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Introduction and Motivation

•Classical signal analysis methods, such as FFT or wavelets based 
algorithms, are good for linear and stationary signals, but may not 
be effective to handle nonlinear and non-stationary signals.

•Goals: develop adaptive signal decomposition methods  to treat 
nonlinear and non-stationary signals more effectively. 
•Inspired by the Empirical Mode Decomposition (EMD) method, 
the Hilbert-Huang Transform (HHT), pioneered by Huang, etc. 
(’98).

X(t) = cos(4πλ(t)t), t ∈ [0, 0.5] , x(t) = x(1− t), t ∈ [0.5, 1],

λ(t) = 4 + 32 ∗ t

.

Fourier spectrum Time dependent frequency
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Introduction and Motivation

x1 components frequency

x2 components frequency
x1 = sin t + 0.3 sin 12t
x2 = sin 0.5t + 0.3 sin (0.2t2 + t)
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We want to achieve:

x1 components frequency

x2 components frequency
x1 = sin t + 0.3 sin 12t
x2 = sin 0.5t + 0.3 sin (0.2t2 + t)

Jingfang Liu The Mathematical Study of EMD

Our strategy: localize treatments and analysis.
Friday, February 1, 2013



Instantaneous Frequency (IF)

• A commonly used one is through Hilbert transform:

 

•Example: 

Z(t) = X(t) + iY (t) = a(t)eiθ(t)

θ(t) = arctan
(

Y (t)
X(t)

)
, a(t) =

√
X2(t) + Y 2(t).

Analytical signal:

Instantaneous Frequency: ω(t) = dθ(t)
dt

X(t) = sin(ωt), Y (t) = H(X)(t) = cos(ωt), ω(t) = ω.

Y (t) = H(X)(t) =
1
π

P
∫ ∞

−∞

X(τ)
t− τ

dτ
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Instantaneous Frequency (IF)

•The IF defined are controversial: may lead to inconsistency or 
negative frequencies, which are meaningless.

•An example:

(1) If b = 0, ω(t) = 1, this is perfect.

(2) If b != 0, ω(t) can obtain a continuum reading.

914 N. E. Huang and others
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Figure 1. Physical interpretation of instantaneous frequency. (a) The phase plane for the model
functions of x(t) = α + sin t. (a) α = 0; (b) α < 1; (c) α > 1. (b) The unwrapped phase function
of the model functions. (c) The instantaneous frequency computed according to equation (3.4).

The phase plot of x–y is still a simple circle independent of the value of α, but the
centre of the circle will be displaced by the amount of α as illustrated in figure 1a.
If α < 1, the centre is still within the circle. Under this condition, the function has
already violated a restriction, for its Fourier spectrum has a DC term; nevertheless,
the mean zero-crossing frequency is still the same as in the case for α = 0, but the
phase function and the instantaneous frequency will be very different as shown in
figures 1b, c. If α > 1, the centre is outside the circle; thus, the function no longer
satisfies the required conditions. Then both the phase function and the instantaneous
frequency will assume negative values as shown in figures 1b, c, which are meaningless.
These simple examples illustrate physically that, for a simple signal such as a sine
function, the instantaneous frequency can be defined only if we restrict the function
to be symmetric locally with respect to the zero mean level.

For general data, any riding waves would be equivalent to the case of α > 1 locally;

Proc. R. Soc. Lond. A (1998)

picture from Huang etc. (’98).

• Solid line: b > 0,

• Dash-dot line: b < 0.

X(t) = cos(t) + b, Y (t) = sin(t)

”well-behaved” frequency

1 Hilbert transform of X (t)

Y (t) =
1

π
P

∫ ∞

−∞

X (t ′)

t − t ′
dt ′,Z (t) = X (t) + iY (t) = a(t)e iθ(t)

2 instantaneous frequency ω = dθ(t)
dt

x = α+ sin t phase plene phase angle
People don’t want negative frequencies.

