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Toric degenerations
Let P C RY be a d-dimensional polytope with vertices in Z9 and let
PNZ4={ag,...,an}.

The toric variety Xp is the closure of the image of the map (C*)? — P”
given by x — (x® ... x%).

The dimension of Xp is d and the degree of Xp is d! Voly(P).
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Toric degenerations
Let P C RY be a d-dimensional polytope with vertices in Z9 and let
PNZ4={ag,...,an}.

The toric variety Xp is the closure of the image of the map (C*)? — P”
given by x — (x® ... x%).

The dimension of Xp is d and the degree of Xp is d! Voly(P).

Question. Given a variety X C P”, is there a polytope P such that the
toric variety Xp approximates X7

Definition. A toric degeneration of a variety X C P" is a flat family
7w : X — C, where the general fiber is X and the special fiber is a toric
variety Xp.

In this setting, the degree of X equals d! Vol (P).
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Newton—QOkounkov bodies

Let A be a finitely generated C-algebra that is positively graded. Equip
Z" with a total order . A function v : A\ {0} — Z" is a valuation if

> v(f +g) = min{r(f), v(g)}.
> v(fg) =v(f) +v(g), and
» v(c) =0 for all c € C*.

Definition. (Okounkov, Lazarsfeld-Mustats, Kaveh—Khovanskii) Let X
be a projective variety of dimension d and v : C[X]\ {0} — Z9*! a
valuation. The Newton—Okounkov body for (X, v) is

A(X,v):= cone(im(v)) N ({1} x RY).
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semigroup, A(X,v) is a lattice polytope and we have a degeneration of
X to the normalization of the toric variety of A(X,v).
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Let A be a finitely generated C-algebra that is positively graded. Equip
Z" with a total order . A function v : A\ {0} — Z" is a valuation if

> v(f +g) = min{r(f), v(g)}.
> v(fg) =v(f) +v(g), and
» v(c) =0 for all c € C*.

Definition. (Okounkov, Lazarsfeld-Mustats, Kaveh—Khovanskii) Let X
be a projective variety of dimension d and v : C[X]\ {0} — Z9*! a
valuation. The Newton—Okounkov body for (X, v) is

A(X,v):= cone(im(v)) N ({1} x RY).

Theorem. (Anderson, 2013) When the image of v is a saturated
semigroup, A(X,v) is a lattice polytope and we have a degeneration of

X to the normalization of the toric variety of A(X,v).

When the tropicalization of X is well-behaved [Kaveh—Manon, 2016]
construct valuations v such that A(X,v) is a lattice polytope.
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Tropical geometry and Newton—Okounkov bodies
Choose a presentation C[xy, ..., x,]/! for C[X], | homogeneous.

Trop(/):={w € R" | in,, (/) contains no monomials}.

Trop(/) is a fan in R” with cones C,, = {x € R" | in (/) = in,, ()} for
w e R

The tropicalization of | = (y2z — x> + 7xz? — 22%) is the product of
R(1,1,1) with the union of the rays

in,1,00(/) = (—x3 4+ Txz? — 22%)

in,0,0)(1) = (y?z — 22%)

i'"(72,73,0)(/) = ()’22 - X3>
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Tropical geometry and Newton—Okounkov bodies

Choose a presentation C[xy, ..., x,]/! for C[X], | homogeneous.

Trop(/):={w € R" | in,, (/) contains no monomials}.

Trop(/) is a fan in R” with cones C,, = {x € R" | iny (/) = iny, ()} for
w € R".

A cone C of Trop(/) is prime if in, (/) is prime for some/all w € C°.

Theorem. (Kaveh-Manon, 2016) Let C be a prime cone of Trop(/) and

{v1,...,u,} C C be maximally linearly independent. There is a valuation
vc of C[X] such that its Newton-Okounkov body A(C[X],vc) C RY is
the convex hull of the columns of the matrix with rows vy, ..., u,.
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Mutations of Newton-Okounkov bodies
Theorem. (E-Harada, 2019) Let C; and G, be two prime cones of

Trop(/) of maximal dimension sharing a codimension-1 face. There exist
natural projections p1, ps : RY — R9~1 such that
A(X,vq) 25 Agne <= A(X,vg,)

and the fibers are intervals of the same length (up to a global constant).

