

Combinatorics of equilibria in game theory

Irem Portakal (•) Max Planck Institute for Mathematics in the Sciences

Computational Interactions between Algebra, Combinatorics, and Discrete Geometry 13th of February, 2025

Board games for date night *

An example of a 2×2 game. The pair has agreed that Willa will clear the table and set up a game, while Cara brings home a suitable dessert: Belgian waffle fixings for Wingspan, or delicate cookies from their favorite French bakery for Carcassonne.

Player 2 = Cara
$$1 = Wingspan$$
 $1 = Waffles$ $2 = Cookies$ $2 = Carcassonne$ $(7,3)$ $(0,1)$ $(0,0)$ $(3,6)$

Willa and Cara's joint mixed strategies: $((p_1^{(1)}, p_2^{(1)}), (p_1^{(2)}, p_2^{(2)})) \in \Delta_1 \times \Delta_1.$

Happiness in the short term: Two Nash equilibria Always waffles and Wingspan = (1, 0, 1, 0)Always cookies and Carcassonne = (0, 1, 0, 1)

^{*}Elliptic curves come to date night, U. Whitcher, Mathematical Reviews (AMS)

Board games for date night^{\dagger}

Uncoordinated mixed strategies: Willa reasons that 75% of her possible happiness comes from setting up Wingspan, so she should do so 75% of the time. Similarly, Cara decides to buy cookies 70% of the time. Coordinated flip-coin: Choose Wingspan and waffles for heads but Carcassonne and cookies for tails.

Willa's expected payoff = $\pi_W := W_{11}p_1^{(1)}p_1^{(2)} + W_{12}p_1^{(1)}p_2^{(2)} + W_{21}p_2^{(1)}p_1^{(2)} + W_{22}p_2^{(1)}p_2^{(2)}$ Cara's expected payoff = $\pi_C := C_{11}p_1^{(1)}p_1^{(2)} + C_{12}p_1^{(1)}p_2^{(2)} + C_{21}p_2^{(1)}p_1^{(2)} + C_{22}p_2^{(1)}p_2^{(2)}$

Algebraic game theory

Let's set up a normal-form game for n players.

- $(d_1 \times \cdots \times d_n)$ -game: an *n*-player game where player *i* has d_i pure strategies. Willa and Cara: (2×2) -game.
- The entry $p_k^{(i)}$ (mixed strategy) is the probability Player *i* chooses the pure strategy $k \in [d_i]$.
- Each Player *i* has a $d_1 \times \cdots \times d_n$ payoff tensor $X^{(i)}$. $X^{(1)} = W \in \mathbb{R}^{2 \times 2}$ and $X^{(2)} = C \in \mathbb{R}^{2 \times 2}$.
- The expected payoff for Player i

$$\pi_i := PX^{(i)} = \sum_{j_1=1}^{d_1} \cdots \sum_{j_n=1}^{d_n} X^{(i)}_{j_1 \cdots j_n} p^{(1)}_{j_1} \cdots p^{(n)}_{j_n}.$$

Definition

A point $P \in \Delta_{d_1-1} \times \cdots \times \Delta_{d_n-1}$ is called a *Nash equilibrium* for a *n*-player game X, if none of the players can increase their expected payoff by changing their strategy while assuming the other players have fixed mixed strategies.

Nash equilibria and real algebraic varieties

- The existence of equilibrium was first proven for any zero-sum games (Minimax theorem)^{*}. It is considered the start point of game theory.
- By the result of Nash in 1950[†], there exists a Nash equilibrium for any finite game. Proof: an application of the Kakutani fixed-point theorem.
- $\, \circ \,$ Study of Nash equilibria via systems of multilinear equations. $^{\ddagger \ \$}$
- In the general case, one solves $d_1 + \ldots + d_n$ multilinear equations:

$$p_k^{(i)}\left(\pi_i - \sum_{j_1=1}^{d_1} \dots \sum_{j_i=1}^{d_i} \dots \sum_{j_n=1}^{d_n} X_{j_1\dots k\dots j_n}^{(i)} p_{j_1}^{(1)} \dots p_{j_{i-1}}^{(i-1)} p_{j_{i+1}}^{(i+1)} \dots p_{j_n}^{(n)}\right) = 0$$

for all $k \in [d_i]$ and where each parenthesized expression is nonnegative.

