On Time-Frequency Sparsity and Uncertainty

Patrick Flandrin*

CNRS & École Normale Supérieure de Lyon, France

* partially based on joint works with François Auger, Pierre Borgnat and Éric Chassande-Mottin

伺 ト イ ヨ ト イ ヨ

from "or" to "and" Heisenberg refined

Heisenberg (classical)

Moments

Second-order (variance-type) measures for the individual time and frequency spreadings of a signal $x(t) \in L^2(\mathbb{R})$ with spectrum $X(\omega)$:

$$\Delta_t^2(x) := \frac{1}{E_x} \int t^2 |x(t)|^2 dt \quad ; \quad \Delta_\omega^2(X) := \frac{1}{E_x} \int \omega^2 |X(\omega)|^2 \frac{d\omega}{2\pi}$$

Theorem (Weyl, '27; Gabor, '46, ...)

$$\Delta_t(x)\Delta_\omega(X)\geq rac{1}{2},$$

with lower bound attained for Gabor "logons", i.e., Gaussian waveforms $x_*(t) = C e^{\alpha t^2}$, $\alpha < 0$

・ロト ・同ト ・ヨト ・ヨト

from "or" to "and" Heisenberg refined

Heisenberg (time-frequency)

Joint moment

Second-order (variance-type) measure for the time-frequency spreading of a signal x(t) with energy distribution $C_x(t, \omega; \varphi)$:

$$\Delta_{t\omega}(C_x) := \frac{1}{E_x} \iint \left(\frac{t^2}{T^2} + T^2 \omega^2 \right) C_x(t,\omega;\varphi) dt \frac{d\omega}{2\pi}$$

Theorem (Janssen, '91)

$$egin{array}{rll} Wigner & \Rightarrow & \Delta_{t\omega}(W_{x}) \geq 1 \ Spectrogram & \Rightarrow & \Delta_{t\omega}(S^{h}_{x}) \geq 2, \end{array}$$

with lower bounds attained for logons and matched Gaussian windows, i.e., $h(t) = x(t) = x_*(t)$

イロト イポト イヨト イヨト

from "or" to "and" Heisenberg refined

time-frequency "covariance"

Definition (Cohen, '95)

$$c(x) := \int t \, |x(t)|^2 \, \frac{d}{dt} \arg x(t) \, dt$$

Interpretation

Covariance quantifies the coupling between time and instantaneous frequency

$$c(x) = \langle t \, \omega_x(t) \rangle$$

Intuition

Covariance is zero in case of no coupling

$$c(x)=\left\langle t\,\omega_{x}(t)
ight
angle =\left\langle t
ight
angle \left\langle \omega_{x}(t)
ight
angle =\left\langle t
ight
angle \left\langle \omega
ight
angle =0$$

イロト イポト イヨト イヨト

from "or" to "and' Heisenberg refined

Schrödinger

Theorem (Schrödinger, '30)

$$\Delta_t(x)\Delta_\omega(X)\geq rac{1}{2}\sqrt{1+c^2(x)},$$

with lower bound attained for Gaussian waveforms of the form $x_*(t) = e^{\alpha t^2 + \beta t + \gamma}$, with $Re\{\alpha\} < 0$.

Terminology

Waveforms x_* attaining the lower bound correspond to "squeezed states" in quantum mechanics and "linear chirps" in signal theory

Interpretation

Possibility of localization in the plane beyond pointwise energy concentration

イロト イポト イヨト イヨト

sharp localization sparsity reassignment

from "logons" to "chirps"

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

sharp localization sparsity reassignment

effective localization

Wigner and beyond

$$\lim_{\mathsf{Re}\{\alpha\}\to \mathsf{0}_{-}} W_{\mathsf{x}_{*}}(t,\omega) = \delta\left(\omega - (\beta + 2 \, \mathit{Im}\{\alpha\}t)\right)$$

- Generalization: localization on more "arbitrary" curves of the plane by modifying the symmetry rules underlying the Wigner distribution (Gonçalvès and F., '96)
- *Caveat*: global localization holds for monocomponent signals only

Ways out "sparsity" "reassignment" constrained EMD (Pustelnik *et al.*, '12 + poster)

to localization sparsity Spectrogram geometry

rationale

Fourier

Duality between distribution and correlation:

$$\mathcal{C}_{\mathsf{x}}(t,\omega;\varphi) = \mathcal{F}_{\xi \to t} \mathcal{F}_{\tau \to \omega} \left\{ \varphi(\xi,\tau) \, \mathsf{A}_{\mathsf{x}}(\xi,\tau) \right\},\,$$

with $A_x(\xi,\tau) = \mathcal{F}_{t\to\xi}\mathcal{F}_{\omega\to\tau} \{W_x(t,\omega)\}$ a TF correlation function ("Ambiguity Function")

