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– Motivation – 
 

New Agile Sensing Platforms 



A Host of New Agile Imaging Sensors 
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– Overview of This Talk – 
 

Fusing Adaptive Sensing and Structured Sparsity  



– Background – 
 

Sparse Inference and Adaptive Sensing 



A Model for Sparsity 

number of nonzero  
signal components 

Objects of interest are vectors x ∈ Rn

Signal Support: S � {i : xi �= 0}

Sparse ⇔ |S| = k � n



A Sparse Inference Task 

Noisy Linear Observation Model:

y = Φx+ w

�
Φ ∈ Rm×n

w ∼ N (0, Im×m)

Support Recovery

Goal: Obtain an (accurate) estimate �S = �S(y,Φ) of true support S



A Sparse Inference Task 

Noisy Linear Observation Model:

y = Φx+ w

�
Φ ∈ Rm×n

w ∼ N (0, Im×m)

What conditions are necessary/sufficient for exact support recovery?
(eg., such that P (S �= �S) → 0 as n → ∞)

Assume

• “Sensing energy” �Φ�2F fixed: �Φ�2F = R

• |xi| ≥ µ for all i ∈ S



Exact Support Recovery? 

“Uncompressed” Sensing (Donoho & Jin 2004; JH, Castro, & Nowak 2010) 

Necessary & Sufficient for Exact Support Recovery:

“Compressed” Sensing (Genovese, Jin, & Wasserman 2009; Aeron, Saligrama & Zhao, 2010) 

µ ≥ const.
�� n

R

�
log n

“Point sampling” y = x+ w
(Sensing energy R = n)



Conditions for Exact Support Recovery 

(N + S)

“Uncompressed” Sensing (Donoho & Jin 2004; JH, Castro, & Nowak 2010) 
“Compressed” Sensing (Genovese, Jin, & Wasserman 2009; Aeron, Saligrama & Zhao, 2010) 

Question: Can we do better by exploiting 
 structure, or adaptivity, or both? 

Uncompressed / 
 compressed 

µ ≥ const.
�� n

R

�
log n



Uncompressed/ 
Compressed 

Conditions for Exact Support Recovery 

(N + S)

Necessity: (Castro 2012) 
Sufficiency (uncompressed): (Malloy & Nowak, 2010; Malloy & Nowak, 2011) 
Sufficiency (compressed): (JH, Baraniuk, Castro, & Nowak 2012, Malloy & Nowak 2013) 

µ ≥ const.
�� n

R

�
log n

µ ≥ const.
�� n

R

�
log k

y = Φx+ w

�
Φ ∈ Rm×n

w ∼ N (0, Im×m)
�Φ�2F = R



– Beyond Simple Sparsity – 
 

The Role of Structure 



Our Focus: Tree Sparsity 

Question: Does tree structure help in support recovery? 

Characteristics of tree structure:

• Elements of x in one-to-one correspondence with nodes of T

• Nonzeros of tree-sparse vector form rooted connected subtree of T

Tree T with n nodes and degree d



Signal Detection Problem: (Arias-Castro, Candes, Helgason, & Zeitouni 2008) 

Detection of simple trail 
(uncompressed sensing) 

Conditions for Exact Support Recovery 

(N+S)*
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log n
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�
log k
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R

�



(A. Soni & JH, 2011) 
http://arxiv.org/pdf/1111.6923.pdf 

Conditions for Exact Support Recovery 

Akshay Soni 
University of Minnesota 

(S)

The intersection of adaptivity and (tree) structure...
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Recent related work:  
Adaptivity and Structure in finding activated blocks in a matrix (Balakrishnan, Kolar, Rinaldo, and Singh 2012) 
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Adaptive Tree Sensing: An Example 

y(1) = x1 + w(1)

y(2) = x2 + w(2)

y(3) = x5 + w(3)
y(4) = x6 + w(4) y(5) = x7 + w(5)

suppose |y(1)| > τ

suppose |y(2)| < τ

suppose |y(3)| > τ suppose |y(4)| < τ suppose |y(5)| < τ

If the hypothesis test is correct at each step, then

Adaptive Wavelet “Tree Sensing” in the Literature:

• Non-Fourier encoded MRI

• Compressive Imaging

(none analyzed the case of noisy measurements...)