*Von Neumann, Zur Theorie der Gesellschaftsspiele, 1928.

[†]Nash. Equilibrium points in n-person games, 1950.

[‡]McKelvey and McLennan. Computation of equilibria in finite games, 1996. [§]Sturmfels. Solving Systems of Polynomial Equations, 2002.

Nash equilibria and real algebraic varieties

Example: Willa and Cara

A point $((p_1^{(1)}, p_2^{(1)}), (p_1^{(2)}, p_2^{(2)})) \in \Delta_1 \times \Delta_1$ is a Nash equilibrium if and only if

$$\begin{split} p_1^{(1)}(7p_1^{(1)}p_1^{(2)} + 3p_2^{(1)}p_2^{(2)} - 7p_1^{(2)}) &= 0 \\ p_2^{(1)}(7p_1^{(1)}p_1^{(2)} + 3p_2^{(1)}p_2^{(2)} - 3p_2^{(2)}) &= 0 \\ p_1^{(2)}(3p_1^{(1)}p_1^{(2)} + p_1^{(1)}p_2^{(2)} + 6p_2^{(1)}p_2^{(2)} - 3p_1^{(1)}) &= 0 \\ p_2^{(2)}(3p_1^{(1)}p_1^{(2)} + p_1^{(1)}p_2^{(2)} + 6p_2^{(1)}p_2^{(2)} - p_1^{(1)} - 6p_2^{(1)}) &= 0 \end{split}$$

where the parenthesized expressions are nonnegative.

• Computing Nash equilibria is PPAD-hard^{*}, but we can still try: Check the example online of a $3 \times 3 \times 3$ game and its computation on HomotopyContinuation.jl[†].

*Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence, 1994. $^{5\,/\,16}$

Computing Nash equilibria

of a game.

• For totally mixed Nash equilibria (strictly positive probabilites), we consider the parenthesized expressions. Eliminate the variables π_i to obtain $d_1 + \dots + d_n - n$ multilinear equations in $d_1 + \dots + d_n$ variables. $\sum_{j_1=1}^{d_1} \dots \sum_{j_i=1}^{d_i} \dots \sum_{j_n=1}^{d_n} \left(X_{j_1 \dots k \dots j_n}^{(i)} - X_{j_1 \dots 1 \dots j_n}^{(i)} \right) p_{j_1}^{(1)} \dots p_{j_{i-1}}^{(i-1)} p_{j_{i+1}}^{(i+1)} \dots p_{j_n}^{(n)} = 0$ (1) for all $k \in 2, \dots, d_i$ and for all $i \in [n]$.

• Set $p_{d_i}^{(i)} = 1 - \sum_{j=1}^{d_i-1} p_j^{(i)}$ to apply Bernstein–Khovanskii–Kushnirenko (BKK) theorem for the maximal number of totally mixed Nash equilibria

• Newton polytopes of the multilinear equations are in the form of product of simplices:

$$\Delta^{(i)} := \Delta_{d_1-1} \times \ldots \times \Delta_{d_{i-1}-1} \times \{0\} \times \Delta_{d_{i+1}-1} \times \ldots \times \Delta_{d_n-1}$$

Number of Nash equilibria

Theorem: [†]McKelvey and McLennan

The maximum number of (isolated) totally mixed Nash equilibria for any n-person game where the player i has d_i pure strategies equals the mixed volume of

$$\left(\Delta^{(1)},\ldots,\Delta^{(1)},\Delta^{(2)},\ldots,\Delta^{(2)},\ldots,\Delta^{(n)},\ldots,\Delta^{(n)}\right)$$

where $\Delta^{(i)}$ appears $d_i - 1$ times. This mixed volume equals the number of partitions of

$$\{p_k^{(i)} \mid i = 1, \dots, n, \ k = 1, \dots, d_i - 1\} = \bigcup_{i=1}^n B_i$$

such that

$$|B_i| = d_i - 1$$
 for each $i = 1, ..., n$, and
 $p_k^{(i)} \notin B_i$ for any k .