Consequences

- signal terms located around the origin of the AF plane
- 2 cross-terms located outside
- So "low-pass" filtering (e.g., $A_h^*(\xi, \tau)$ for the spectrogram)
 - \Rightarrow trade-off between localization and cross-terms reduction

イロト イポト イヨト イヨト

sharp localization sparsity reassignment

example

イロン イロン イヨン イヨン

sharp localization sparsity reassignment

sparsity perspective

Discrete time

Signal of dimension $N \Rightarrow \text{TFD}$ of dimension N^2 when computed over N frequency bins

Few AM-FM components

 $K \ll N \Rightarrow$ at most $KN \ll N^2$ non-zero values in the TF plane

Sparsity

Minimizing ℓ_0 -norm not feasible, but near-optimal solution by minimizing ℓ_1 -norm (in the spirit of "basis pursuit" or "compressed sensing")

<ロ> <同> <同> < 同> < 同>

sharp localization sparsity reassignment

sparse solution

From ℓ_2 to ℓ_1 (F. & Borgnat, '08)

- ${\small \textcircled{0}} \hspace{0.1 cm} \text{Select a domain } \Omega \hspace{0.1 cm} \underset{\text{neighbouring the origin of the AF plane}{}$
- Find the sparsest time-frequency distribution ρ(t, ω) by solving the program

$$\min_{\rho} \|\rho\|_1 \text{ s.t. } \mathcal{F}\{\rho\} - A_x = 0|_{(\xi,\tau) \in \Omega}$$

() The exact equality over Ω can be relaxed according to

$$\min_{\rho} \|\rho\|_1 \text{ s.t. } \|\mathcal{F}\{\rho\} - A_x\|_2 \le \epsilon|_{(\xi,\tau)\in\Omega}$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

sharp localization sparsity reassignment

toy example

2-component AM-FM signal, 128 data points

<ロト <問 > < 注 > < 注 >

sharp localization sparsity reassignment

Wigner-Ville

<ロ> <同> <同> < 同> < 同>

... to localization

sparsity

ambiguity function

<ロ> <同> <同> < 同> < 同>

From uncertainty... sharp localization ...to localization sparsity Spectrogram geometry reassignment

selection

<ロ> <同> <同> < 同> < 同>

æ

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty

sharp localization sparsity reassignment

sparse solution

<ロ> <同> <同> < 同> < 同>

sharp localization sparsity reassignment

domain selection

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty

sharp localization sparsity reassignment

domain selection

Interpretation

- |Ω| too small ⇒ not enough auto-terms ⇒ TFD not enough "sharp": penalty with entropy (H)
- $|\Omega|$ too large \Rightarrow inclusion of cross-terms \Rightarrow TFD "sharp" but discontinuous: penalty with total variation (*TV*)

Result

$$|\Omega|_* = \arg\min_{\Omega}(H + TV)$$

 \sim "Heisenberg cell", i.e., minimum quantity of information necessary for coding (in both magnitude and phase) auto-terms

(日) (同) (日) (日) (日)

From uncertainty... sharp localiza ...to localization sparsity Spectrogram geometry reassignment

rationale

Smoothing relationship

$$C_x(t,\omega;\varphi) = \iint W_x(s,\xi) \Phi(s-t,\xi-\omega) dt \, rac{d\omega}{2\pi}$$

Key idea (Kodera et al., '76, Auger & F., '95)

- replace the geometrical center of the smoothing TF domain (defined by Φ(t, ω)) by the center of mass of the Wigner distribution over this domain
- reassign the value of the smoothed distribution to this local center of mass:

$$\hat{C}_x(t,\omega;arphi) = \iint C_x(au,\xi;arphi)\delta\left(t - \hat{t}_x(au,\xi),\omega - \hat{\omega}_x(au,\xi)
ight)d aurac{d\xi}{2\pi}$$

3 N

< 67 ▶

sharp localization sparsity reassignment

spectrogram = smoothed Wigner

time

spectrogram

time

▲□ ▶ ▲ □ ▶ ▲ □ ▶

sharp localization sparsity reassignment

spreading of auto-terms

time

spectrogram

time

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

sharp localization sparsity reassignment

cancelling of cross-terms

time

spectrogram

time

▲□ ▶ ▲ □ ▶ ▲ □ ▶

sharp localization sparsity reassignment

reassignment

time

reassigned spectrogram

time

P

- モト - モト

sharp localization sparsity reassignment

reassignment and localization

Two examples

For a Gaussian window $h(t) = \pi^{-1/4} e^{-t^2/2}$, reassigned spectrograms are asymptotically perfectly localized for