Jingfang Liu The Mathematical Study of EMDFriday, February 1, 2013



Instantaneous Frequency (IF)

•Many different ways to introduce Instantaneous Frequency of a 
signal.  The approach we take: find a moving average curve v(t), such 
that ((x(t)-v(t)), (x(t)-v(t))’) form a regular rotation.

•By rotation speed:

 Instantaneous Frequency: ω(t) = dθ(t)
dt

Xu(t) =
X(t)
a(t)

Given signal X(t)

a(t) the envelope of X(t)

Y (t) = dX(t)
dt

Yu(t) = Y (t)
b(t)

b(t) is the envelope of Y (t)

rotation angle: 

We use this definition

ω(t) = arctan Yu(t)
Xu(t)
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IF from Hilbert transform IF from rotation angle 

Instantaneous Frequency (IF)
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Empirical Mode Decomposition (EMD)

•EMD decomposes the signal into summation of intrinsic mode 
functions (IMF’s), an adaptive nonlinear sparse representation,

•Each IMF has well behaved instantaneous frequency.

•Each IMF has certain properties that make it look like a mono-
component wave. 

•The decomposition is achieved by a sifting algorithm.

X(t) = I1(t) + I2(t) + · · · + Im(t) + W (t)

✦   A zero crossing between a minimum and maximum points.
✦   Average of upper and lower envelopes (defined by the extrema) is 
near zero.

Ii(t) is an IMF, W (t) is the trend function.

Friday, February 1, 2013



Sifting Algorithm for EMD

• Find all the local max and all the local min of X(t).

• Obtain the “upper envelope” EU (t) by connecting the
local max through a cubic spline.

• Obtain the “lower envelope” EL(t) in a similar way.

• Define S(X(t)) = X(t)− 1
2 (EU (t) + EL(t)).

Iterating S to obtain the IMF’s, I1(t) = limn→∞ Sn(X(t)).

Ij(t) = lim
n→∞

Sn(X(t)− I1(t)− · · ·− Ij−1(t))

Friday, February 1, 2013



Challenges of EMD

•One of the main challenges of EMD was lacking of mathematical 
framework, significant progress has been made in recent years.

•The decomposition is nonlinear :

•Many alternative algorithms have been proposed and many successful 
applications of EMD have been studies. Some of them are remarkable.

•Groups (mathematics) working on the subjects: Huang,  Daubechies, Hou, 
Riemenschneider, Yang, Echeverria, Crowe, Flandrin, Rilling, Gonalves, Zhou, 
Wang, Pines, Peng, Salvino, Wu, Xu, Osher, ......

  

An Intrinsic Mode Function(IMF) should satisfy two conditions:
1 in the whole data set, the number of extrema and the number

of zero crossings must either equal or differ at most by one
2 at any point, the mean value of the envelope defined by the

local maxima and the envelope defined by the local minima is
zero

Finding IMF’s: Empirical Mode Decomposition

x =
N∑

k=1

xk + f

This decomposition is nonlinear. Suppose

y =
M∑

k=1

yk + g , z = x + y , z =
K∑

k=1

zk + h

then,
zk != xk + yk

Jingfang Liu The Mathematical Study of EMD

An Intrinsic Mode Function(IMF) should satisfy two conditions:
1 in the whole data set, the number of extrema and the number

of zero crossings must either equal or differ at most by one
2 at any point, the mean value of the envelope defined by the

local maxima and the envelope defined by the local minima is
zero

Finding IMF’s: Empirical Mode Decomposition

x =
N∑

k=1

xk + f

This decomposition is nonlinear. Suppose

y =
M∑

k=1

yk + g , z = x + y , z =
K∑

k=1

zk + h

then,
zk != xk + yk

Jingfang Liu The Mathematical Study of EMD

An Intrinsic Mode Function(IMF) should satisfy two conditions:
1 in the whole data set, the number of extrema and the number

