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From uncertainty. .. from “or” to “and”

Heisenberg refined

Heisenberg (classical)

Second-order (variance-type) measures for the individual time and
frequency spreadings of a signal x(t) € L?(R) with spectrum X(w):

1

2 [P 2200:= % [ixePs

A%(x) =
t(X) EX o

Theorem (Weyl, '27; Gabor, '46, ...

Au(x) Au(X) >

)

with lower bound attained for Gabor “logons”, i.e., Gaussian
waveforms x,(t) = C e*®, o < 0
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From uncertainty. .. from “or” to “and”

Heisenberg refined

Heisenberg (time-frequency)

Second-order (variance-type) measure for the time-frequency
spreading of a signal x(t) with energy distribution C.(t,w; ¢):

d
Avo(Cx) : // <+ T2 2) Cu(t, w; ) dt%

Theorem (Janssen, '91)

Wigner = Ag,(Wy) >1
Spectrogram = A, (S") > 2,

with lower bounds attained for logons and matched Gaussian
windows, i.e., h(t) = x(t) = x.(t)
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From uncertainty. .. from “or” to “and”

Heisenberg refined

time-frequency “covariance”

Definition (Cohen, '95)

c(x) ::/t]x(t)|2jtargx(t) dt

Interpretation

Covariance quantifies the coupling between time and instantaneous
frequency

c(x) = (twx(t))

Covariance is zero in case of no coupling

c(x) = (twx(t)) = (t) {wx(1)) = (t) (w) =0
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From uncertainty. .. from “or” to “and”

Heisenberg refined

Schrodinger

Theorem (Schrédinger, '30)

Ad(x) Au(X) > % 1+ 2(x),

with lower bound attained for Gaussian waveforms of the form
2 o
x(t) = eY TP with Re{a} < 0.

Terminology

Waveforms x, attaining the lower bound correspond to “squeezed
states” in quantum mechanics and “linear chirps” in signal theory

Interpretation

Possibility of localization in the plane beyond pointwise energy
concentration
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sharp localization
...to localization sparsity
reassignment

from “logons” to “chirps”
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sharp localization
...to localization sparsity
reassignment

effective localization

Wigner and beyond

Re{loi?Lo_ Wi (t,w) = 0 (w — (B + 2Im{a}t))

@ Generalization: localization on more “arbitrary” curves of the
plane by modifying the symmetry rules underlying the Wigner
distribution (Gongalves and F., '96)

@ C(aveat: global localization holds for monocomponent signals
only

© ‘sparsity”
© ‘reassignment”
© constrained EMD (Pustelnik et al., '12 + poster)
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sharp localization
... to localization sparsity
reassignment

rationale

Fourier

Duality between distribution and correlation:

Cx(t>W; (P) = f&ﬂtj:T—»w {80(6-7 7—) AX(‘E? T)} )

with A (&, 7) = FroeFur {Wi(t,w)} a TF correlation function
(“Ambiguity Function™)

Consequences

@ signal terms located around the origin of the AF plane

@ cross-terms located outside

@ ‘“low-pass” filtering (e.g., Aj(&, 7) for the spectrogram)
= trade-off between localization and cross-terms reduction
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sharp localization

... to localization sparsity
reassignment

example

Wigner-Ville Distribution Ambiguity Function
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Frequency Sparsity
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sharp localization
... to localization sparsity
reassignment

sparsity perspective

Discrete time

Signal of dimension N = TFD of dimension N> when computed
over N frequency bins

Few AM-FM components

K < N = at most KN < N? non-zero values in the TF plane

Minimizing £g-norm not feasible, but near-optimal solution by
minimizing ¢1-norm (in the spirit of “basis pursuit” or “compressed
sensing”)
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sharp localization
... to localization sparsity
reassignment

sparse solution

From /5 to ¢; (F. & Borgnat, '08)
@ Select a domain €2 neighbouring the origin of the AF plane

@ Find the sparsest time-frequency distribution p(t,w) by
solving the program

il ol st F{p} — Ax =0l r)ea
© The exact equality over €2 can be relaxed according to

min f[plly st [F{p} — Axll> < €l (¢ ryeq
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sharp localization