Inear chirps $c_T(t)$ of infinite duration:

$$\lim_{T\to\infty}\hat{S}^h_{c_T}(t,\omega)=\delta(\omega-\mathsf{a} t)$$

2 Hermite functions $h_M(t)$ of infinite order (F., JFAA'12):

$$\hat{S}^{h}_{h_{\mathcal{M}}}(t,\omega) \stackrel{M
ightarrow \infty}{\longrightarrow} \delta(t^{2}+\omega^{2}-2(M-1))$$

- 4 同 ト 4 ヨ ト 4 ヨ ト

From uncertainty... sharp localization ... to localization sparsity Spectrogram geometry reassignment

Hermite functions

From uncertainty... sharp ...to localization spars Spectrogram geometry reass

sharp localization sparsity reassignment

Hermite functions

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty

From uncertainty... sharp localization ...to localization sparsity Spectrogram geometry reassignment

Hermite functions

M = 7 - Wigner frequency time spectro. reass. spectro. frequency frequency

time

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty

time

From uncertainty... shar ...to localization spar Spectrogram geometry reas

sharp localization sparsity reassignment

Hermite functions

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty

... to localization

reassignment

Hermite functions

M = 18 - Wigner

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty

sharp localization sparsity reassignment

Hermite functions

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty

sharp localization sparsity reassignment

reassignment and uncertainty

Result

The minimum uncertainty Gabor logon $h(t) = \pi^{-1/4} e^{-t^2/2}$ is such that

$$W_{h}(t,\omega) = 2 e^{-(t^{2}+\omega^{2})} \Rightarrow \Delta_{t\omega}(W_{h}) = 1$$
$$S_{h}^{h}(t,\omega) = e^{-\frac{1}{2}(t^{2}+\omega^{2})} \Rightarrow \Delta_{t\omega}(S_{h}^{h}) = 2$$
$$\hat{S}_{h}^{h}(t,\omega) = 4 e^{-2(t^{2}+\omega^{2})} \Rightarrow \Delta_{t\omega}(\hat{S}_{h}^{h}) = \frac{1}{2}$$

Interpretation

$$\frac{1}{2} < 1 \Rightarrow$$
 Heisenberg defeated?

э

(日) (同) (三) (三)

sharp localization sparsity reassignment

reassignment and uncertainty

Resolving the logons paradox

- General remark: as for Fourier, sharp localization not to be confused with resolution (i.e., ability to separate closely spaced components)
- **2** Complete picture: reassignment = squeezed distribution + vector field $\mathbf{r}_x(t,\omega) = (\hat{t}_x(t,\omega) t, \hat{\omega}_x(t,\omega) \omega)^t$ such that

$$\mathbf{r}_{x}(t,\omega)=rac{1}{2}
abla\log S^{h}_{x}(t,\omega)$$

- **Interpretation**: basins of attraction
- Open question: geometry of such basins and relationship with Heisenberg?

- 4 回 ト 4 ヨト 4 ヨト

on extrema Voronoi and Delaunay a simplified model

factorization

Bargmann

With a "circular" Gaussian window, the STFT can be expressed as $F_x^h(z) = \mathcal{F}_x^h(z) e^{-|z|^2/4}$, with $z = \omega + \jmath t$ and $\mathcal{F}_x^h(z)$ an entire function of order at most 2

Weierstrass-Hadamard

$$\mathcal{F}_x^h(z) = e^{Q(z)} \prod_n \left(1 - \tilde{z}_n\right) \exp\left(\tilde{z}_n + \tilde{z}_n^2/2\right),$$

where Q(z) is a quadratic polynomial and $\tilde{z}_n = z/z_n$

Interpretation

Characterization by zeroes and, by duality, by local maxima

・ロト ・同ト ・ヨト ・ヨト

From uncertainty... on extrema ...to localization Spectrogram geometry a simplified model

more on extrema

Motivation

Better understanding of reassigned distributions:

- Simplified modeling
- Oltimate localization properties

Proposed approach

- Data: white Gaussian noise
- **2** Time-frequency distribution: Gaussian spectrogram
- Characterization: identification of local extrema (zeroes and maxima) + Voronoi tessellation and Delaunay triangulation
- Analysis: distribution of cell areas, lengths between extrema and heights of local maxima

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

on extrema Voronoi and Delaunay a simplified model

an example

spectrogram (wGn)

æ

spectrogram (logon)

on extrema Voronoi and Delaunay a simplified model

time-frequency patches

Mean arrangement

• Average connectivity $\approx 6 \Rightarrow$ tiling with hexagonal cells

Maximum packing of circular patches

(日) (同) (三) (三)

