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NIH slashes overhead payments for research, sparking

outrage
Move to cut indirect cost rate to 15% could cost universities billions of

dollars

| believe that our collective goal should not
be the “advancement of mathematics”. Our
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= Science (o}
goal should be the advancement of our
‘My boss was crying. NSF confronts potentially massive . . .
layoffs and budget cuts humanity. Mathematics is a human
Trump could propose slashing agency’s budget by two-thirds e n d e aVO r. O u r m at h e m ati C a l C O m m u n iti e S
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can be centered on care and compassion
above all else, if we choose.

OPINION

Scientific institutions have a long

history of anticipatory obedience
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Structure of this talk

* Part 1: Survey talk about geometric and algebraic properties of
lattice polytopes with focus on symmetric edge polytopes

* Part 2. Work by me, Bruegge, and Kahle regarding facet counting
for symmetric edge polytopes



Part 1



Lattice polytopes

A lattice polytope P is the convex hull of n lattice points
In m-dimensional space. It is also a bounded

iIntersection of a finite set of closed half-spaces.
Assume that P has dimension d.




Lattice polytopes

A lattice polytope P is the convex hull of n lattice points
In m-dimensional space. It is also a bounded
iIntersection of a finite set of closed half-spaces.
Assume that P has dimension d.

We typically replace Euclidean volume with normalized
volume:

Vol(P) = d!vol(P)




Symmetric edge polytopes, i.e., SEPs

Given a finite, simple graph G,
the symmetric edge polytope | Pg := conv{x(e; —¢,) : ij € E(G)}.

(SEP) defined by G is:

Note: This is the vertex description. Facet
description, i.e., the maximal non-trivial
faces, will show up later in the talk.



Symmetric edge polytopes, i.e., SEPs

Given a finite, simple graph G,

the symmetric edge polytope | Pg := conv{x(e; —¢,) : ij € E(G)}.
(SEP) defined by G is:
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Ehrhart theory

Problem: Count the lattice points
in integer dilates of a polytope.

For a lattice polytope P, the Ehrhart series of P is
he+ hiz+ -+ hiz¢
d d
Ehr(P; 2) Z tP N 7%zt = = z)d+1
t=0

where h; € Z> for all 1. | :,-':f: ‘ :

o ,o"/o ..o o i oo

Rationality is due to Ehrhart. Non-negativity is due to ' ® ele, P 86 e

Stanley. The numerator is the h*-polynomial and its Y
coefficient vector is the h™-vector of the polytope. '.r.\ c e eie o fe e
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Ehrhart theory

Problem: Count the lattice points
in integer dilates of a polytope.

For a lattice polytope P, the Ehrhart series of P is
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h*-vectors of SEPs
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h*-vectors of SEPs
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h*-vectors of SEPs
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h™-distributions of SEPs h*(z)/h*(1)



h™-distributions of SEPs h*(z)/h*(1)
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h™-distributions of SEPs h*(z)/h*(1)
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Gorenstein polytopes

A lattice polytope P is reflexive if P is unimodularly equivalent

to a lattice polytope Q containing the origin in its interior such
that the dual of Q is a lattice polytope.

() is Gorenstein if r(Q is reflexive for a positive integer r.



Image: The 16 reflexive polygons, from:
Poonen, B., and Rodriguez-Villegas, F.
“Lattice Polygons and the Number 12.”
The American Mathematical Monthly
107, no. 3 (2000): 238-50.




Gorenstein polytopes and Ehrhart theory

A lattice polytope P is reflexive if P is unimodularly equivalent

to a lattice polytope Q containing the origin in its interior such
that the dual of Q is a lattice polytope.

() is Gorenstein if r(Q is reflexive for a positive integer r.

Theorem: (Stanley; Hibi in the reflexive case) Suppose

P has h*(P;z) = hj + hiz + hiz* + -+ + hiz* for some
s < d. Then P is Gorenstein if and mlly if hi = h}_; for
all 7.




SEPs are reflexive

Theorem: (Matsui et al.
2011 and Higashitani 2015)
SEPs are reflexive.

396 random connected graphs
on 12 vertices with 30 edges.
Note that there are
12,195,279,971 unlabeled
simple connected graphs on 12

vertices with 30 edges. (per
computations by Brendan McKay)
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SEPs are reflexive

Same objects, but
graphing distributions
Instead of vectors.
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y-vectors

(1+2)3+8z(1+2) =
(1+3z+32z°+23)+8(z+2z%) =
1411z +112% + 73

If p(z) = Zf:o ;2" satisfies a; = aq_,
p is y-non-negative if p(z) = Z}‘i/OQJ ;2 (14 2) 2

with ~; € Z> for all j.




y-vectors

Conjecture (Gal’s conjecture, in special case of reflexive
polytopes): If a reflexive lattice polytope has a regular
unimodular flag triangulation with O in every maximal
simplex, then the h*-vector is y-nonnegative.