of zero crossings must either equal or differ at most by one
2 at any point, the mean value of the envelope defined by the

local maxima and the envelope defined by the local minima is
zero

Finding IMF’s: Empirical Mode Decomposition

x =
N∑

k=1

xk + f

This decomposition is nonlinear. Suppose

y =
M∑

k=1

yk + g , z = x + y , z =
K∑

k=1

zk + h

then,
zk != xk + yk

Jingfang Liu The Mathematical Study of EMD

But
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Iterative Filters  

Main Idea: Replace the mean of upper and lower envelopes in the 
classical EMD algorithm by the average obtain by low pass filters (data 
dependent),

Moving local average: in the continuous case

KX(X(t)) =
∫

X(t + s)w(s,X)ds,

∫
w(s,X)ds = 1.

In the discrete case

KX(X(n)) =
∑

j

wj(X)X(n + j),
∑

j

wj(X) = 1.

Define
SX(X(t)) = X(t)−KX(X(t)),

And the IMF’s are obtained by

I1(t) = lim
n

Sn
X(X(t)), Ik(t) = lim

n
Sn

X(X(t)−
k−1∑

j=1

Ij(t)).

Friday, February 1, 2013



Adaptive Iterative Filters  

With certain adaptive low pass filters, the convergence of the iterative filters can be proved. 

Two layers of iterations: 

Inner iterations: I1(t) = lim
n

Sn
X(X(t)), Ik(t) = lim

n
Sn

X(X(t)−
k−1∑

j=1

Ij(t)).

SX(X(t)) = X(t)−
∫ l(t)

−l(t)
X(s + t)w(s)ds = X(t)−

∫ L

−L
X(g(t, s) + t)w(s)ds

g(t, s) : [−l(x), l(x)] "→ [−L,L], for example: g(t, s) = l(t)h(s).

we take g(t, s) = l(t)s.

Outer iterations: X(t) =
∑m

i=1 Ii(t) + W (t)

Hope to have decreased numbers of local maxima (minima) in Ii

linear map.

Friday, February 1, 2013



Adaptive Iterative Filters  

If X(t) strictly increases, and c1(t) + l′(t)c2(t) > 0,
then SX(X(t)) strictly increases.

If X(t) strictly decreases, and c1(t) + l′(t)c2(t) < 0,
then SX(X(t)) strictly decreases.

Theorem 1

No new extremal point is generated during the iterations
Filter length decreases on the left of the maxima of X ′(t) and grows on the right
of the maxima.

c1(t) = KX(X ′(t)−X ′(l(t)h(s) + t)) =
∫ L
−L[X ′(t)−X ′(l(t)h(s) + t)]w(s)ds

c2(t) = KX(X ′(t)−X ′(l(t)h(s)+t)h(s)) =
∫ L
−L[X ′(x)−X ′(l(t)h(s)+t)]h(s)w(s)ds

Friday, February 1, 2013



Adaptive Iterative Filters  

Theorem 1I

δn = ‖Kn+1(|Xn+1(t)|)‖∞
‖Kn(|Xn(t)|)‖∞

εn = ‖Kn+1(Xn+1(t))‖∞
‖Kn(Xn(t))‖∞

Define: Kn(Xn(t)) =
∫ L
−L Xn(g(t, s) + t)wn(s)ds

If
∏n

i=1 εn → 0 as n→∞, then Xn(t) converges.

If
∏n

i=1 δi → c > 0 as n→∞, then X∞(t) #= 0.

Or equivalently,  some conditions on filter selection, for example:

Two filters at the same location in consecutive iterations shouldn’t be  too much different. 