From uncertainty... ...to localization Spectrogram geometry a simplified model

predictions

Hexagonal tiling geometry

$$D_M/d_m = \sqrt{3}; N_M/N_m = 1/3; A_M/A_m = 3$$

▲白◇ ▲ 油 ▶ ▲ 油 ▶

From uncertainty... on extrema ...to localization Voronoi and Delaunay Spectrogram geometry a simplified model

simulation results

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty

on extrema Voronoi and Delaunay a simplified model

comparison with model

<ロ> <同> <同> < 同> < 同>

on extrema Voronoi and Delaunay a simplified model

analysis

Distributions of lengths and areas

- Ratios max/min: dispersion but reasonable agreement (in the mean) between experimental results and theoretical predictions
- **②** Ranges of values: if we call "effective domain" of the minimum uncertainty logon the circular domain which encompasses 95% of its energy, its radius and area are equal to ~ 2.6 and 21.8, to be compared to the values $d_M/\sqrt{3} \sim 3$ and $2\pi/(3\sqrt{3})A_M \sim 21.8$ attached to the hexagonal tiling

Interpretation

Tiling cells \sim minimum uncertainty logons

< ロ > < 同 > < 回 > < 回 >

on extrema Voronoi and Delaunay a simplified model

local maxima and Voronoi cells areas (1)

Distributions

- Heights: well-described by a Gamma distribution
- Areas: idem and similar to the heights distribution for a proper renormalization

From uncertainty... on extrema ...to localization Voronoi and Delau Spectrogram geometry a simplified model

local maxima and Voronoi cells areas (2)

Proposition

The value $|F|_*$ of a local maximum of the STFT magnitude and the area A of the associated Voronoi cell satisfy the uncertainty-type inequality $A.|F|_* \ge 3\sqrt{6}$

< ロ > < 同 > < 回 > < 回 >

on extrema Voronoi and Delaunay a simplified model

beyond the mean model

Random Gabor expansion

Previous results suggest a possible modeling of Gabor spectrograms as

$$S_x^h(t,\omega) = \left|\sum_m \sum_n c_{mn} F_h^h(t-t_m,\omega-\omega_n)\right|^2$$

with

- locations (t_m, ω_n) distributed on some suitable randomized version of a triangular grid
- ② magnitudes of the weights c_{mn} Gamma-distributed
- Iocations and weights partly correlated

< ロ > < 同 > < 回 > < 回 >

Concluding remarks

- Time-frequency energy distributions
 - Sparse representations
 - Ultimate localization constrained by uncertainty
- 2 Spectrogram geometry
 - New insights on reassignment
 - Complete characterization by local maxima in the Gabor case?
- Analysis/synthesis
 - Modeling sparse time-frequency distributions?
 - New approaches to data driven representations?

- - E - - E

some references

Available at perso.ens-lyon.fr/patrick.flandrin/publis.html and/or upon request at flandrin@ens-lyon.fr, with some Matlab codes at http://perso.ens-lyon.fr/patrick.flandrin/software2.html

- P. Flandrin, 2012: "A note on reassigned Gabor spectrograms of Hermite functions," J. Fourier Anal. Appl. doi: 10.1007/s00041-012-9253-2
- P. Flandrin, E. Chassande-Mottin, F. Auger, 2012: "Uncertainty and spectrogram geometry," in Proc. 20th European Signal Processing Conf. EUSIPCO-12, Bucharest (RO).
- P. Flandrin, P. Borgnat, 2010: "Time-frequency energy distributions meet compressed sensing," IEEE Trans. on Signal Proc. Vol. 58, No. 6, pp. 2974-2982. doi: 10.1109/TSP.2010.2044839
- P. Borgnat, P. Flandrin, 2008: "Time-frequency localization from sparsity constraints," in Proc. IEEE Int. Conf. on Acoust., Speech and Signal Proc. ICASSP-08, pp. 3785-3788, Las Vegas (NV).
- J. Xiao, P. Flandrin, 2007 : "Multitaper time-frequency reassignment for nonstationary spectrum estimation and chirp enhancement," *IEEE Trans. on Signal Proc.*, Vol. 55, No. 6 (Part 2), pp. 2851-2860.
- P. Flandrin, F. Auger, E. Chassande-Mottin, 2003: "Time-frequency reassignment From principles to algorithms," in : Applications in Time-Frequency Signal Processing (A. Papandreou-Suppappola, ed.), Chap. 5, pp. 179-203, CRC Press.
- P. Flandrin, P. Gonçalvès, 1996: "Geometry of affine time-frequency distributions," Appl. Comp. Harm. Anal., Vol. 3, pp. 10-39.

・ロン ・四 と ・ ヨ と ・ ヨ と