ πM0/2,

then there exist η0 > 0 such that

‖F
((
θm+1 − θ

)′) ‖1 ≤ 1

2

∥∥F ((θm − θ)′
)∥∥

1
+ C · ε,

provided L = θ(T )−θ(0)
2π ≥ η0(M0,M1, ε), where η0(M0,M1, ε) is a

constant determined by M0, M1, ε .
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Numerical Validation

θ = 20πt + 2 cos 2πt + 2 sin 4πt, θ = θ/10

f0 = 2 + cos θ + 2 sin 2θ + cos 3θ, f1 = 3 + cos θ + sin 3θ

f = f0 + f1 cos θ.
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Figure: Original data and errors of IMF and phase function.
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Theorem (Approximate recovery)

Assume that the Fourier coefficients of the instantaneous frequency θ′,
local mean f0 and envelop f1 all have fast decay, i.e. there exists
C0 > 0, p ≥ 4 such that

|F(θ′)(k)| ≤ C0|k|−p, |Fθ(f0)(k)| ≤ C0|k |−p, |Fθ(f1)(k)| ≤ C0|k|−p

If L is large enough and the intial guess satisfies

‖F
((
θ0 − θ

)′) ‖1 ≤ πM0/2,

then, we have

‖F
((
θm+1 − θ

)′) ‖1 ≤ Γ0(L/4)−p+2 + C0M−p+1
0 +

1

2

∥∥F ((θm − θ)′
)∥∥

1
,

where Γ0 > 0 is a constant determined by C0, M0 and f1.
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Numerical Validation

a0 =
1

1.1 + sin(2πt)
, a1 =

1

1.1 + cos(2πt)
,

θ = 10 sin(2πt) + 40πt, f = a0 + a1 cos θ
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Figure: IMF and instantaneous frequency with bad scale seperation.
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Numerical Validation

f (t) = a0(t) + a1(t) cos(2θ(t)), where a0(t), a1(t) and θ(t) are the same
as the previous example.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−10

−8

−6

−4

−2

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
15

20

25

30

35

40

45

50

55

60
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Another Formulation: Basis Pursuit

From another point of view, the optimization problem can be seen as the
nonlinear version of the L0 minimization problem:

min
x,θ1,··· ,θM

‖x‖0, subject to [Aθ1 , · · · ,AθM ] x = f.

where Aθj is the collection of the (overcomplete) Fourier basis in θj
coordinate.

One natrual idea to solve above optimization problem is to solve a l1

optimization problem with fixed θ1, · · · , θM and update θ1, · · · , θM
iteratively.

Solve

min
x
‖x‖1, subject to

[
Aθn1 , · · · ,AθnM

]
x = f.

Update θn1 , · · · , θnM to get θn+1
1 , · · · , θn+1

M .
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Another Formulation: Basis Pursuit

Corresponding to the algorithm based on the matching pursuit, the phase
function is calculated one by one to reduce the complexity of the method,

min
x,θ
‖x‖0, subject to Aθx = f.

where Aθ is the collection of the (overcomplete) Fourier basis in θ
coordinate.

The algorithm should be

Solve

min
x
‖x‖1, subject to Aθnx = f.

Update θn to get θn+1.

This gives us the immediate generalization for the data with sparse
samples.
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Data with sparse samples

To deal with the data with sparse samples, we only need to replace the
interpolation-FFT by solving a l1 minimization problem.

Solve the l1 minimization problem to get the Fourier transform of
the signal f in θm coordinate:

f̂θm = arg min
x∈RNb

‖x‖1, subject to Aθm · x = f

where Aθm ∈ RNs×Nb , Ns < Nb, Ns is the number of samples and
Nb is the number of Fourier basis.

Aθm(j , k) = e i2πkθ
m
(tj ), j = 1, · · · ,Ns , k = −Nb/2 + 1, · · · ,Nb/2

and θ
m

= θm−θm(0)
θm(T )−θm(0) .
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Data with sparse samples

θ(ti ) = 120πti + 10 cos(2πti ), a(ti ) = 2 + cos(2πti ), f (ti ) = a(ti ) cos θ(ti ), ti ∈ [0, 1]. (10)

and i = 1, 2, · · · ,N.

