SYMMETRIES OF RINGS FROM HYPERPLANE ARRANGEMENTS SARAH BRAUNER BROWN UNIVERSITY COMPUTATIONAL INTERACTIONS BETWEEN ALGEBRA, COMBINATORICS AND DISCRETE GEOMETRY IPAM: FEBRUARY 11, 2025

JOINT WORK WITH: MEGAN CHANG-LEE (BROWN) TREVOR KARN (MINNESOTA)

- IV. THRESHOLD ARRANGEMENTS
- III. BRAID ARRANGE MENT
- I. SYMMETRY
- HYPERPLANE COMPLEMENTS

COHOMOLOGY RINGS FROM

- OUTLINE:
- BIG IDEA: OF ENTEGERS OF SPACES REPRESENTATIONS

C(N) = # CHAMBERS ← full dimensional cones

(2) COMPLEX COMPLEMENT $M_{\mathbb{C}}(A) := \mathbb{C}^{k} \setminus A$

COHOMOLOGY RING

H*(Me(A)) = OS(A),
 the ORLIK SOLOMON ALGEBRA of A.
 L GRADED RING: in cohomological degrees 0, 2, 4, ..., 2k

LA TOTAL DIMENSION: C(A).

$$h_{i}: \mathcal{M}_{\mathcal{R}}(\mathcal{A}) \longrightarrow \mathbb{Z}$$

$$p \longmapsto \begin{cases} 1 & p \in \mathcal{H}_{i}^{2} \\ 0 & p \in \mathcal{H} \end{cases}$$

NoTE: hie H° MR (A)

SURPRISING FACT: h: Form an algebra by pointwise Addition and Multiplication EXAMPLE: BRAID ARRANGEMENT has Heaviside Functions hij ADDITION: e.g. What is I-hiz in H^{*} MR(A)?

EXAMPLE (MULTIPLICATION):

hiz

THEOREM (VARCHENKO - GELFAND)
There is a surjection

$$Z[ZiJ_{HieA} \longrightarrow H^*M_{IR}(A)$$

 $Zi \longmapsto hi$
with Kernel J(A) generated by "CIRCUIT RELATIONJS"
Minimal linear dependency
DEFINE:
 $VG(A) := ZIZIJ_{HieA} / J(A)$

EXAMPLE: BRAID ARRANGEMENT

This makes it more tractable COMPUTATIONALLY

Associated GRADED * There is a Filtration by degree on VG(A) · Fi = Monomials of degree i or less F. C.F. C.F. C. F. C. F.K

* AssociATED GRADED RING $grVG(A) := \bigoplus F_{iri} = \mathbb{Z}[z_i]/gr(J)$

EXAMPLE : BRAID ARRANGEMENT

Generating relations for $J(A_{n-1})$: (i) $z_{ij}(1-z_{ij}) = z_{ij}^{2} f(A_{n-1})$;

(2)
$$Z_{ij} Z_{jk} (1 - Z_{ik}) + (1 - Z_{ij}) (1 - Z_{jk}) Z_{ik}$$

= $Z_{ij} Z_{jk} + \frac{Q_{ik}}{Q_{ik}} - Z_{jk} Z_{ik} - Z_{ij} Z_{ik}$

EXAMPLE: n=3	DIMENSION	PERMUTATIONS
grvG(Az)o	1 = S(3,3)	(1)(2)(3)
gr V G (A 2) 1	3 = 5(3,2)	(12) (3), (13) (2), (23) (1)
gr VG(Az)z	2 = 5(3,1)	(123), (132),
VG (A2)	6 = 3!	(1)(2)(3)(12)(3), (123), (123), (13)(2), (132) (13)(2), (132) (23)(1)

GENERAL FACTS ABOUT gr (VG(A)): Recall ACIR^K * K+1 graded pieces gr(VG(A)) = j th graded piece. * COMMUTATIVE: ZZZ: JH: eA / gr (J(A)) * homogeneous ident

* HILBERT SERIES: $\sum_{j} dim \left(gr \vee G(A); \right) t^{j}$ matches OS(A) * THM (Moseley): gr VG(A) has a cohomeological interpretation gr VG(A) \cong H* ($\mathbb{R}^{k} \otimes \mathbb{R}^{3} \setminus \bigcup_{H \in A} \mathbb{R}^{3}$).