(Panych & Jolesz, 1994) 

(Deutsch, Averbuch, & Dekel, 2009) 

m = dk + 1 = O(k)



Orthogonal Dictionaries and Tree Sparsity 

Collect (noisy) observations of z by projecting onto (scaled) columns of D. Suppose, for
example, that the j-th measurement is obtained by projecting onto columnn di, then

y(j) = βdTi z + w(j)

where w(j) ∼ N (0, 1).

We are interested in the case where x is tree-sparse...

Consider signals z ∈ Rp that are sparse in a known dictionary D ∈ Rp×n. That is, z = Dx,
where

• x ∈ Rn is k-sparse,

• D satisfies DTD = In×n, and

• columns of D are dj , j = 1, 2, . . . , n

Nonnegative scaling factor 
(equivalently, could consider non-unit noise variance) 



Support Recovery via Adaptive Tree Sensing 

Choose β =
�

R
(d+1)k , then the theorem guarantees exact support recovery (whp) when

µ ≥

�

c3(d+ 1)

�
k

R

�
log k

Theorem (A. Soni & JH, 2011)
Let Tn,d be a balanced, rooted connected tree of degree d with n nodes. Suppose that
z ∈ Rp can be expressed as z = Dx, where D is a known dictionary with orthonormal
columns and x is k-sparse. Further, suppose the support of x corresponds to a rooted con-
nected subtree of Tn,d. Observations of z are of the form of projections of z onto columns
of D.

Let the index corresponding to the root of Tn,d be known, and apply the top-down tree sens-
ing procedure with threshold τ and scaling parameter β. For any c1 > 0 and c2 ∈ (0, 1),
there exists a constant c3 > 0 such that if

µ = min
i∈S

|xi| ≥
�

c3β−2 log k

and τ = c2µβ, the tree sensing procedure collects m = dk+1 measurements, and produces
a support estimate �S that equals S with probability at least 1− k−c1 .



(A. Soni & JH, 2011) 
http://arxiv.org/pdf/1111.6923.pdf 

Conditions for Exact Support Recovery 

Akshay Soni 
University of Minnesota 

(S)

The intersection of adaptivity and (tree) structure...
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(*conjecture for support recovery) 



– LASeR – 
 

Learning Adaptive Sensing Representations 



Given training data Z ∈ Rp×q , want to learn a dictionary D so that

Z ≈ DX, D ∈ Rp×n, X ∈ Rn×q,

and each column of X , xi ∈ Rn, is tree-sparse in Tn,d.

Beyond Wavelet Trees: Learned Representations 

Pose this as an optimization:

{D,X} = arg min
D∈Rp×n,DTD=In×n, {xi}

q�

i=1

�zi −Dxi�22 + λΩ(xi)

The regularization term is Ω(xi) =
�

g∈G ωg�(xi)g�, where

• G denotes a set of (overlapping) groups of indices for x,

• (xi)g is xi restricted to the indices in the group g ∈ G,

• ωg are non-negative weights, and

• the norm can be, eg., �2 or �∞
Solve by alternating minimization over D and X

(Jenatton, Mairal, Obozinski, & Bach, 2010) 
Sparse Modeling Software (SPAMS): http://spams-devel.gforge.inria.fr/ 
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Hierarchical Overlapping Groups 

Example: Binary Tree, 15 nodes, 4 levels. . .

Number of groups same as number of nodes (but varying sizes)



– LASeR – 
 

An Illustrative Example 



Learning Adaptive Sensing Representations  
!"#$%$%&'
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(PICS) http://pics.psych.stir.ac.uk/ 

Example images (128× 128)

Learn representation for 163 images from
Psychological Image Collection at Stirling



Learned Orthogonal Tree-Basis Elements 

(First four levels of 7 total)