In this example, the number of samples is 64, approximately one sample
point in one period of the signal. The location ti is chosen randomly in
[0, 1].
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Data with sparse samples
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Figure: Left: original samples, red: exact; blue: recovered; ’*’ represent the
sample points. Right: instantaneous frequency, red: exact; blue: numerical.
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Data with sparse samples
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Figure: Left: original samples, f (t) + 0.2X (t), red: exact; blue: recovered from
the noised data; ’*’ represent the sample points. Right: instantaneous
frequency, red: exact; blue: numerical.
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Data with sparse samples

Theorem

If the samples points are selected at random, under the same assumption
in Theorem 1, we have there exist η0 > 0, η1 > 0, such that with
overwhelming probability

‖F
((
θm+1 − θ

)′) ‖1 ≤ 1

2

∥∥F ((θm − θ)′
)∥∥

1
, (11)

provided L ≥ η0 and Ns ≥ η1 max(θ)′ (log Nb)6, Ns is the number of
samples, Nb is the number of basis.
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Data with incomplete samples

Using the assumption that a(t) is smooth, we put a weight in the l1 term
to penalize the high wave number components,

Solve

min
x
‖ωx‖1, subject to Aθnx = f.

where ω is a weight vector.

Update θn to get θn+1.

We can get better theoretical estimate for this formulation.
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Data with sparse samples

Theorem

If the samples points are selected at random, under the same assumption
in Theorem 1, we have there exist η0 > 0, η1 > 0, such that with
probability more than 1− δ

‖F
((
θm+1 − θ

)′) ‖1 ≤ 1

2

∥∥F ((θm − θ)′
)∥∥

1
, (12)

provided L ≥ η0 and Ns ≥ η1 max(θ)′max {log Nb,− log δ}, Ns is the
number of samples, Nb is the number of basis.
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Data with incomplete samples

θ(t) = 120πt + 10 cos(4πt), a(t) = 2 + cos(2πt),

f (t) = a(t) cos θ(t), t ∈ [0, 0.4] ∪ [0.6, 1].
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Figure: Left: blue: original incomplete data, the gap is (0.4, 0.6); red: missing
data obtained by our method; Middle: recovered missing data, red: exact; blue:
numerical. Right: recovered instantaneous frequency, red: exact; blue:
numerical.
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Data with incomplete samples
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Figure: Left: blue: the original incomplete data, the gap is (0.3, 0.7); red: the
missing data recovered by our method; Middle: the recovered missing data,
red: exact; blue: numerical. Right: the instantaneous frequencies, red: exact;
blue: numerical.
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Data without scale-separation

f (t) = cos(20πt + 40πt2 + sin(2πt)) + cos(40πt) (13)
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Data without scale-separation
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Figure: Left: Instantaneous frequencies; red: exact frequencies; blue: numerical
results. Middle and Right: IMFs extracted by previous method .
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Data without scale-separation

For this kind of signals, we have to decompose these components
simultaneously, since they have strong correlation.

Solve

min
x
‖x‖1, subject to

[
Aθn1 , · · · ,AθnM

]
x = f.

Update θn1 , · · · , θnM to get θn+1
1 , · · · , θn+1

M .

Combining the method to update the phase function, we can get
following algorithm.
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Data without scale-separation

Initialize: n = 0, η = 0.

Step 1: Solve the following l1 regularized least-square problem:

(
an+1
k , bn+1

k

)
∈ Argmin γ

M∑
k=1

(
‖âk‖l1 + ‖b̂k‖l1

)
ak ,bk

+‖f −
M∑
k=1

(ak cos θnk + bk sin θnk)‖2l2

Subject to: ak ∈ V (θnk), b ∈ V (θnk),

where âk , b̂k are the representations of ak , bk in the V (θnk) space.
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Data without scale-separation

Step 2: Update θnk :

∆θ′k = PV (θnk ; η)

(
d

dt

(
arctan

(
bn+1
k

an+1
k

)))
, (14)

∆θk =

∫ t

0

∆θ′k(s)ds, θn+1
k = θnk − βk∆θk , (15)

where βk ∈ [0, 1] is chosen to make sure that θn+1
k is monotonically

increasing:

βk = max

{
α ∈ [0, 1] :

d

dt
(θnk − α∆θk) ≥ 0

}
. (16)

and PV (θnk ; η)
is the projection operator to the space V (θnk ; η).

