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The setup - Ideals and Resolutions

Fix a field K and let R = K[x1, x2, . . . , xn] denote the polynomial ring. Let I ⊂ R be a

homogenous ideal with quotient ring R/I .

• Recall that a free resolution of I is a long exact sequence

F = 0← I ← F0 ← F1 ← · · · ← Fd ← 0.

where each Fi = ⊕jR(−j)βi,j

• The resolution is minimal if the βi,j are minimal among all resolutions, in which case

βi,j = TorRi (I ,K)j are called the (graded) Betti numbers of I .

• Replace last map with 0← R/I ← R ← F0 to get a resolution of R/I .
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Constructing a resolution

A free resolution of I :

F : 0← I ←
∂0

F0 ←
∂1

F1 ← · · · ← Fd ← 0.

where each Fi = ⊕jR(−j)βi,j

How to construct F :

• If I = ⟨f1, f2, . . . , fj⟩, say all of degree d , let F0 = R(−d)j and a map ∂0 : F0 → I .

• The module ker(∂0) is the (first) syzygy module, say it has generators {g1, g2, . . . , gk}.
Let F1 = Rk and map ∂1 : F1 → F0.

• Continue this process. The Hilbert Syzygy Theorem says that eventually (at most by the

nth step) we’ll get an injective map. That’s your resolution!
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Combinatorial invariants

• The Betti numbers of I can be collected in its Betti table, (j , i)-entry given by βi,i+j .

0← I ← R[−2]8 ← R[−3]13 ⊕ R[−4]← R[−5]7 ⊕ R[−6]2 ← R[−5]⊕ R[−6]← 0

• The projective dimension and (Castelnuovo–Mumford) regularity are:

pdim(I ) = max{i : βi,i+j ̸= 0 for some j}

reg(I ) = max{j : βi,i+j ̸= 0 for some i}

• The ideal I has a linear resolution if all entries in the matrices representing the boundary

maps are linear forms.
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Resolutions - who cares?

The minimal free resolution of a graded R-module M is a way to extract algebraic/geometric

information about M.

• A way to study the Hilbert function of M, dimension of the dth graded component.

• Coefficents of the Hilbert polynomial are determined by the graded Betti numbers βi,j .

• Minimal free resolutions detect depth, Cohen-Macaulay properties, etc. (via

Auslander-Buchsbaum):

pdim(M) + depth(M) = n

• A measure of the complexity of the ideal.
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Monomial is good enough

Gröbner theory and the monotonicity theorem allow us to focus on monomial ideals.

• By example: If I = ⟨x2 − y , x3 − x⟩,
G = ⟨x2 − y , x3 − x , y2 − y⟩,
in<I = ⟨x2, x3, y2⟩.

• Monotonicity of Betti numbers:

βi,j(R/I ) ≤ βi,j(R/in<I )

with equality in many interesting cases!

• Gröbner degeneration also detects desirable algebraic properties (eg Cohen-Macaulayness).

• If I has a square-free initial ideal in(I ), then the extremal Betti numbers of I and in(I ) are

the same [Conca, Varbaro].
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Facet ideals

We will consider monomials defined by (pure) simplicial complexes.

• Suppose ∆ is a pure d-dimensional simplicial complex on vertex set [n] = 1, 2, . . . , n.

From this we construct the facet ideal in K generated by degree d monomials:

I∆ = ⟨xi0xi1 · · · · · xid : (i0, i1, . . . , id) ∈ ∆⟩

• Example (d = 1, n = 5)
5 2
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I∆ = ⟨x1x2, x1x3, x1x4, x1x5, x2x4, x2x5, x3x5⟩.
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Edge ideals and linear resolutions

• For d = 1 we have that ∆ is a graph and these are often called edge ideals.

• Recall that a graph G is chordal if G has no induced cycles of length ≥ 4.

• For a graph G on vertex set [n], the complement is the graph G with edges given by all

missing 2-sets.

Theorem (Fröberg)

The edge ideal IG has a linear resolution if and only if G is a chordal graph.

• Considerable efforts to generalize to d-dimensional simplicial complexes.
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Cellular resolutions

• Explicit minimal resolutions are known for some classes of ideals (Eliahou-Kervaire,

Eagon-Northcott), but they are often cumbersome to work with, or at least to ‘picture’.

• Often we can encode syzygy modules and differential maps in face structure of polyhedral

(CW-) complex, via the chain complex that computes cellular (co)homology.

• The resulting cellular resolutions were introduced by Bayer and Sturmfels in their study of

the Scarf complex of a generic ideal.

• For example the simplex supports a resolution of the ideal m = ⟨x1, x2, . . . , xn⟩.
x1 x3

x2

x1x3

x2x3x1x2

x1x2x30← m← R[−1]3 ← R[−2]3 ← R[−3]← 0.
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Resolutions of facet ideals

• Suppose ∆ is a d-dimensional simplicial complex on vertex set [n] and let I∆ denote its

facet idea (equivalently, I∆ is squarefree monomial and equigenerated in degree d + 1).

• Example (again): Let d = 1, n = 5, and consider the graph G :
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IG = ⟨x1x2, x1x3, x1x4, x1x5, x2x4, x2x5, x3x5⟩.

• In what follows we write a facet of ∆ as F = (v0v1 · · · vd) where v0 < v1 < · · · < vd .

• The facets of ∆ are generators of an ideal, we look for a ‘space of (directed) facets’ to

describe syzygies of this ideal.
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A space of facets

Suppose ∆ is a d-dim complex on vertex set [n]. Then X∆ is the polyhedral complex

(subcomplex of
∏d

i=1 ∆n−1) satisfying:

• The vertices of X∆ are (v0v1 · · · vd), where (v0v1 · · · vd) ∈ ∆.