γKn(Xn(t)) ≤
∫ ln(t)+ln+1(t)
−(ln(t)+ln+1(t))

Xn(t + s)(wn+1 ∗ wn)(s)ds

where γ is close to zero and Kn(Xn(t)) > 0.
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PDE-based Filters  algorithm comparison

different filters

Gaussian filter double average filter

constructed filter 1 constructed filter 2

Jingfang Liu The Mathematical Study of EMD

Gaussian Filter :

The Mathematical Study of EMD

Consider ut = kuxx

Φ(x , t) =
1√
4πkt

exp (− x2

4kt
)

For the initial condition u(x , 0) = g(x), the solution at time t

u(x , t) = g(x) ∗ Φ(x , t)

Jingfang Liu The Mathematical Study of EMD
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Fokker-Planck equations:

The Mathematical Study of EMD

drawback of heat equation: infinite propagation speed , nonlocal
Consider

ut = −α(fu)x + β(g2u)xx

1 g(a) = g(b) = 0, g(x) > 0 for x ∈ (a, b)

2 f (a) > 0, f (b) < 0

3 There’s a steady state

4 u = 0 for x ∈ (−∞, a) and x ∈ (b,∞), u ≥ 0 for x ∈ [a, b]

Local
Use the solution in the steady state with the initial condition δ(x)
as the filter
By adjusting functions f (x),g(x) and coefficients α,β we can get
the filter shape we want

Jingfang Liu The Mathematical Study of EMD
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filters (the steady state solution) have finite support

algorithm comparison

different filters

Gaussian filter double average filter

constructed filter 1 constructed filter 2
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algorithm comparison

different filters

Gaussian filter double average filter

constructed filter 1 constructed filter 2

Jingfang Liu The Mathematical Study of EMD

Filter 1 Filter 2
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A Simple Example  
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Figure 2. Left: the original function f(t) = sin(2t) + sin(4t). Middle and
Right: the IMF’s separated by the proposed method.
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Figure 3. Left: A nonstationary function. The middle and right plots are
the first two IMF’s separated by the proposed alternative EMD algorithm.

Example 2. We test our algorithm on a simple nonstationary function given by

f(t) =
7

2
t + sin(4t) +

1

2
sin(63t).

The results are shown in Figures 3 and 4. As one can see, the three components have been

separated. The first IMF gives 1
2 sin(63t) and the second gives sin 4t. The residue (trend)

is 7
2t. The instantaneous frequencies for the first two IMF’s are shown in Figure 4. The

instantaneous frequency function for the IMF’s lie around 63 and 4 respectively, as they are

supposed to be.

Example 3. We test our algorithm on a frequency modulated signal with additive noise.

Here the signal is given by

f(t) = 2 sin(2t + 0.65 sin(t2)) + 5 sin(9.125t + 0.037t2) + ε(t),

where ε(t) is a spatially uniformly distributed random variable in [−0.5, 0.5]. The IMF’s are

shown in Figure 5. The first two IMF’s correspond to noise. The last IMF is the residual
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Figure 4. Left: the third IMF (trend) of the signal shown on the left in
Figure 3. The middle and right pictures show the instantaneous frequencies
for the second (middle) and third (right) IMF’s shown in Figure 3.
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Figure 5. Top left: the original function of two FM signals with additive
noise. The others are the IMF’s separated by our method.

trend. The most relevant IMF’s are the 4th and the 5th, which correspond to the two FM

components. Their instantaneous frequencies are shown in Figure 6.

Example 4. In this example we test the impact of noise. This is a rather challenging case

given the amount of noise and the proximity of the two frequencies. Let

f(t) = sin(2t) + 2 sin(4t) + η(t),
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Example 4. In this example we test the impact of noise. This is a rather challenging case

given the amount of noise and the proximity of the two frequencies. Let

f(t) = sin(2t) + 2 sin(4t) + η(t),
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trend. The most relevant IMF’s are the 4th and the 5th, which correspond to the two FM

components. Their instantaneous frequencies are shown in Figure 6.