We obtain two piecewise-linear bijections A(X,v¢ ) = A(X,ve,).

|

Tl
N

5/15



Mutations of Newton-Okounkov bodies
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Mutations of Newton-Okounkov bodies
Theorem. (E-Harada, 2019) Let C; and G, be two prime cones of

Trop(/) of maximal dimension sharing a codimension-1 face. There exist
natural projections p1, ps : RY — R9~1 such that

AX,ve) 25 Agng < A(X,vg,)
and the fibers are intervals of the same length (up to a global constant).

We obtain two piecewise-linear bijections A(X,v¢, ) = A(X,vg,).

The second one vertically reflects A(X,vc,) and then shifts the

intervals.
reflect E
—
shiftl
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Mutations of Newton-Okounkov bodies

Theorem. (E-Harada, 2019) Let G; and G, be two prime cones of
Trop(/) of maximal dimension sharing a codimension-1 face. There exist
natural projections p1, ps : RY — R9~1 such that

A(X,vq) 25 Agne ¢ A(X,ve,)
and the fibers are intervals of the same length (up to a global constant).
We obtain two piecewise-linear bijections A(X,v¢ ) = A(X,vg,).
Remark 1. llten interprets this piecewise-linear bijection as a
generalization of the combinatorial mutations of
Akhtar-Coates-Galkin-Kasprzyk used to study mirror symmetry for Fano
manifolds.
Remark 2. In the case of the Grassmannian of 2-planes in C™ the

second bijection is connected to cluster mutations.
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Families of degenerations from mutations of polytopes

X ~» Trop(X) ~~ a collection of Newton-Okounkov polytopes and
piecewise-linear bijections between them.

Mutations of polytopes also appear in the theory of cluster
algebras/varieties, mirror symmetry, and the study of Fano

manifolds/varieties.

Million-dollar question. Is there a systematic theory that can unify
these?
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Families of degenerations from mutations of polytopes

In [E-Harada—Manon, 2024] we have proposed a theory which generalizes
the theory of toric varieties by
» replacing the classical lattice M = Z" with a collection of lattices
which are related by piecewise-linear bijections (“mutations”), and
» replacing the Laurent polynomial ring C[x{", - - - , x*], together with
its usual valuation with a more general C-algebra A equipped with a
valuation.
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Families of degenerations from mutations of polytopes

In [E-Harada—Manon, 2024] we have proposed a theory which generalizes
the theory of toric varieties by
» replacing the classical lattice M =2 Z" with a collection of lattices
which are related by piecewise-linear bijections (“mutations”), and

» replacing the Laurent polynomial ring (C[le:, -+, x*], together with
its usual valuation with a more general C-algebra A equipped with a
valuation.

By doing the above, we gain multiple benefits:
» We systematize and generalize the phenomenon in [E-Harada, 2022].

» We exhibit a family {X,} of toric degenerations of a single variety
X, where each of the resulting toric varieties are associated to a
polytope which is mutation-related to the others in the family.

» We develop a generalization of the classical theory of polytopes
together with a combinatorics-geometry dictionary.
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Polyptych lattices

A polyptych lattice of rank r is M = ({M;}ies, {pij}ijer) such that
> M, ~7".
» uij - M; — M; is a piecewise linear bijection.

> i =id and pk o i = ik
Example. The trivial polyptych lattice of rank r is M/ := ({Z"}, {id}).

Example. Let My = ({My, M>}, {p12}), where My ~ M, ~ 72 and
paz(x,y) = (min{0, y} — x, y).

An element of M is m = (m;);¢ such that for all i € I, m; € M; and for
all i,j el ,u,-j(m,-) = mj.

