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from “or” to “and”
Heisenberg refined

Heisenberg (classical)

Moments

Second-order (variance-type) measures for the individual time and
frequency spreadings of a signal x(t) ∈ L2(R) with spectrum X (ω):

∆2
t (x) :=

1

Ex

∫
t2 |x(t)|2 dt ; ∆2

ω(X ) :=
1

Ex

∫
ω2 |X (ω)|2 dω

2π

Theorem (Weyl, ’27; Gabor, ’46, . . . )

∆t(x) ∆ω(X ) ≥ 1

2
,

with lower bound attained for Gabor “logons”, i.e., Gaussian
waveforms x∗(t) = C eα t2

, α < 0
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Heisenberg (time-frequency)

Joint moment

Second-order (variance-type) measure for the time-frequency
spreading of a signal x(t) with energy distribution Cx(t, ω;ϕ):

∆tω(Cx) :=
1

Ex

∫∫ (
t2

T 2
+ T 2ω2

)
Cx(t, ω;ϕ) dt

dω

2π

Theorem (Janssen, ’91)

Wigner ⇒ ∆tω(Wx) ≥ 1

Spectrogram ⇒ ∆tω(Sh
x ) ≥ 2,

with lower bounds attained for logons and matched Gaussian
windows, i.e., h(t) = x(t) = x∗(t)
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time-frequency “covariance”

Definition (Cohen, ’95)

c(x) :=

∫
t |x(t)|2 d

dt
arg x(t) dt

Interpretation

Covariance quantifies the coupling between time and instantaneous
frequency

c(x) = 〈t ωx(t)〉

Intuition

Covariance is zero in case of no coupling

c(x) = 〈t ωx(t)〉 = 〈t〉 〈ωx(t)〉 = 〈t〉 〈ω〉 = 0
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Schrödinger

Theorem (Schrödinger, ’30)

∆t(x) ∆ω(X ) ≥ 1

2

√
1 + c2(x),

with lower bound attained for Gaussian waveforms of the form
x∗(t) = eα t2+β t+γ , with Re{α} < 0.

Terminology

Waveforms x∗ attaining the lower bound correspond to “squeezed
states” in quantum mechanics and “linear chirps” in signal theory

Interpretation

Possibility of localization in the plane beyond pointwise energy
concentration
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from “logons” to “chirps”

 

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty



From uncertainty. . .
. . . to localization

Spectrogram geometry

sharp localization
sparsity
reassignment

effective localization

Wigner and beyond

lim
Re{α}→0−

Wx∗(t, ω) = δ (ω − (β + 2 Im{α}t))

1 Generalization: localization on more “arbitrary” curves of the
plane by modifying the symmetry rules underlying the Wigner
distribution (Gonçalvès and F., ’96)

2 Caveat: global localization holds for monocomponent signals
only

Ways out

1 “sparsity”

2 “reassignment”

3 constrained EMD (Pustelnik et al., ’12 + poster)
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rationale

Fourier

Duality between distribution and correlation:

Cx(t, ω;ϕ) = Fξ→tFτ→ω {ϕ(ξ, τ) Ax(ξ, τ)} ,

with Ax(ξ, τ) = Ft→ξFω→τ {Wx(t, ω)} a TF correlation function
(“Ambiguity Function”)

Consequences

1 signal terms located around the origin of the AF plane

2 cross-terms located outside

3 “low-pass” filtering (e.g., A∗h(ξ, τ) for the spectrogram)
⇒ trade-off between localization and cross-terms reduction
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sparsity perspective

Discrete time

Signal of dimension N ⇒ TFD of dimension N2 when computed
over N frequency bins

Few AM-FM components

K � N ⇒ at most KN � N2 non-zero values in the TF plane

Sparsity

Minimizing `0-norm not feasible, but near-optimal solution by
minimizing `1-norm (in the spirit of “basis pursuit” or “compressed
sensing”)
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sparse solution

From `2 to `1 (F. & Borgnat, ’08)

1 Select a domain Ω neighbouring the origin of the AF plane

2 Find the sparsest time-frequency distribution ρ(t, ω) by
solving the program

min
ρ
‖ρ‖1 s.t. F{ρ} − Ax = 0|(ξ,τ)∈Ω

3 The exact equality over Ω can be relaxed according to

min
ρ
‖ρ‖1 s.t. ‖F{ρ} − Ax‖2 ≤ ε|(ξ,τ)∈Ω
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toy example

2-component AM-FM signal, 128 data points
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Wigner-Ville
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ambiguity function
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selection
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sparse solution
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domain selection
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domain selection

Interpretation

|Ω| too small ⇒ not enough auto-terms ⇒ TFD not enough
“sharp”: penalty with entropy (H)

|Ω| too large ⇒ inclusion of cross-terms ⇒ TFD “sharp” but
discontinuous: penalty with total variation (TV )

Result

|Ω|∗ = arg min
Ω

(H + TV )

∼ “Heisenberg cell”, i.e., minimum quantity of information
necessary for coding (in both magnitude and phase) auto-terms
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rationale

Smoothing relationship

Cx(t, ω;ϕ) =

∫∫
Wx(s, ξ) Φ(s − t, ξ − ω) dt

dω

2π

Key idea (Kodera et al., ’76, Auger & F., ’95)

1 replace the geometrical center of the smoothing TF domain
(defined by Φ(t, ω)) by the center of mass of the Wigner
distribution over this domain

2 reassign the value of the smoothed distribution to this local
center of mass:

Ĉx(t, ω;ϕ) =

∫∫
Cx(τ, ξ;ϕ)δ

(
t − t̂x(τ, ξ), ω − ω̂x(τ, ξ)

)
dτ

dξ

2π
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spectrogram = smoothed Wigner