Motivating problems about lattice polytopes
(including SEPs)

* Determine facet and/or vertex descriptions

* Find interesting/effective volume formulas

» Classify h™-vectors for polytopes in a specified family
* Find combinatorial interpretations of h*-vectors

* Investigate inequalities for h*-coefficients, including unimodality,
log-concavity, real-rootedness, y-nonnegativity, etc.

* Investigate triangulations and their structure

* Classify special polytopes, e.g., Gorenstein, integer
decomposition property, smooth, canonical line property, etc.



SEP fundamental results

e 2002, Ohsugi and Hibi
2011, Matsui et al.

* 2015, Higashitani

2018, Chen, Davis, Mehta

* 2019, Higashitani, Jochemkao,
Michalek

* 2020, Ohsugi, Tsuchiya

e 2023, Kara, Portakal,
Tsuchiya

e 2024, D’Ali, Juhnke-Kubitzke,
Koch

Some things we know:

* 2018: The volume of an SEP gives an
upper bound on the number of solutions
to associated algebraic Kuramoto
equations.

* 2019: Facet description and explicit
regular unimodular triangulation.

* Corollary: SEPs are h*-unimodal.

* 2024: SEPs are unimodularly equivalent if
and only if they have isomorphic graphic
matroids. Further, the definition of SEP
can be extended to any regular matroid,
giving a generalized SEP.



SEP Ehrhart theory results

e 2011, Matsui et al.
* 2012, Ohsugi, Shibata

* 2017, Higashitani, Kummer,
Michalek

* 2019, Higashitani, Jochemko,
Michalek

* 2021, Ohsugi, Tsuchiya
e 2022, Kalman, Tothmeérész

e 2023, D’Ali, Juhnke-Kubitzke,
Koehne, Venturello

e 2024, Davis, Higashitani, Ohsugi
e 2024, Kolbl

Some things we know:

 2017: Some SEPs have Ehrhart
polynomials with roots on the line
Re(z) = —1/2,i.e., they have the
canonical line property.

 2021: All SEPs are conjectured to have
y-nonnegative h*-vectors.

* 2022: h* description via shellable
simplicial dissections of facets.

* 2023: Yy, nonnegative; asymptotically
almost surely y-nonnegativity results for
Erdos-Renyi graphs.

* 2024 (Davis et al): Generalized SEPs are
not all y-nonnegative.



SEP facet and face structure results

* 2019, Higashitani, Jochemko, Michalek
e 2022, Kalman, Tothmeérész

e 2022, D’Ali, Delucchi, Michalek

* 2023, Chen, Davis, Korchevskaia

* 2023, BB, Bruegge

* 2023, BB, Bruegge, Kahle

e 2024, Mori, Mori, Ohsugi




Part 2



Facet description of SEPs

Theorem: (Higashitani, Jochemko, Michalek) Let G =
(V, E') be a finite simple connected graph and

Zf(v):nu <1
veV

a hyperplane in RYV. Then f : V — Z is facet-defining if

and only if both of the following hold.
(i) For every edge e = uv we have |f(u) — f(v)| < 1.

(ii) The subset of edges

Ej={e=weE : |f(u)— f(v)| = 1}

forms a spanning connected subgraph of G.




Facet description of SEPs

Theorem: (Higashitani, Jochemko, Michalek) Let G =
(V, E') be a finite simple connected graph and

Zf(v)% <1
veV

a hyperplane in RYV. Then f : V — Z is facet-defining if

and only if both of the following hold.
(i) For every edge e = uv we have |f(u) — f(v)| < 1.

(ii) The subset of edges

Ej={e=weE : |f(u)— f(v)| = 1}

forms a spanning connected subgraph of G.

Example:
K,, has 2™ — 2 facets.

Any non-trivial subset A
of the vertices induces
0/1-labeling, 0ifin A, 1
If not. This is the only
type of labeling that can
arise for a facet normal.
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How many facets do we expect?
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FIGURE 2. Histogram of N(G) for 4874 connected graphs sampled from G(11,0.45).



How many facets do we expect?
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How many facets do we expect?

2096 facets in Ky
700 -
600 - Question:
5ooé
200 What if we sample
| from restricted
300 A oy
E families of graphs?
200 1
100 Earlier, we fixed the
0 number of edges.
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number of facets

FIGURE 2. Histogram of N(G) for 4874 connected graphs sampled from G(11,0.45).