Step 3: If
M∑
k=1

‖θn+1
k − θnk‖2 > ε0, set n = n + 1 and go to Step 1. Otherwise,

go to step 4.

Step 4: If η ≥ λ, stop. Otherwise, set η = η + ∆η and go to step 1.

Zuoqiang Shi, MSC, Tsinghua Adaptive Data Analysis



Data without scale-separation
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Figure: Left: Instantaneous frequencies; Middle and right: IMFs extracted by
extracting two IMFs together. red: exact results; blue: numerical results.
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Data with Intra-wave frequency modulation

In the previous approach, we want to decompose the signal to the form

f (t) =
M∑
k=1

ak(t) cos θk(t). (17)

For some applications, decompositions of above form are too restrictive.
For example, the decomposition of following ECG data is not sparse at all.

Figure: Typical ECG data
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Data with Intra-wave frequency modulation

Using the concept of the shape function introduced by Prof. Daubechies
and Wu, we decompose the signal to the following form

f (t) =
M∑
k=1

ak(t)sk (θk(t)) . (18)

where sk(·) are 2π-period function.

ak , θk , sk can be obtained by solving following optimization problem:

min
ak ,θk ,sk

‖f (t)−
M∑
k=1

ak(t)sk (θk(t)) ‖22,

subject to: ak , θk are smoother than cos θk ,

sk(·) is 2π-periodic.
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Data with Intra-wave frequency modulation

First, we consider a simple case, let M = 1, then we only need to solve

min
a,θ,s
‖f (t)− a(t)s (θ(t)) ‖22,

subject to: a, θ ∈ V (θ), s(·) is 2π-periodic.

The phase function θ can be obtained by the method introduce before,
then

min
a,s
‖f (t)− a(t)s (θ(t)) ‖22,

subject to: a ∈ V (θ), s(·) is 2π-periodic.
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Data with Intra-wave frequency modulation

Since s is periodic, it can be represented by Fourier basis,

s(θ) =
K∑

k=−K

cke ikθ (19)

Using this representation, the optimization problem becomes

min
a,ck
‖f − a

K∑
k=−K

cke ikθ‖22,θ,

subject to: a ∈ V (θ).
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Data with Intra-wave frequency modulation

Using the Parsarval equality,

min
â,ck
‖f̂θ(ω)−

K∑
k=−K

ck â(ω + kLθ)‖22,

subject to: a ∈ V (θ).

where Lθ = (θ(T )− θ(0))/2π.

Using the constraint that â(ω) = 0, |ω| > λLθ and λ ≤ 1/2.

min
â,ck

K∑
k=−K

∑
|ω|<λLθ

|f̂θ(ω + kLθ)− ck â(ω)|2,

which can be solved by SVD.
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Data with Intra-wave frequency modulation

Algorithm to compute s and the envelop a,

Compute the phase function θ.

Interpolate the signal f to θ coordinate and apply FFT to get the
Fourier coefficients of f over θ coordinate, f̂θ.

Chop f̂θ to several pieces to form a matrix F̂θ.

Apply the singular value decomposition on F̂θ to get ck and â.
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Data with intra-wave frequency modulation: Duffing
equation
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Figure: Left: The solution of the Duffing equation; Right: The shape function
obtain by our method.
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Data with intra-wave frequency modulation: Duffing
equation
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Figure: Left: The solution of the Duffing equation plus noise; Right: The
shape function obtain by our method.
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Data with intra-wave frequency modulation: ECG data
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Figure: Left: The original ECG data; Right: The shape function obtain by our
method for the ECG data.
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Data with intra-wave frequency modulation: Nonlinear
Dynamical System

For each IMF, there exists a second order ODE,

ẍ + a(x , t)ẋ + b(x , t) = 0 (20)

and a(x , t), b(x , t) are slowly varying with respect to t.