Wigner-Ville
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spreading of auto-terms

Wigner-Ville
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cancelling of cross-terms

Wigner-Ville
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reassignment

Wigner-Ville

time

fr
eq

ue
nc

y

reassigned spectrogram

time

fr
eq

ue
nc

y

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty



From uncertainty. . .
. . . to localization

Spectrogram geometry

sharp localization
sparsity
reassignment

reassignment and localization

Two examples

For a Gaussian window h(t) = π−1/4 e−t2/2, reassigned
spectrograms are asymptotically perfectly localized for

1 linear chirps cT (t) of infinite duration:

lim
T→∞

Ŝh
cT

(t, ω) = δ(ω − at)

2 Hermite functions hM(t) of infinite order (F., JFAA’12):

Ŝh
hM

(t, ω)
M→∞−→ δ(t2 + ω2 − 2(M − 1))
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Hermite functions
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Hermite functions
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Hermite functions
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Hermite functions

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
order = 7 (theory)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1
order = 7 (simulation)

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty



From uncertainty. . .
. . . to localization

Spectrogram geometry

sharp localization
sparsity
reassignment

Hermite functions
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Hermite functions
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reassignment and uncertainty

Result

The minimum uncertainty Gabor logon h(t) = π−1/4 e−t2/2 is such
that

Wh(t, ω) = 2 e−(t2+ω2) ⇒ ∆tω(Wh) = 1

Sh
h (t, ω) = e−

1
2

(t2+ω2) ⇒ ∆tω(Sh
h ) = 2

Ŝh
h (t, ω) = 4 e−2(t2+ω2) ⇒ ∆tω(Ŝh

h ) =
1

2

Interpretation

1
2 < 1⇒ Heisenberg defeated?

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty



From uncertainty. . .
. . . to localization

Spectrogram geometry

sharp localization
sparsity
reassignment

reassignment and uncertainty

Resolving the logons paradox

1 General remark: as for Fourier, sharp localization not to be
confused with resolution (i.e., ability to separate closely
spaced components)

2 Complete picture: reassignment = squeezed distribution +
vector field rx(t, ω) = (t̂x(t, ω)− t, ω̂x(t, ω)− ω)t such that

rx(t, ω) =
1

2
∇ log Sh

x (t, ω)

3 Interpretation: basins of attraction

4 Open question: geometry of such basins and relationship with
Heisenberg?
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Voronoi and Delaunay
a simplified model

factorization

Bargmann

With a “circular” Gaussian window, the STFT can be expressed as
F h

x (z) = Fh
x (z) e−|z|

2/4, with z = ω + t and Fh
x (z) an entire

function of order at most 2

Weierstrass-Hadamard

Fh
x (z) = eQ(z)

∏
n

(1− z̃n) exp
(
z̃n + z̃2

n/2
)
,

where Q(z) is a quadratic polynomial and z̃n = z/zn

Interpretation

Characterization by zeroes and, by duality, by local maxima
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more on extrema

Motivation

Better understanding of reassigned distributions:

1 Simplified modeling

2 Ultimate localization properties

Proposed approach

1 Data: white Gaussian noise

2 Time-frequency distribution: Gaussian spectrogram

3 Characterization: identification of local extrema (zeroes and
maxima) + Voronoi tessellation and Delaunay triangulation

4 Analysis: distribution of cell areas, lengths between extrema
and heights of local maxima
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an example
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time-frequency patches

Mean arrangement

1 Average connectivity ≈ 6⇒ tiling with hexagonal cells

Voronoi/Delaunay

time

fre
qu

en
cy

time
fre

qu
en

cy

spectrogram (logon)

2 Maximum packing of circular patches
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predictions

Hexagonal tiling geometry

DM/dm =
√

3; NM/Nm = 1/3; AM/Am = 3
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simulation results
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comparison with model
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analysis

Distributions of lengths and areas

1 Ratios max/min: dispersion but reasonable agreement (in the
mean) between experimental results and theoretical
predictions

2 Ranges of values: if we call “effective domain” of the
minimum uncertainty logon the circular domain which
encompasses 95% of its energy, its radius and area are equal
to ∼ 2.6 and 21.8, to be compared to the values dM/

√
3 ∼ 3

and 2π/(3
√

3)AM ∼ 21.8 attached to the hexagonal tiling

Interpretation

Tiling cells ∼ minimum uncertainty logons
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local maxima and Voronoi cells areas (1)

Distributions

1 Heights: well-described by a Gamma distribution

2 Areas: idem and similar to the heights distribution for a
proper renormalization
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local maxima and Voronoi cells areas (2)

Proposition

The value |F |∗ of a local maximum of the STFT magnitude and
the area A of the associated Voronoi cell satisfy the
uncertainty-type inequality A.|F |∗ ≥ 3
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Sketch of proof: 2 ≤
∫∫

A(t2 + ω2) |F h
x (t, ω)|2dt dω

2π ≤
(
|F |∗ R2(A)

2

)2
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beyond the mean model

Random Gabor expansion

Previous results suggest a possible modeling of Gabor
spectrograms as

Sh
x (t, ω) =

∣∣∣∣∣∑
m

∑
n

cmn F h
h (t − tm, ω − ωn)

∣∣∣∣∣
2

with

1 locations (tm, ωn) distributed on some suitable randomized
version of a triangular grid

2 magnitudes of the weights cmn Gamma-distributed

3 locations and weights partly correlated
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Concluding remarks

1 Time-frequency energy distributions

Sparse representations
Ultimate localization constrained by uncertainty

2 Spectrogram geometry

New insights on reassignment
Complete characterization by local maxima in the Gabor case?

3 Analysis/synthesis

Modeling sparse time-frequency distributions?
New approaches to data driven representations?
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