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Subspace Representations

Monitor/sense with n nodes

v € R" is a snapshot of the system state
(e.g., temperature at each node)

v € R™ is a snapshot of the system state
(e.g., traffic rates at each monitor)
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Subspace Representations

Monitor/sense with n nodes
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Subspace Representations

Monitor/sense with n nodes

Each snapshot lies near a
low-dimensional subspace

S CR"

I A
1 |
e Using the subspace as a model for the data,
we can leverage these dependencies for
(e. detection, estimation and prediction.

Byte Count data from UW network
4
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Subspace Representations

Image with n pixels

(a) Dinosaur

Capture n 3-d object features with a 2-d image

(b) Teddy Bear 5
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Missing Data

In every problem mentioned, we have missing data.

In networks, communication links fail.

In the 3d object imaging problem, some features are not visible frol
some perspectives

In background and foreground separation, foreground pixels obscu
low-rank background pixels

In all problems, subsampling can improve processing speeds
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Subspace Identification: Full Data

Suppose we receive a sequence of length-n vectors that lie in a

d-dimensional subspace S:
V1,02, ...,V ..., € S CR" .
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Subspace ldentification: Missing Data

Suppose we receive a sequence of incomplete length-n Vectors
that lie in a d-dimensional subspace S, and €; C {1,.
refers to the observed indices: E E

v1la,, [v2]ay, - - -5 [V, - -, €S CR”
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Problem Set-Up

@ Seek subspace S C R” of known dimension d < n.

@ Know certain components Q; C {1,2,...,n} of vectors v; € S,
t =1,2,... — the subvector [v¢]q,.

@ Assume that S is incoherent w.r.t. the coordinate directions.

We'll also assume for purposes of analysis that

o v; = Us;, where U is an n x d orthonormal spanning S and the
components of s; € RY are i.i.d. normal with mean 0.

@ Sample set €2 is independent for each t with [Q;| > g, for some g
between d and n.

o Observation subvectors [v¢]q, contain no noise.
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Problem Set-Up

We take a stochastic gradient approach to minimizing over S the function

Z [[vi — Psvi]a

Since the variable is a subspace we optimize on the Grassmannian.

2
2 -
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GROUSE

Given current estimate U; and partial data vector [v¢|q,, where v; = Us;:

Grassmannian
Rank-One Update

Wy 1= arg mmi/n 1[Usw — v¢]a, ||3;

Subspace
pt == Urwy; Estimation
[rt] o, [vi — Uswi]q,; [rt]Qg = 0;
o= ||rellllpell;

Choose 7 > 0;

) It WtT
Ut11 := Us + |(coson: — 1) + sin 0Ny
| t|| 2]
We focus on the (locally acceptable) choice
1
7¢ = — arcsin [rell ,  which yields osn; = arcsin —— Hr H ”rtH .
o re pel ~ Tlpel

11
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GROUSE
. wi
Ut+1 — Ut"’ [(COSO'tT]t — 1)H t” -+ sin O'tntH t|| ||WtH
r
T llr
Ut
) ve|
r t
- P
Ipl]
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Convergence

To measure the discrepancy between the current estimate span(U;) and S,
we use the angles between the two subspaces. There are d angles between two
d-dimensional subspaces, and we call them ¢;;, ¢ =1,...,d, where

cos gy = o (ULT)

where o; denotes the i singular value. Define

d d
&= dri=d—> oi(ULU)? =d— UL U|% .
1=1 1=1

We seek a bound for E[e;y1]e;|, where the expectation is taken over the
random vector s; for which v; = Us;.

13
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Outline

<-GROUSE algorithm convergence rate in the full-
data case

<-GROUSE algorithm convergence rate with missing
data

<-Equivalence of grouse to a kind of missing-data
incremental SVD
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Full-Data Case

Full-data case vastly simpler to analyze than the general case. Define
@ 0, := arccos(||pt||/||vt]|) is the angle between R(U;) and S that is
revealed by the update vector v;;

o Define A; := U/ U, d x d, nearly orthogonal when R(U;) =~ S. We
have e; = d — ||A¢]|%.

Sin(O'tT]t) Sin(29t — O'tnt) (1 B StTAZ-AtAtTAtSt)

Sin2 Qt StTAtTAtSt ’
The right-hand side is nonnegative for otn: € (0,260;), and zero if
V¢ € R(Ut) = St or V¢ 1 St-

€t — €41 —

15
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GROUSE

Suppose that e; < € for some € € (0,1/3). Then

1—-3e) 1
E[€t+1|€t]§ (1_<1_€>3)6t

Since the sequence {¢;} is decreasing, by the earlier lemma, we have €; | 0
with probability 1 when started with ¢g < €.