... to localization
reassignment

toy example

component AM-FM signal, 128 data points

signal

TF model

frequency

Patrick Flandrin* On Time-Frequency Sparsity and Uncertainty




sharp localization

... to localization sparsity
reassignment

Wigner-Ville

wv

frequency

time
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sharp localization

... to localization sparsity
reassignment

ambiguity function

wv
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sharp localization

... to localization sparsity
reassignment

selection

wv
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Doppler
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sharp localization

... to localization sparsity
reassignment

sparse solution

Wy | —arr
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sharp localization
... to localization sparsity
reassignment

domain selection
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sharp localization
... to localization sparsity
reassignment

domain selection

Interpretation

@ || too small = not enough auto-terms = TFD not enough
“sharp”: penalty with entropy (H)

@ |Q| too large = inclusion of cross-terms = TFD “sharp” but
discontinuous: penalty with total variation (TV)

Q] = arg mf;n(H + TV)

~ "Heisenberg cell”, i.e., minimum quantity of information
necessary for coding (in both magnitude and phase) auto-terms
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sharp localization
...to localization sparsity
reassignment

rationale

Smoothing relationship

Cx(t,w;go):// Wi(s, €) &(s — t, € — w) dtj—:

Key idea (Kodera et al., '76, Auger & F., '95)

© replace the geometrical center of the smoothing TF domain
(defined by ®(t,w)) by the center of mass of the Wigner
distribution over this domain

@ reassign the value of the smoothed distribution to this local
center of mass:

&x(t,w; ) = // Cu(1,& )0 (t — (7, 8),w — UAJX(T,f)) d'r%
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sharp localization

... to localization sparsity
reassignment

spectrogram = smoothed Wigner

Wigner-Ville spectrogram

frequency
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sharp localization

... to localization sparsity
reassignment

spreading of auto-terms

Wigner-Ville spectrogram

frequency
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sharp localization

... to localization sparsity
reassignment

cancelling of cross-terms

Wigner-Ville spectrogram

frequency
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sharp localization

.. to localization sparsity
reassignment

reassignment

Wigner-Ville reassigned spectrogram
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sharp localization
...to localization sparsity
reassignment

reassignment and localization

Two examples

For a Gaussian window h(t) = 7~ /4 e~t*/2, reassigned

spectrograms are asymptotically perfectly localized for

@ linear chirps cr(t) of infinite duration:
. ~h o
Tlinoo Ser(t,w) = d(w — at)
@ Hermite functions hp(t) of infinite order (F., JFAA'12):

5 (t,w) "2 6(22 + w? — 2(M — 1))
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sharp localization

...to localization sparsity
reassignment

Hermite function

M = 2 - Wigner

frequency

time

spectro. reass. spectro.

frequency

O

frequency

time time
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sharp localization
...to localization sparsity
reassignment

Hermite functions

order = 2 (theory)
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sharp localization

...to localization sparsity
reassignment

Hermite function

M =7 - Wigner

frequency
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spectro. reass. spectro.
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time time
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Hermite functions
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... to localization

sharp localization
sparsity
reassignment

order = 7 (theory)
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sharp localization

...to localization sparsity
reassignment

Hermite function

M = 18 — Wigner

frequency
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spectro. reass. spectro.
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sharp localization
...to localization sparsity
reassignment

Hermite functions

order = 18 (theory)
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sharp localization
...to localization sparsity
reassignment

reassignment and uncertainty

The minimum uncertainty Gabor logon h(t) = 7~ /4 e~%*/2 is such
that

Wi(t,w) = 2=+ = Ay, (W) =1

Sh(t,w) = e 2P+ = A, (SF) =2
1

3[:(1.',&)) _ 4e72(t2+w2) = Atw(gflz) — 5

Interpretation

% < 1 = Heisenberg defeated?
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sharp localization
...to localization sparsity
reassignment

reassignment and uncertainty

Resolving the logons paradox

© General remark: as for Fourier, sharp localization not to be
confused with resolution (i.e., ability to separate closely
spaced components)

@ Complete picture: reassignment = squeezed distribution +
vector field r,(t,w) = (£(t,w) — t,Ox(t, w) — w)? such that

1
rx(tv w) = Ev log S)?(ta w)