Fixed number of edges
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5000 10000 15000 20000 25000 30000 35000 40000 45000
number of facets

13 vertices, 18 edges, ~200 graphs sampled via
single-edge-swap MCMC.
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Fixed number of edges
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5000 10000 15000 20000 25000 30000 35000 40000 45000
number of facets

13 vertices, 18 edges, ~200 graphs sampled via
single-edge-swap MCMC.

What is this?

46,656 SEP facets



Conjecture (BB and Bruegge, 2023):

. For n = 2k + 1, the maximum number of facets for Pg for a connected graph G on n facets is 6,
which is attained by a wedge of k cycles of length three.

For n. = 2k, the maximum number of facets for Pg for a connected graph G on n facets is 14-65=2,
which is attained by a wedge of K4 with k — 2 cycles of length three.

For n = 2k + 1, the minimum number of facets for Pg for a connected graph G on n facets is
3.2k — 2 which is attained by Ky pai.

For n. = 2k, the minimum number of facets for Pq for a connected graph G on n facets is 28+1 —2,
which is attained by Ky, j.

“Take home” version: the most facets from wedges of triangles;
the least facets from complete bipartite graphs on “equal” partitions.




Clustering metrics

Definition: For a vertex v, let Cy,c(v) denote the number of edges
connecting two neighbors of v divided by the number of possible
edges between neighbors of v.

The average local clustering of a graph is




EXperimentS All connected graphs on 8 vertices.
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1001 graphs with 11 vertices and 25 edges,

Experl ments obtained via single-edge swap MCMC.
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number of facets

Experiments
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0.60

192 connected graphs with 17
vertices and degree sequence
[3,3,3,4,4,...,4,4,5,5,5,5,15],
obtained via double-edge
swap MCMC.



Number of Facets

Global clustering
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Facet subgraphs

(i) For every edge e = uv we have |f(u) — f(v)| < 1.

(ii) The subset of edges
By ={e=weE : |f(u) - f) = 1)
forms a spanning connected subgraph of G.

Given a facet-defining function f, we write G for the
corresponding facet subgraph, i.e., the subgraph with ver-
tex set V' and edge set L.



Facet subgraphs

(i) For every edge e = uv we have |f(u) — f(v)| < 1.

(ii) The subset of edges

By ={e=weE : |f(u) - f(v)] =1}
forms a spanning connected subgraph of G.

Given a facet-defining function f, we write G for the
corresponding facet subgraph, i.e., the subgraph with ver-
tex set V' and edge set L.

Theorem (Chen,
Davis, Korchevskaia,
2023)

Every facet subgraph
IS a spanning
connected induced
bipartite graph.

Let B(4, G) denote
the induced bipartite
graph for the
bipartition (4, V\A)
of G.



Theorem (BB, Bruegge, Kahle, 2023):

Let G = (V,FE) ~ G(n,p).

1. If p < 1/2is fixed, then w.h.p. there exists an |n/2|-
subset A of V such that B(A, G) is not connected.

2. If p > 1/2 is fixed, then w.h.p. for every subset
A C V, we have B(A, () consists of a single con-
nected component unioned with isolated vertices.

3. Further, if p = 1/2 + € is fixed for some ¢ > 0, then
w.h.p. for every subset A C V with

1A — n/2| < e(1/2 — e)n

we have that B(A, G) is connected and spans V.




Theorem (BB, Bruegge, Kahle, 2023):

Let G = (V,FE) ~ G(n,p).

1. If p < 1/2is fixed, then w.h.p. there exists an |n/2|-
subset A of V such that B(A, G) is not connected.

2. If p > 1/2 is fixed, then w.h.p. for every subset
A C V, we have B(A, () consists of a single con-
nected component unioned with isolated vertices.

3. Further, if p = 1/2 + € is fixed for some ¢ > 0, then
w.h.p. for every subset A C V with

1A — n/2| < e(1/2 — e)n

we have that B(A, G) is connected and spans V.

Note that every such
connected spanning
subgraph supports
at least two facets
where the values of
the function are 0
and 1.



Generalized theta graphs
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Generalized theta graphs

m#+

F(m) ="
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Theorem (BB, Bruegge, 2023): If all the
path lengths have the same parity, then
the number of facets of the SEP for this
graph is given by the function:

my,
My — My) + J
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Generalized theta graphs

Conjecture (BB, Bruegge, 2023): if <ZZ (xg - 2) ( 7 ) (
< ; .

all x;’s have the same parity,thy, =0
F(xy,x9,03) < F(r1 4+ 2,19, 73 — 2) @@@

and : 6@@@6

F(xy,x9,03) < F(ry + 2,090 —2,23) 1828 628

8 1

1 10 45 120 210252 @12045101




Thank you!
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