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Toric degenerations

Let P ⊂ Rd be a d-dimensional polytope with vertices in Zd and let
P ∩ Zd = {α0, . . . , αn}.

The toric variety XP is the closure of the image of the map (C∗)d → Pn

given by x 7→ (xα0 , . . . , xαn).

The dimension of XP is d and the degree of XP is d! Vold(P).

Question. Given a variety X ⊆ Pn, is there a polytope P such that the
toric variety XP approximates X?

Definition. A toric degeneration of a variety X ⊆ Pn is a flat family
π : X→ C, where the general fiber is X and the special fiber is a toric
variety XP .

In this setting, the degree of X equals d! Vold(P).
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Newton–Okounkov bodies

Let A be a finitely generated C-algebra that is positively graded. Equip
Zn with a total order ≻. A function ν : A \ {0} → Zn is a valuation if

▶ ν(f + g) ⪰ min{ν(f ), ν(g)},
▶ ν(fg) = ν(f ) + ν(g), and

▶ ν(c) = 0 for all c ∈ C∗.

Definition. (Okounkov, Lazarsfeld–Mustaţă, Kaveh–Khovanskii) Let X
be a projective variety of dimension d and ν : C[X ] \ {0} → Zd+1 a
valuation. The Newton–Okounkov body for (X , ν) is
∆(X , ν) := cone(im(ν)) ∩ ({1} × Rd).

Theorem. (Anderson, 2013) When the image of ν is a saturated
semigroup, ∆(X , ν) is a lattice polytope and we have a degeneration of
X to the normalization of the toric variety of ∆(X , ν).

When the tropicalization of X is well-behaved [Kaveh–Manon, 2016]
construct valuations ν such that ∆(X , ν) is a lattice polytope.
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Tropical geometry and Newton–Okounkov bodies

Choose a presentation C[x1, . . . , xn]/I for C[X ], I homogeneous.

Trop(I ) :={w ∈ Rn | inw (I ) contains no monomials}.

Trop(I ) is a fan in Rn with cones Cw = {x ∈ Rn | inx(I ) = inw (I )} for
w ∈ Rn.

The tropicalization of I = ⟨y2z − x3 + 7xz2 − 2z3⟩ is the product of
R(1, 1, 1) with the union of the rays

in(1,0,0)(I ) = ⟨y2z − 2z3⟩

in(0,1,0)(I ) = ⟨−x3 + 7xz2 − 2z3⟩

in(−2,−3,0)(I ) = ⟨y2z − x3⟩
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Trop(I ) :={w ∈ Rn | inw (I ) contains no monomials}.

Trop(I ) is a fan in Rn with cones Cw = {x ∈ Rn | inx(I ) = inw (I )} for
w ∈ Rn.

A cone C of Trop(I ) is prime if inw (I ) is prime for some/all w ∈ C◦.

Theorem. (Kaveh-Manon, 2016) Let C be a prime cone of Trop(I ) and
{u1, . . . , ur} ⊂ C be maximally linearly independent. There is a valuation
νC of C[X ] such that its Newton-Okounkov body ∆(C[X ], νC ) ⊂ Rd is
the convex hull of the columns of the matrix with rows u1, . . . , ur .
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Mutations of Newton-Okounkov bodies
Theorem. (E-Harada, 2019) Let C1 and C2 be two prime cones of
Trop(I ) of maximal dimension sharing a codimension-1 face. There exist
natural projections p1, p2 : Rd → Rd−1 such that

∆(X , νC1)
p1−→ ∆C1∩C2

p2←− ∆(X , νC2)

and the fibers are intervals of the same length (up to a global constant).

We obtain two piecewise-linear bijections ∆(X , νC1)→ ∆(X , νC2).

p1

• •
p2

•
ξ
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The second one vertically reflects ∆(X , νC1) and then shifts the
intervals.
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Mutations of Newton-Okounkov bodies

Theorem. (E-Harada, 2019) Let C1 and C2 be two prime cones of
Trop(I ) of maximal dimension sharing a codimension-1 face. There exist
natural projections p1, p2 : Rd → Rd−1 such that

∆(X , νC1)
p1−→ ∆C1∩C2

p2←− ∆(X , νC2)

and the fibers are intervals of the same length (up to a global constant).