If we looking for a(x , t) and b(x , t) locally, they can be approximate by
two functions which are independent on t, then the ODE becomes
autonomous,

ẍ + a(x)ẋ + b(x) = 0. (21)

or we can rewrite it to the conservative form,

ẍ + Q̇(x) + b(x) = 0. (22)
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Data with intra-wave frequency modulation: Nonlinear
Dynamical System

Then we can get weak formulation of the ODE,

< x , φ̈ > − < Q(x), φ̇ > + < b(x), φ >= 0, ∀φ ∈ C∞0 ([0,T ]). (23)

In order to determine the ODE, we use polynomials to approximate Q(x)
and b(x),

Q(x) =
M∑
k=0

qkxk+1, b(x) =
M∑
k=0

bkxk (24)

where M is the order of polynomials which is given a prior, qk , bk are
constants.
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Data with intra-wave frequency modulation: Nonlinear
Dynamical System

Using this formulation, we can design following optimization problem to
solve ak and bk ,

(qk , bk) = arg min
αk ,βk

γ

M∑
k=1

(|αk |+ |βk |)

+
N∑
i=1

∣∣∣∣∣< x , φ̈i > −
M∑
k=0

αk < xk+1, φ̇i > +
M∑
k=0

βk < xk , φi >

∣∣∣∣∣
2

.

The test function we use is the following cosine type function,

φi (t) =

{
1
2 (1 + cos(π(t − ti )/λ)), −λ < t − ti < λ,
0, otherwise.

i = 1, · · · ,N

where ti , i = 1, · · · ,N is the centers of the test functions and the
parameter λ determines their support.
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Data with intra-wave frequency modulation: Nonlinear
Dynamical System

The Duffing equation is a nonlinear ODE which has the following form:

ü + u + u3 = 0 (25)

u(0) = 1, u̇(0) = 0.
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Figure: Top: the solution of the Duffing equation; Middle: Coefficients of
polynomials; Bottom: Degrees of nonlinearity.
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Data with intra-wave frequency modulation: Nonlinear
Dynamical System

The Van der Pol equation is a nonlinear ODE which has the following
form:

ü + (u2 − 1)u̇ + u = 0 (26)

u(0) = 1, u′(0) = 0.
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Figure: Top: the solution of the Van der Pol equation; Middle: Coefficients of
polynomials; Bottom: Degrees of nonlinearity.
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Data with intra-wave frequency modulation: Nonlinear
Dynamical System

Consider a ODE with varying coefficients,

ü + a(t)(u2 − 1)u̇ + (1− a(t))u3 + u = 0 (27)

where a(t) = 1
2

(
1− t−100√

(t−100)2+400

)
. The initial condition is that

u̇(0) = 0, u(0) = 1 and the equation is solved over t ∈ [0, 200].

0 10 20 30 40 50 60 70 80 90 100

−2

−1

0

1

2

Signal

40 60 80 100 120 140 160 180

−1

0

1

Coefficients of the polynomials

40 60 80 100 120 140 160 180
0

1

2

3

Degree of the nonlinearity

Figure:
Zuoqiang Shi, MSC, Tsinghua Adaptive Data Analysis



Data with intra-wave frequency modulation: Nonlinear
Dynamical System

Consider a ODE with varying coefficients,

ü + a(t)(u2 − 1)u̇ + (1− a(t))u3 + u = 0 (28)

where a(t) = (1− sgn(t − 100))/2. The initial condition is that
u̇(0) = 0, u(0) = 1 and the equation is solved over t ∈ [0, 200].
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Data with intra-wave frequency modulation: Nonlinear
Dynamical System
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Concluding Remarks

We generalize the data-driven time-frequency analysis method
proposed by Hou and Shi to several more complicated data sets.

Convergence analysis has been performed under some scale
separation assumption on the mutiscale data.

One nonlinearity analysis method based on second order ODE has
been developed to deal with the nonlinear data.

Applications to biomedical problems, climate data, and geophysical
problems are under investigation.
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