Example 4. In this example we test the impact of noise. This is a rather challenging case

given the amount of noise and the proximity of the two frequencies. Let

f(t) = sin(2t) + 2 sin(4t) + η(t),

Original signal
X(t) = 7

2 t + sin(4t) + 1
2 sin(63t)

The Trend IF for the first IMF IF for the second IMF

Iterative Filters separate the oscillations from the trend and the IMF’s have well 
separated frequency range, indicate that they are orthogonal. 

First Component Second Component
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Another Example 
algorithm comparison

Example 3: x = sin t + sin 1.4t

x 1 2

3 4 5
1 by sifting process, 2 by double average filter, 3 by Gaussian filter
4 by constructed filter 1 and 5 by constructed filter 2.

Jingfang Liu The Mathematical Study of EMD

algorithm comparison

Example 3: x = sin t + sin 1.4t

x 1 2

3 4 5
1 by sifting process, 2 by double average filter, 3 by Gaussian filter
4 by constructed filter 1 and 5 by constructed filter 2.

Jingfang Liu The Mathematical Study of EMD

algorithm comparison

Example 3: x = sin t + sin 1.4t

x 1 2

3 4 5
1 by sifting process, 2 by double average filter, 3 by Gaussian filter
4 by constructed filter 1 and 5 by constructed filter 2.

Jingfang Liu The Mathematical Study of EMD

EMD: Sifting

algorithm comparison

Example 3: x = sin t + sin 1.4t

x 1 2

3 4 5
1 by sifting process, 2 by double average filter, 3 by Gaussian filter
4 by constructed filter 1 and 5 by constructed filter 2.

Jingfang Liu The Mathematical Study of EMD

IF: Gaussian

algorithm comparison

Example 3: x = sin t + sin 1.4t

x 1 2

3 4 5
1 by sifting process, 2 by double average filter, 3 by Gaussian filter
4 by constructed filter 1 and 5 by constructed filter 2.

Jingfang Liu The Mathematical Study of EMD

IF: Double Average

algorithm comparison

Example 3: x = sin t + sin 1.4t

x 1 2

3 4 5
1 by sifting process, 2 by double average filter, 3 by Gaussian filter
4 by constructed filter 1 and 5 by constructed filter 2.

Jingfang Liu The Mathematical Study of EMD

IF: Filter 2
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An Example with Noise  

14 LUAN LIN, YANG WANG, AND HAOMIN ZHOU
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Figure 6. The instantaneous frequencies of the 4th and the 5th IMF’s
shown in Figure 5 respectively.
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Figure 7. Left: The original signal f(t) = sin(2t) + 2 sin(4t) + η(t) where
η(t) is an i.i.d. Gaussian noise with distribution N(0, 3). The other three
plots show the 9th, 10th and 11th IMF’s, respectively.

where η(t) is an i.i.d Gaussian random noise of distribution N(0, 3). The signal-to-noise

ratio is −5.6 dB. With the stopping criterion set as 10−4, our method yields 11 IMF’s. The

first 9 components essentially correspond to noise. Figure 7 plots the original signal and

the last three IMF’s. We omit the first eight IMF’s since they mainly correspond to the

noise. It is quite remarkable that the last two components actually closely recover the two

sinusoidal components in the original signal. We have also tested for uniform noise from -6

to 6. The noise-to-signal ratio is 6.8 dB. The result is quite similar.
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where η(t) is an i.i.d Gaussian random noise of distribution N(0, 3). The signal-to-noise

ratio is −5.6 dB. With the stopping criterion set as 10−4, our method yields 11 IMF’s. The

first 9 components essentially correspond to noise. Figure 7 plots the original signal and

the last three IMF’s. We omit the first eight IMF’s since they mainly correspond to the

noise. It is quite remarkable that the last two components actually closely recover the two

sinusoidal components in the original signal. We have also tested for uniform noise from -6

to 6. The noise-to-signal ratio is 6.8 dB. The result is quite similar.