Lo dimensions of graded pieces give coefficients of characteristic polynomial records

Lo Both have Grobner basis given by NBC sets K non-besken circuits

This induces a G-REPRESENTATION on VG(A), gr VG(A), OS(A).

G-REPRESENTATION: G action on a vector space.. e.g. S3 acts on VG (A2) = $\mathbb{Z}[Z_{1j}]_{ij} / J(A_2)$ (12) · Z₁₃ = Z₂₃ (12) · Z₁₃ Z₂₃ - Z₁₂ = Z₂₃ Z₁₃ - (-Z₁₂) = Z₂₃ Z₁₃ + Z₁₂.

- * Next best thing -> symmetric function formula
- * Dream Scenario () Schur expansion

UPSHOT:

HOMOGEN EOUS $h_n = \sum_{i_1 \le i_2 \le \dots \le i_n} \iff permutation representations$ SYMMETRIC FUNCTION

KEY PLAYERS : ivreducible representations SCHUR FUNCTION $S_{\lambda} = \sum_{T} X^{T}$

La this is called FROBENIUS CHARACTERISTIC

We can encode representations of Sn as SYMMETRIC FUNCTIONS:

WHAT ABOUT GRADED PIECES ? -> Much harder !

•

EXAMPLE: n=3	FROBENIUS		
	DIMENSION	CHARACTERISTIC	
grVG(A2)o	1 = S(3,3)	Lie = SIII J3-0 ports	
grVG(A2)1	3 = 5(3,2)	Lie = S + S	
gr VG(A2)2	2 = 5(3,1)	Lie = SH 3-2 parts	
VG(A2)	6 = 3!	$1 S_{\text{CED}} + 2 S_{\text{EP}} + 1 S_{\text{EP}}$ $f^{\text{CED}} = 1 \qquad f^{\text{EP}} = 2 \qquad f^{\text{B}} = 1.$	

THRALL'S HIGHER LIE CHARACTERS

* Decompose REGULAR REPRESENTATION h,

COUNTING # of THRESHOLD GRAPHS : (1) EXPONENTIAL GENERATING FUNCTION In = # of labeled threshold graphs with a vertices THM (Beissinger-Peled)

$$\sum_{n \ge 0} t_n \frac{x^n}{n!} = \frac{e^x (1-x)}{2-e^x}$$

(2) RECURSIONS for n=3

$$t_n = 2 + \sum_{k=2}^{n-1} {\binom{n}{k}} t_k$$

*
$$\mathbf{t}_{n} = n \cdot \mathbf{t}_{n-1} + \sum_{k=2}^{n-1} {\binom{n-1}{k}} \cdot \mathbf{t}_{k} \cdot \mathbf{t}_{n-1-k}$$

٩.

RECALL:
THEOREM (Beissinger-Peled)

$$\sum_{n \ge 0} + \frac{x^{n}}{n!} = \frac{e^{x}(1-x)}{2-e^{x}}$$
Let J_n be the Frobenius characteristic of VG(T_n)
Theorem: Generating Function (B, Charg-Lee, Karn 25⁺)
Let $\mathcal{E}(x) := \sum_{i \ge 0} h_{i} : x^{i}$. Then the Threshold Representation
Let $\mathcal{E}(x) := \sum_{i \ge 0} h_{i} : x^{i}$. Then the Threshold Representation
is $\sum_{n\ge 0} ch(VG(T_{n})) : x^{n} = \sum_{n\ge 0} J_{n} : x^{n} = \frac{\mathcal{E}(x) \cdot (1-h_{1} : x)}{2-\mathcal{E}(x)}$

Note: does not seem like an equivalent statement holds for OS (Tn) ...

RECALL RECURSION 1: For n 23

$$t + t_{n} = 2 + \sum_{k=2}^{n-1} {\binom{n}{k}} + t_{k}$$
THEOREM: RECURSION 1 (B, Chang-Lee, karn 25+)
For $n \ge 3$, $J_{n} = 2h_{n} + \sum_{k=2}^{n-1} h_{n-k} \cdot J_{k}$
EXAMPLE:
 $J_{2} = 2h_{2}$
Thus $J_{3} = 2h_{3} + h_{1} \cdot (2h_{2})$
 $= 2h_{3} + 2h_{21}$.
UPSHOT: Rules for moving from T_{n} to T_{n+1} ...