 $^{^{\}ddagger}$ McKelvey and McLennan, The maximal number of regular totally mixed Nash equilibria,1994 $^{7/16}$

Number of Nash equilibria

Example: Linear algebra with mixed volumes

For a $d_1 \times d_2$ game, we have $\Delta^{(1)} = \{0\} \times \Delta_{d_2-1}$ and $\Delta^{(2)} = \Delta_{d_1-1} \times \{0\}$. If $d_1 = d_2$, then the mixed volume is one. Otherwise, it is zero.

Corollary: §

Let $d_1 \leq \cdots \leq d_n$. For a generic game, there exists no totally mixed Nash equilibrium if and only if $d_n - 1 > \sum_{i=1}^{n-1} (d_i - 1)$.

[§]Abo, ^(e), Sodomaco. A vector bundle approach to Nash equilibria, 2025+.

Correlated equilibrium

- For Nash equilibrium, there is a causal independence for the strategies of the players. Aumann^{*} introduced a new concept of equilibria which allows dependency for the choices of strategies between players.
- Setup: The mixed strategy $P = (p_{j_1 j_2 \dots j_n}) \in \Delta_{d_1 \dots d_n 1}$ is the (joint) probability Player 1 chooses the pure strategy $j_1 \in [d_1]$, Player 2 chooses the pure strategy $j_2 \in [d_2]$ etc.

 (2×2) -game: $p = (p_{11}, p_{12}, p_{21}, p_{22}) = (p_1^{(1)} p_1^{(2)}, p_1^{(1)} p_2^{(2)}, p_2^{(1)} p_1^{(2)}, p_2^{(1)} p_2^{(2)})$

Definition

A joint probability distribution $(p_{j_1\cdots j_n}) \in \Delta_{d_1 \times d_n - 1}$ is called a *correlated* equilibrium, if no player can raise their expected payoff by breaking their part of the (agreed) joint distribution while assuming that the other players adhere to their own recommendations.

^{*}Aumann. Subjectivity and correlation in randomized strategies, 1974

Correlated equilibrium polytope

• Aumann shows^{*} that this definition is equivalent to the following: A point $P \in \Delta_{d_1 \cdots d_n - 1}$ is a *correlated equilibrium* for a game X if and only if

$$\sum_{j_1=1}^{d_1} \cdots \sum_{j_i=1}^{d_i} \cdots \sum_{j_n=1}^{d_n} \left(X_{j_1 \cdots j_{i-1} k j_{i+1} \cdots j_n}^{(i)} - X_{j_1 \cdots j_{i-1} l j_{i+1} \cdots j_n}^{(i)} \right) p_{j_1 \cdots j_{i-1} k j_{i+1} \cdots j_n} \ge 0.$$

for all $k, l \in [d_i]$, and for all $i \in [n]$. The set of all such equilibria is the *correlated equilibrium polytope* C_X of the game X.

^{*}Aumann. Correlated equilibrium as an expression of bayesian rationality, 1987.