Tree Elements 
Present in Sparse 

Representation 

Original Image 



Wavelet Tree 
Sensing 

PCA 

CS LASSO 

CS Tree LASSO 

LASeR 

m = 20 m = 50 m = 80 

Qualitative Results 

“Sensing Energy”
R = 128× 128



Wavelet Tree  
Sensing 

PCA 

CS LASSO 

CS Tree LASSO 

LASeR 

m = 50 m = 80 m = 20 

R = 128×128
32

“Sensing Energy”

Qualitative Results 
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Quantitative Results 



– LASeR – 
 

Imaging via “Patch-wise” Sensing 



“Patch-wise” Sensing Experiment 
Motivated by EO Imaging Application  (Thanks: Bob Muise @ Lockheed Martin)  
 
Training Data:  

 3 Sample images from the Columbus Large Image Format (CLIF) 2007 Dataset 
 Each image is 1024x1024 

Randomly extracted 3000 32x32 patches (at random locations)… 
 and vectorized them into length 1024 vectors 

 
Applied PCA and LASeR (7-level 127 node binary tree) to this training data 



Compare: PCA Basis Elements 

In the tree-sensing context, can view PCA 
sensing approach in terms of a tree of degree 1 



Learned Orthogonal Tree-Basis Elements 



Example: Approximation by “Patch-wise” Sensing 
Test Image (another image from CLIF database) 

Sense & reconstruct non-overlapping 32x32 patches… 
 …comparing LASeR, PCA, Wavelets… 



Sampling rate: 12.5%  

LASeR PCA 
rSNR = 17.6 dB

rSNR � −20 log10(��x− x�F /�x�F )

rSNR = 16.5 dB

Approximation Results – Uniform Sampling Rate 



Sampling rate: 12.5%  

LASeR 

rSNR � −20 log10(��x− x�F /�x�F )

rSNR = 16.5 dB

Approximation Results – Uniform Sampling Rate 



Sampling rate: 12.5%  

rSNR � −20 log10(��x− x�F /�x�F )

Approximation Results – Uniform Sampling Rate 

PCA 
rSNR = 17.6 dB



Approximation Results – Uniform Sampling Rate 
Sampling rate: 12.5%  

LASeR 2D Haar Wavelet 

rSNR � −20 log10(��x− x�F /�x�F )

rSNR = 16.5 dB rSNR = 13.5 dB



Approximation Results – Adaptive Sampling Rate 
Average sampling rate: 7.2%  

LASeR PCA 

rSNR � −20 log10(��x− x�F /�x�F )

rSNR = 15.0 dBrSNR = 13.9 dB



Average sampling rate: 7.2%  

LASeR 

rSNR � −20 log10(��x− x�F /�x�F )

rSNR = 13.9 dB
2D Haar Wavelet 
rSNR = 11.9 dB

Approximation Results – Adaptive Sampling Rate 



Approximation: Zoomed In 

LASeR 

PCA 

Original 

A Closer Look...      (Average sampling rate: 7.2%) 

2D 
Haar 



Approximation: Zoomed In 

LASeR 

PCA 

Original 

A Closer Look...      (Average sampling rate: 7.2%) 

2D 
Haar 



Sampling Rate Adapts to Block “Complexity” 
Sampling rate per block (Average sampling rate: 7.2%) 

LASeR PCA 



Sampling rate per block (Average sampling rate: 7.2%) 

LASeR 2D Haar 

Sampling Rate Adapts to Block “Complexity” 



Summary: Adaptivity + Structure 
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(conj.) 

In Theory (Support Recovery) 

Conclusions: 
      Polynomial reduction in SNR required for exact support recovery 

 (for fixed “sensing energy”) 



Summary: Adaptivity + Structure 

LASeR 

Original 

In Practice (Learned Representations and Patch-wise Sensing) 

PCA 

Conclusions: 
      PCA works very well on “small” patch sizes (shared, elemental structure)! 



Summary: Adaptivity + Structure 

www.ece.umn.edu/∼jdhaupt
jdhaupt@umn.edu

Original Image 

Wavelet Tree  
Sensing 

PCA 

LASeR 

m = 50 m = 80 m = 20 

Conclusions: 
     Potential benefit for learned representations depend on patch size, data “regularity”, noise 
     Can we sense with non-orthogonal trees?  (Relations to CS experimental design?)  