Given § C M, the j-th chart of S is the set S; := {s | Im € S, m; = s}.
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Polyptych lattice halfspaces
Roughly a point of M is a collection p = {p; : M; — Z | i € I} such that
> Vi,j€l pjou;=pi
» i € | such that p; is linear and
» Viel, p;isa convex piecewise-linear function.
We denote by Sp(M) the collection of points of M.

Example. For M! := ({Z"}, {id}) we have that Sp(M}) = Hom(Z", Z).
Sp(My) = {(a,a’, b) € Z3 | a+ a’ = min(0, b)}.
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Roughly a point of M is a collection p = {p; : M; — Z | i € I} such that
> Vi,j€l pjou;=pi
» i € | such that p; is linear and
» Viel, p;isa convex piecewise-linear function.
We denote by Sp(M) the collection of points of M.

Example. For M! := ({Z"}, {id}) we have that Sp(M}) = Hom(Z", Z).
Sp(My) = {(a,a’, b) € Z3 | a+ a’ = min(0, b)}.

The PL-halfspace associated to p € Sp(M) and a € Z is
Hp,a:={m e M| p(m) > a}.

Example. An PL halfspace in M, is:

My M,
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Polyptych lattice polytopes

We denote by Sp(M) the collection of points of M.

The PL-halfspace associated to p € Sp(M) and a € Z is
Hp,a:={m e M| p(m) > a}.

A PL-polytope is a bounded finite intersection of PL-halfspaces.

Example. A PL-polytope in Mj:

M,

An PL-polytope is integral if for all i € | its chart in M; is an

L

integral /lattice polytope.

M,
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Polyptych lattice polytopes

We denote by Sp(M) the collection of points of M.

The PL-halfspace associated to p € Sp(M) and a € Z is
Hp,a:={m e M| p(m) > a}.

A PL-polytope is a bounded finite intersection of PL-halfspaces.

Example. A PL-polytope in M5 that is not integral:

An PL-polytope is integral if for all i € | its chart in M; is an
integral /lattice polytope.
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Compactifications via polytopes

1. Toric case.

Let P be a lattice polytope in R". The toric variety Xp is a

compactification of the torus Spec(C[xi™, ..., x*1]).

The homogeneous coordinate ring of the toric variety Xp is given by
C[Xp] = By C[x™ | m € Z" N kP).
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Compactifications via polytopes

1. Toric case.

Let P be a lattice polytope in R". The toric variety Xp is a

compactification of the torus Spec(C[xi™, ..., x*1]).

The homogeneous coordinate ring of the toric variety Xp is given by
C[Xp] = By C[x™ | m € Z" N kP).

We have a valuation v : C[x{!, ..., x*1] — {PWL functions Z" — Z}
i b X)) (=) := min{a, —).
given by (3 cax®)(=) = min(a, )

The support function yp : Z" — R of a polytope P is defined by
Yp = min{(m,—) | m e P}.

We have that C[Xp] = @2, {f € Clxi™, ..., x| v(f) > Ywp )
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Detropicalization of a polyptych lattice

Assume that M is dualizable. Roughly, this means there is a polyptych
lattice A and a pair of bijections 91 : N/ — Sp(M) and
M : M — Sp(N).

Let Py be the semialgebra generated by Sp(/N') with respect to the
operations @ := min and ® = +.

Definition. Given a domain A, a function v : A — Py is a valuation if
> u(f +g) = v(f)@v(g)
> u(fg) = U(F) © v(g), and
» v(c) =0 for all c € C*.

A detropicalization of M is a domain A together with a valuation
v: A — Py such that Sp(N) Cim(v).
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Detropicalization of a polyptych lattice
Assume that M is dualizable. Roughly, this means there is a polyptych
lattice AV and a pair of bijections 9 : A/ — Sp(M) and
M : M — Sp(N).

Let Pyr be the semialgebra generated by Sp(/N\') with respect to the
operations @ := min and ® := +.

Definition. Given a domain A, a function v : A — Py is a valuation if
> u(f+g)>v(f)ev(g),
» v(fg) =v(f)©r(g), and
» v(c) =0 for all c € C*.