• The higher dimensional cells are of the form σ0 × σ1 × · · · × σd , where σi ⊂ [n] and

σ0 < σ1 < · · · < σd , satisfying . . .
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• Label each face by the LCM of the monomials labels of the vertices it contains.

10



Interval graphs

• The construction of X∆ construction makes sense for any (pure) simplicial complex ∆.

When does it support a resolution of I∆?

• A graph G is interval if its vertices can be represented as intervals in real line I1, . . . , In
such that i ∼ j if and only if I1 ∩ I2 ̸= ∅.

• Interval graphs are chordal.

• Label the left endpoint of each interval moving L to R, then G is interval ⇔
If e = ab is an edge (for a < b), we have ac is an edge for all a < c < b.
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Interval complexes

This inspires the following definition. Suppose ∆ is a pure d-dimensional simplicial complex on

vertex set [n].

• ∆ is interval if there exists a labeling of it vertex set such that for any facet

F = a0a1 · · · ad , we have that a0i1i2 · · · id ∈ ∆, for all i1 ≤ a1, i2 ≤ a2, . . . , id ≤ ad .

• For example ∆ = {1234, 1235, 2345, 2346, 2356, 2456}
are the facets of a 3-dim interval complex on vertex set [6].

• Strictly includes the class of shifted complexes.

• Such complexes were used (and defined this way) by Benedetti, Seccia, and Varbaro: the

determinantal facet ideals of such complexes have square-free initial ideals.
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A minimal resolution

Theorem (D-, Engström, 2012)

Suppose ∆ is a d-dimensional interval complex, and let ∆ denote its complement. Then the

complex X∆ supports a minimal resolution of the facet ideal I∆.
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• Betti numbers of IG are given by the f -vector of X∆.

0← I ← R[−2]7 ← R[−3]11 ← R[−4]6 ← R[−5]← 0 13



Linear resolutions and chordal complexes

• Our construction generalizes the box of complexes resolution of Nagel and Reiner (they

considered shifted complexes).

• Since the dimension of a face of XΓ can be read off from the monomial label, we conclude

that IΓ has a linear resolution when Γ is the complement of an interval complex.

• Recall that interval graphs are chordal, and hence this provides a

generalization/specialization of Fröberg’s Theorem.

• There exist chordal graphs G such that ∆G does not support a resolution of IG .

• Question: How do interval complexes relate to other notions of chordal simplicial

complexes?
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Examples d = 2
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Cointerval complexes

In our old paper, we gave a definition of a cointerval complex.

• The definition is recursive, we define d-dim cointerval complexes in terms of (d − 1)-dim

cointerval complexes. Helpful for our proofs.

• Base case of d = 1 corresponds to the complements of interval graphs: vertices given by

intervals, adjacent if non-overlapping.
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Proposition (D-, Goeckner, Pavelka)

A complex ∆ is interval if and only if ∆ is cointerval.
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Tools - topology of posets

How do we prove that the labeled complex supports a resolution?

• To prove that X = X∆ supports a minimal resolution of the edge ideal IG we must study

the topology of certain induced subcomplexes X≤α.

• Here X≤α denotes the sub complex of X generated by all vertices (=monomials) which

divide α.

• In the case of X· we can utilize tools from poset topology and Quillen type fiber lemmas.
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A nice embedding

Recall that X∆ is defined as a subcomplex of
∏d

i=1 ∆n−1 - that’s big!

Turns out we can do better.

• Let ∆d,n denote the d-skeleton of the simplex on n vertices.

Proposition (D-, Engström)

The ideal I∆d,n
has a minimal resolution supported on a certain fine mixed subdivision of the

dilated simplex (d + 1)∆n−d .
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A nice embedding

• As a corollary, for any cointerval complex ∆, the ideal I∆ has minimal cellular resolution

supported on a subcomplex of (d + 1)∆n−d .

• We use the mixed subdivision corresponding to the staircase triangulation of ∆d ×∆n−d .

• Turns out not all regular mixed subdivisions work!

• Side note: any regular mixed subdivision (of certain classes of generalized permutohedra)

can be used to produce cellular resolutions (of the ideal generated by the 0-cells, eg mk).

19



Related work

Can think of our space of facets as moduli space of homomorphisms E → ∆. Other classes of

ideals are defined similarly:

• Ideals defined by nondegenerate simplicial maps [Braun, Browder, Klee]

• Ideals of poset homomorphisms [Flöystad, Greve, Herzog, Juhnke-Kubitzke, Katthän,

Madani]

• Notion of path ideals of a graph, as a generalization of an edge ideal (cellular resolutions

for certain classes described by [Chau, Kara, Wang])

Homomorphism complexes of digraphs studied more recently with Anurag Singh:

• If Tn is the acyclic tournament, then Hom(G ,Tn) is contractible for any digraph G .
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Further thoughts

• Does X∆ support resolutions for a larger class of complexes? Can we characterize the class

that works?

• Can use an interval decomposition of a graph/complex G to produce (non-minimal)

cellular resolutions of IG?

• Is the Alexander dual (appropriately defined) of an interval complex shellable? Vertex

decomposable?

• Can we get cellular resolutions by considering other homomorphism complexes?

• How do interval complexes relate to other notions of chordal simplicial complexes?

• Interval graphs (and chordal graphs) can be recognized in polynomial time. Is the same

true for interval complexes?

Thanks for listening!
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