Correlated equilibrium for 2×2 -games

Example

A point $(p_{11},p_{12},p_{21},p_{22})\in \Delta_3$ is a correlated equilibrium if and only if

$$(W_{11} - W_{21})p_{11} + (W_{12} - W_{22})p_{12} \ge 0 (W_{21} - W_{11})p_{21} + (W_{22} - W_{12})p_{22} \ge 0 (C_{21} - C_{22})p_{21} + (C_{11} - C_{12})p_{11} \ge 0 (C_{22} - C_{21})p_{22} + (C_{12} - C_{11})p_{12} \ge 0$$

$$\begin{aligned} &7p_{11} - 3p_{12} \ge 0 \\ &-7p_{21} + 3p_{22} \ge 0 \\ &-6p_{21} + 2p_{11} \ge 0 \\ &6p_{22} - 2p_{12} \ge 0 \end{aligned}$$

The Nash equilibria (1, 0, 0, 0), (0, 0, 0, 1), $\left(\frac{9}{40}, \frac{21}{40}, \frac{3}{40}, \frac{7}{40}\right)$ are vertices of the correlated equilibrium polytope C_X . The polytope is a bipyramid over a triangle with 5 vertices and 6 facets.

Theorem: Datta, 2003

Every real algebraic variety is isomorphic to the set of totally mixed Nash equilibria of a 3-player game, and also of an n-player game in which each player has two pure strategies.

Theorem: Viossat, Solan, Lehrer, 2011

For any polytope $P \subseteq \mathbb{R}^n$, there exists an *n*-player game X such that the projection of the correlated equilibrium polytope to the payoff region is equal to P.

[¶]Datta, Universality of Nash equilibria, 2003

^{IV}Viossat, Solan, Lehrer, Equilibrium payoffs of finite games, 2011

Nash and correlated equilibria **

The correlated equilibrium polytope C_X for 2×2 -games is either a point or a 3-dimensional bipyramid with 5 vertices and 6 facets.*

^{*}Calvo-Armengol. The Set of Correlated Equilibria of 2 x 2 games, 2003 **Nau, Gomez Canovas, Hansen, 2004

Combinatorics of correlated equilibrium polytope

• The oriented matroid stratification of (2×3) -games can be used to completely determine the possible combinatorial types of the polytope for payoffs Y which are generic with respect to the algebraic boundary.

Theorem: ^{††}

Let X be a (2×3) -game and C_X be the associated correlated equilibrium polytope. Then one of the following holds:

- C_X is a point,
- C_X is of maximal dimensional 5 and of a unique combinatorial type,
- There exists a (2×2) -game X' such that $C_{X'}$ has maximal dimensional 3 is and combinatorially equivalent to C_X .

^{††}Brandenburg, Hollering, and $\stackrel{\bullet}{\bullet}$. Combinatorics of correlated equilibria, 2022.

Combinatorics of correlated equilibrium polytope

Unique Combinatorial Types by Dimension					
Dimension	0	3	5	7	9
(2×2)	1	1	0	0	0
(2×3)	1	1	1	0	0
(2×4)	1	1	1	3	0
(2×5)	1	1	1	3	4

Table: The number of unique combinatorial types of C_X of each dimension for a $(2 \times n)$ -game in a random sampling of size 100 000.

Check out the relevant code on Mathrepo!

Theorem: Draisma, unpublished, 2024

Let X be a generic $(2 \times n)$ -game with generic payoff matrices and let C_X be its correlated equilibrium polytope. If C_X is not of maximal dimension, then there exists a $(2 \times k)$ -game X' where k < n such that $C_{X'}$ is has maximal dimension and C_X and $C_{X'}$ are combinatorially equivalent.

Draisma, Hoyer, \blacklozenge : Generalization to $d_1 \times d_2$ games. Deligeorgaki, Hill, Kagy, Sorea: CE polytope for zero-sum games.

- Another natural next step after handling (2×2) -games is $(2 \times 2 \times 2)$ -games
- In a sample of 100,000 random payoff matrices for $(2 \times 2 \times 2)$ -games, we found 14,949 distinct combinatorial types which are of maximal dimension.
- The number of faces can also range quite wildly

$$\begin{split} f_{P_{X_1}} &= (1, 8, 28, 56, 70, 56, 28, 8, 1) \\ f_{P_{X_2}} &= (1, 119, 458, 728, 616, 302, 87, 14, 1), \\ f_{P_{X_3}} &= (1, 119, 460, 733, 620, 303, 87, 14, 1). \end{split}$$