A detropicalization of M is a domain A together with a valuation

v : A — Py such that Sp(N) C im(v).

Example. For the trivial polyptych lattice of rank r, ML := ({Z'}, {id}),
recall that Sp(M{) = Hom(Z",Z). The dual is M[ and Py, is the set
of piecewise-linear convex functions on Z'.

The ring C[xt?, ..., x*!] is a detropicalization of M/, with valuation

V(22 €ax) = B, 2ol ).
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Detropicalization of a polyptych lattice
Assume that M is dualizable. Roughly, this means there is a polyptych
lattice AV and a pair of bijections 9 : A/ — Sp(M) and
M : M — Sp(N).

Let Pyr be the semialgebra generated by Sp(/N\') with respect to the
operations @ := min and ® := +.

Definition. Given a domain A, a function v : A — Py is a valuation if
> u(f+g)>v(f)ev(g),
» v(fg) =v(f)©r(g), and
» v(c) =0 for all c € C*.

A detropicalization of M is a domain A together with a valuation

v : A — Py such that Sp(N) C im(v).

Example. Let A = C[xq, xo, tT1]/(x1x0 — 1 — t). There exists a
valuation v such that (A, v) is a detropicalization of M.

Remark. For each d,r € N we give a polyptych lattice My , together
with detropicalization (Ag,,,vq4,,) where
+1
Adr =Clxt, .o Xay ti oo 85/ (0 xg —t1 — - — t).
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Compactifications via polyptych lattice polytopes

2. Polyptych lattice case.

Let A be a detropicalization of M with valuation v and A an integral
PL-polytope.

Let NV be the dual of M with bijection 9 : M — Sp(N).

The support function ¢)a : N'— R of A is defined by
Ya = min{M(m) | me AN M}.

Define the graded algebra Aa := @,-o{f € A| v(f) > Ya}
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Compactifications via polyptych lattice polytopes

2. Polyptych lattice case.

Let A be a detropicalization of M with valuation v and A an integral
PL-polytope.

Let NV be the dual of M with bijection 9 : M — Sp(N).

The support function ¢)a : N'— R of A is defined by
Ya = min{M(m) | me AN M}.

Define the graded algebra Aa := @,-o{f € A| v(f) > Ya}
Theorem. (E-Harada—Manon) Xa := Proj(Aa) is a compactification of
Spec(A). Moreover, for each i € I, the chart image of A in M; is a

Newton—Okounkov body of Xa and these polytopes are connected by the
PWL bijections ;.
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Geometric properties

Theorem. (E-Harada—Manon) Xa := Proj(.Aa) is a compactification of
Spec(.A). Moreover, for each i € I, the chart image of A in M; is a
Newton—Okounkov body of Xa and these polytopes are connected by the
PWL bijections ;.

Theorem. (E-Harada-Manon) Suppose each chart image A; of A is a
lattice polytope. There exists a toric degeneration 7 : X; — C with
generic fiber isomorphic to Xa and special fiber the toric variety
associated to A;.
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Geometric properties

Theorem. (E-Harada—Manon) Xa := Proj(.Aa) is a compactification of
Spec(.A). Moreover, for each i € I, the chart image of A in M; is a
Newton—Okounkov body of Xa and these polytopes are connected by the
PWL bijections ;.

Theorem. (E-Harada-Manon) Suppose each chart image A; of A is a
lattice polytope. There exists a toric degeneration 7 : X; — C with
generic fiber isomorphic to Xa and special fiber the toric variety
associated to A;.

Moreover,

» Ap is finitely generated.
» Xa is arithmetically Cohen-Macaullay.
» If A is normal, then Xa is also normal.

» If Ais a UFD, then X has a finitely generated class group and a
finitely generated Cox ring.
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We give a family of rank-2, two-chart examples in
(Cook—E—Harada—Manon), and also give lots of sample computations for
this family, e.g. the PL analogue of Gorenstein-Fano polytopes.
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Thank you!