Original 9th IMF

11th IMF10th IMF

Iterative Filters yield 11 IMF’s. The first 9 are essentially noise related. The
last two correspond to the sinusoidal components in the original signal, which
is actually given as X(t) = sin(2t) + 2 sin(4t) + η(t). The signal-to-noise ratio is
−5.6dB.

Friday, February 1, 2013



Adaptive Filters  
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Figure 8. The left figure shows EMD using uniform mask, where the orig-
inal is at the top and the other three are the IMF’s. The right figure shows
EMD using the aforementioned non-uniform mask, with a virtually perfect
decomposition.

Example 5. This example demonstrates how nonuniform mask can be used to treat a highly

nonstationary signal, courtesy of the authors of [7]. Let f(t) = cos(4πλ(t)t) + 2 sin(4πt)

where λ(t) is given by λ(t) = 4 + 32t for 0 ≤ t ≤ 0.5 and its symmetric reflection λ(t) =

λ(1 − t) for 0.5 ≤ t ≤ 1. As before we work with the discretized version of f(t) with

x(k) = f(k/N). To perform EMD using nonuniform double average filter mask one needs

to find a good mechanism for specifying the length of the mask at a given k. This is done

as follows in [7]: Let nj be the local extrema of the discretized x(k). The mask length at

k = nj is

w(nj) =
2N

nj+2 − nj−2
.

Now connect the points (nj , w(nj)) using a cubic spline. The mask length w(k) for any

other k is given by the interpolated value using the spline. Using this non-uniform mask

the EMD yields essentially a perfect decomposition with two IMF’s, see the right figure in

Figure 8. In comparison, the EMD using uniform mask is given on the left of Figure 8.

Example 6. We compare the traditional EMD with this alternative EMD using a couple

of real world data. Figure 9 is a partial side-by-side comparison of the two algorithms on

DST data. The traditional EMD yields 5 IMF’s while our method yields 7 IMF’s. Figures

9 and 11 compare the first 11 IMF’s of the rainfall data using our alternative EMD and the

original EMD, respectively. As one can see the similarities are unmistaken.

Original (top) and three 
IMF’s by uniform masks

Original (top) and two IMF’s 
by adaptive filters

The masks (the length of the filters) are selected adaptively based on 
the Theorem I and II (density of the local extrema). The adaptive 
algorithm obtain an almost perfect decomposition for this nonlinear, 
non-stationary signal.   
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One-Side (ENO) Adaptive Filters  

Sudden Changes in signal need one-side adaption

x1(t) = f(t) + 0.3 sin(4πt) + n(t),

Iterative filters without one-side adaption
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One-Side (ENO) Adaptive Filters  

Iterative filters with one-side adaption
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An Example on Real Data  

Original ECG data IMF’s by double average filters

Iterative Filters clearly separate the original ECG data into 
transient parts and regular oscillations. Note the 5th IMF is a 

oscillation can not be captured easily. 
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An Example on Real Data  

Gaussian Filters Fokker-Planck Filters

algorithm comparison

4 5 6
4 is by Gaussian filter, 5 is by the constructed filter 1, 6 is by the
constructed filter 2

Jingfang Liu The Mathematical Study of EMD

algorithm comparison

4 5 6
4 is by Gaussian filter, 5 is by the constructed filter 1, 6 is by the
constructed filter 2

Jingfang Liu The Mathematical Study of EMD
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An Example on Real Data  

Length of days
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An Example on Real Data  
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The original sonar data (top-left)  and its 9 IMF’s. It is clear that a transient 
component, especially singled out in the 4th-6th IMF’s, is picked up around 

t=3000. It actually corresponding to a real underwater target at that location. 
(jointly with F. Crosby, Q. Huynh and R. Goroshin, working in progress.)
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Conclusions and Future Work 

•EMD and Iterative Filters are robust to handle nonlinear 
and non-stationary signals, with great application potentials.

•The results can be viewed as sparse representations of 
data sets. 

•Some theoretical progress has been made. 

•There are more questions than answers in the subject.

•Possible applications in many other areas. 
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