Linear convergence rate is asymptotically 1 — 1/d.
@ For d =1, get near-convergence in one step (thankfully!)

@ Generally, in d steps (which is number of steps to get the exact
solution using SVD), improvement factor is

(1-1/d)? < é
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Outline

<-GROUSE algorithm convergence rate with missing
data
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A fundamental problem with subsampling is that we
may miss the important information.

How aligned are the subspace S and the vector v to
the canonical basis?

Examples of bases
that form an
Incoherent Subspace:

mn
= —meXIIPS@jll%

Examples of bases that
form a Coherent
Subspace:

d

* Orthonormalize
Gaussian random
vectors.

* Identity basis.

* Any basis where the

. . vectors are very sparse.
e Fourier basis. Ty Sp
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Our Result for the General Case

Recall, n is the ambient dimension, d the inherent dimension, we have
12| > ¢q samples per vector. We have assumptions on the number of
samples, the coherence in the subspaces and in the residual vectors,
and we require that these assumptions hold with probability 1 — ¢ for

6 € (0,.6). Then for
4

n3d?

e < (8 x1079)(.6 — 6)?

we have

Elesile;] < (1 — (.16)(.6 — 5)%) € .

20
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Comments

2q3

n3d?

e < (8 x107%)(.6 —6)

Elessile:] < (1 — (16)(.6 — 5)%) & .

The decrease constant is not too far from that observed in practice;

we see a factor of about

q
1 — X—
nd

where X is not much less than 1.

The threshold condition on ¢;, however, is quite pessimistic.
Linear convergence behavior is seen at much higher values.

21
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Outline

<-Equivalence of grouse to a kind of missing-data
incremental SVD
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The standard iSVD e e = contona e

Algorithm 2 iSVD: Full Data

Given Uy, an arbitrary n X d orthonormal matrix, with 0 < d < n; g, a d X
d diagonal matrix of zeros which will later hold the singular values, and 1}, an
arbitrary n X d orthonormal matrix.
fort=0,1,2,... do

Take the current data column vector vy;

Define w; := arg min,, ||Uyw — v||3 = U vy;

Define

pe = Urwye; 14 1= v — Py

Noting that

R

we compute the SVD of the update matrix:

[Et W+

=UsvT,
0 IIMII

and set

end for
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How do we incorporate missing data?

<>We could put zeros into the matrix

< Very interesting recent results from Sourav Chatterjee on one-step “Universal
Singular Value Thresholding” show that zero-filling followed by SVD reaches
the minimax lower bound on MSE.

< But in the average case, we see that convergence of the zero-filled SVD is
very very slow.

<Let’s instead replace the missing entries with our
prediction using the existing model

24
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ISVD with missing data 2 R = SN

Algorithm 4 iSVD: Partial Data, Forget singular values

Given Uy, an n X d orthonormal matrix, with 0 < d < n;
fort=0,1,2,... do

Take €; and vg, from (2.1);

Define w; := argmin,, |Uq,w — vq,||3;

Define vectors v, py, T4:

(171&)' = Vi Z Y. ;o pei=Urwy;  Te 1= 0p — Dy
v (Utwt)i 1 € th ’ ’ ’

Noting that

we compute the SVD of the update matrix:

I wy ] sy T
—UxvT,
[0 7]

and set Uy;q = [Ut Tt||i| (7;,1:th, where W; is an arbitrary d x d orthogonal

matrix.

end for 25
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Suppose we have the same U; and [v¢|q, at the t-th iterations of iSVD
and GROUSE. Then there exists n; > 0 in GROUSE such that the next
iterates U1 1 of both algorithms are identical, to within an orthogonal
transformation by the d x d matrix

Wt — [ Wi |Zt]7

Iwe |

where Z; is a d x (d — 1) orthonormal matrix whose columns span N(w,).

The precise values for which GROUSE and iSVD are identical are:

1
A= 5 | (lwell® + fIrel® + 1) + \/(HWtH2 +Irell® + 1) — 4l |I?
3 e[l we 1®
IrelI2llwel[? + (A = [l ]|%)?
1 :
1y = — arcsin 3.

Ot 26
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Future Directions

< Apply GROUSE analysis to ell-1 version, GRASTA

<> Re-think the proof from new angles.

<-We see convergence at higher €.
<We see monotonic decrease at any random initialization.

<-We see convergence even without incoherence (but good
steps are only made when the samples align).

27
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Thank you!

Questions?