© Interpretation: basins of attraction

@ Open question: geometry of such basins and relationship with
Heisenberg?
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on extrema
Voronoi and Delaunay
Spectrogram geometry a simplified model

factorization

Bargmann

With a “circular” Gaussian window, the STFT can be expressed as
Fh(z) = F'(z) e 12"/ with z = w + jt and F/(z) an entire
function of order at most 2

Weierstrass-Hadamard

Fi(z) = @ T (1 - 2,) exp (20 + 22/2)

where Q(z) is a quadratic polynomial and z, = z/z,

Interpretation

Characterization by zeroes and, by duality, by local maxima
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on extrema
Voronoi and Delaunay
Spectrogram geometry a simplified model

more on extrema

Better understanding of reassigned distributions:
@ Simplified modeling
@ Ultimate localization properties

Proposed approach

@ Data: white Gaussian noise

@ Time-frequency distribution: Gaussian spectrogram

© Characterization: identification of local extrema (zeroes and
maxima) + Voronoi tessellation and Delaunay triangulation

@ Analysis: distribution of cell areas, lengths between extrema
and heights of local maxima
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extrema
Voronoi and Delaunay
geometry a simplified model

an example

spectrogram (wGn) spectrogram (logon)

frequency
frequency

time time

Voronoi/Delaunay (min)
<t/ T

Voronoi/Delaunay (max)

=7

+

frequency
frequency
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Voro and Delaunay
a simplified model

Spectrogram geometry

time-frequency patches

Mean arrange t

© Average connectivity =~ 6 = tiling with hexagonal cells

Voronoi/Delaunay spectrogram (logon)

frequency

time time

@ Maximum packing of circular patches
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[ ma
Voronoi and Delaunay
Spectrogram geometry a simplified model

predictions

Hexagonal tiling geomet

Dy /dm = V/'3; Njy /N = 1/3; Apg /A = 3
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extrema
Voronoi and Delaunay
Spectrogram geometry a simplified model

simulation results

distance : 5.24 number: 24 area:17.6
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on extrema
Voronoi and EILEV
Spectrogram geometry a simplified model

comparison with model
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on extrema
Voronoi and Delaunay
Spectrogram geometry a simplified model

analysis

Distributions of lengths and areas

@ Ratios max/min: dispersion but reasonable agreement (in the
mean) between experimental results and theoretical
predictions

@ Ranges of values: if we call “effective domain” of the
minimum uncertainty logon the circular domain which
encompasses 95% of its energy, its radius and area are equal
to ~ 2.6 and 21.8, to be compared to the values dM/\/g ~ 3
and 27/(3v/3)Ap ~ 21.8 attached to the hexagonal tiling

Interpretation

Tiling cells ~ minimum uncertainty logons
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Voro and Delaunay
Spectrogram geometry a simplified model

local maxima and Voronoi cells areas (1)

Distributions

@ Heights: well-described by a Gamma distribution

@ Areas: idem and similar to the heights distribution for a
proper renormalization

areas of Voronoi cells (red) and local maxima of STFT magnitude (blue)

—0- : data
—+-: Gamma fit
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on extrema
Voronoi and Delaunay
Spectrogram geometry a simplified model

local maxima and Voronoi cells areas (2)

Proposition

The value |F|. of a local maximum of the STFT magnitude and
the area A of the associated Voronoi cell satisfy the
uncertainty-type inequality A.|F|, > 3v/6

joint p.d.f.

o

areas of Voronoi cells

|
0 0.5 1 1.5 2 25 3
local maxima of STFT magnitude

2
Sketch of proof: 2 < [[,(t? + w?) |Fi(t,w)[?dt 32 < (M)

V.
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on extrema
Voronoi and Delaunay
Spectrogram geometry a simplified model

beyond the mean model

Random Gabor expansion
Previous results suggest a possible modeling of Gabor
spectrograms as

2

SHt,w) =) cmn Ff(t = tm,w — wn)
m n
with
@ locations (tm,wp) distributed on some suitable randomized
version of a triangular grid

@ magnitudes of the weights ¢, Gamma-distributed

© locations and weights partly correlated
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Concluding remarks

@ Time-frequency energy distributions

e Sparse representations
e Ultimate localization constrained by uncertainty

@ Spectrogram geometry

o New insights on reassignment
o Complete characterization by local maxima in the Gabor case?

© Analysis/synthesis

e Modeling sparse time-frequency distributions?
o New approaches to data driven representations?
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