RECALL RECURSION 2: for n 23 * $\mathbf{t}_{n} = n \cdot \mathbf{t}_{n-1} + \sum_{k=2}^{n-1} \binom{n-1}{k} \cdot \mathbf{t}_{k} \cdot \mathbf{t}_{n-1-k}$ We show that this can be upgraded to "BRANCHING RULES ": Rules for moving From Juli ----- Jn THEOREM: RECURSION 2 (B, Chang-Lee, Karn 25+) For Jn, nz3 $\frac{\partial}{\partial p_{i}} \left(J_{n} \right) = \frac{\partial}{\partial p_{i}} \left(p_{i} J_{n-i} \right) + \sum_{k=2}^{n-1} J_{k} J_{n-i-k}$ $\overset{\text{"restriction" of symmetric functions}}{\sum}$

EXAMPLE: n=3	DIMENSION	FROBENIUS CHARACTERISTIC
$grVG(T_3)_{o}$	1 2 3	S ₃
$grVG(T_3)$	$3 \xrightarrow{2 \\ 3} \xrightarrow{1} \\ 3 \xrightarrow{2} \\ 3 \xrightarrow{1} \\ 3 \xrightarrow{2} \xrightarrow{2} \\ 3 \xrightarrow{2} \xrightarrow{2} \\ $	S ₂₁ + S ₃
$gr VG(T_3)_2$	3 3 3 3 3 3 3 3 3 3 3 3 3 3	S ₂₁ + S ₃
gr VG (T3)3	1 📩	S ₃
VG (T3)	8 = t3	$4S_3 + 2S_{21} = 2h_{21} + 2h_3$

EVEN HARDER PROBLEMS:

(1) Give a BASIS for grVG(Tn) in terms of threshold graphs

Recall:
$$VG(A) \cong \mathbb{Z}[Z_H] / J(A) \longrightarrow ALL CIRCUIT RELATIONSgr VG(A) \cong \mathbb{Z}[Z_H] gr J(A) \longrightarrow$$

We think only two families of circuits are needed
to obtain a Gröbner basis...
CONSECTURE (B, Chang-Lee, Karn 25⁺)
With
$$gr VG(Tn) \cong \mathbb{Z}[Zij] / gr J(Tn),$$

With $gr VG(Tn) \cong \mathbb{Z}[rij] / gr J(Tn),$
Circuit relations from the following circuits
form a GRÖBNER BASIS for $gr J(Tn)$:
The FAMILY:
(1) (n24)
(n25)

SUMMART :	BRAID ARRANGE MENT	THRESHOLD ARRANGEMENT
CHAMBERS :	n! <> biject with permutations	tn
FROBENIUS CHARACTERISTIC OF VG(A)	n REGULAR h, ↔ REPRESENTATION	$\sum_{n\geq 0} \int_{\mathbf{x}} \mathbf{x}^{n} = \frac{\mathcal{E}(\mathbf{x}) \cdot (1 - h, \mathbf{x})}{2 - \mathcal{E}(\mathbf{x})}$
CHARACTERISTIC POLYNOMIAL COEFFICIENTS	Stirling numbers . F the first Kind i.e. permutations with j cycles	Labelled threshold graphs with j odd anchors
FROBENIUS CHARACTERISTIC of gr VG(A)	THRALL'S HIGHER LIE CHARACTERS	51

CONTACT ME! EMAIL: Sarah brauner @ gmail. com WEBSITE: Sarah brauner. com

A REMARK ABOUT REFLECTION ARRANGEMENTS * Let Aw be a reflection arrangement corr. to W. Lo My pastwork dealt with describing the graded pieces of gr VG(Aw) AGAIN: no known irreducible decomposition IN STEAD: I describe the graded pieces interms of other representations occurring in the literature, called EULERIAN REPRESENTATIONS Come from certain IDEMPOTENTS : DESCENT ALGEBRA