We obtain two piecewise-linear bijections ∆(X , νC1)→ ∆(X , νC2).

Remark 1. Ilten interprets this piecewise-linear bijection as a
generalization of the combinatorial mutations of
Akhtar-Coates-Galkin-Kasprzyk used to study mirror symmetry for Fano
manifolds.

Remark 2. In the case of the Grassmannian of 2-planes in Cm the
second bijection is connected to cluster mutations.
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Families of degenerations from mutations of polytopes

X ⇝ Trop(X )⇝ a collection of Newton–Okounkov polytopes and
piecewise-linear bijections between them.

Mutations of polytopes also appear in the theory of cluster
algebras/varieties, mirror symmetry, and the study of Fano
manifolds/varieties.

Million-dollar question. Is there a systematic theory that can unify
these?
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Families of degenerations from mutations of polytopes

In [E–Harada–Manon, 2024] we have proposed a theory which generalizes
the theory of toric varieties by

▶ replacing the classical lattice M ∼= Zr with a collection of lattices
which are related by piecewise-linear bijections (“mutations”), and

▶ replacing the Laurent polynomial ring C[x±1 , · · · , x±r ], together with
its usual valuation with a more general C-algebra A equipped with a
valuation.
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▶ replacing the Laurent polynomial ring C[x±1 , · · · , x±r ], together with
its usual valuation with a more general C-algebra A equipped with a
valuation.

By doing the above, we gain multiple benefits:

▶ We systematize and generalize the phenomenon in [E–Harada, 2022].

▶ We exhibit a family {Xα} of toric degenerations of a single variety
X , where each of the resulting toric varieties are associated to a
polytope which is mutation-related to the others in the family.

▶ We develop a generalization of the classical theory of polytopes
together with a combinatorics-geometry dictionary.
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Polyptych lattices

A polyptych lattice of rank r isM = ({Mi}i∈I , {µij}i,j∈I ) such that

▶ Mi ≃ Zr .

▶ µij : Mi → Mj is a piecewise linear bijection.

▶ µii = id and µjk ◦ µij = µik .

Example. The trivial polyptych lattice of rank r isMr
◦ := ({Zr}, {id}).

Example. LetM2 = ({M1,M2}, {µ12}), where M1 ≃ M2 ≃ Z2 and
µ12(x , y) = (min{0, y} − x , y).

An element ofM is m = (mi )i∈I such that for all i ∈ I , mi ∈ Mi and for
all i , j ∈ I , µij(mi ) = mj .

Given S ⊆M, the i-th chart of S is the set Si := {s | ∃m ∈ S,mi = s}.
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Polyptych lattice halfspaces
Roughly a point ofM is a collection p = {pi : Mi → Z | i ∈ I} such that

▶ ∀i , j ∈ I , pj ◦ µij = pi
▶ ∃i ∈ I such that pi is linear and

▶ ∀i ∈ I , pi is a convex piecewise-linear function.

We denote by Sp(M) the collection of points ofM.

Example. ForMr
◦ := ({Zr}, {id}) we have that Sp(Mr

◦) = Hom(Zr ,Z).
Sp(M2) ∼= {(a, a′, b) ∈ Z3 | a+ a′ = min(0, b)}.

The PL-halfspace associated to p ∈ Sp(M) and a ∈ Z is
Hp,a := {m ∈M | p(m) ≥ a}.

Example. An PL halfspace inM2 is:

M1 M2

8 / 15



Polyptych lattice halfspaces
Roughly a point ofM is a collection p = {pi : Mi → Z | i ∈ I} such that

▶ ∀i , j ∈ I , pj ◦ µij = pi
▶ ∃i ∈ I such that pi is linear and

▶ ∀i ∈ I , pi is a convex piecewise-linear function.

We denote by Sp(M) the collection of points ofM.

Example. ForMr
◦ := ({Zr}, {id}) we have that Sp(Mr

◦) = Hom(Zr ,Z).
Sp(M2) ∼= {(a, a′, b) ∈ Z3 | a+ a′ = min(0, b)}.

The PL-halfspace associated to p ∈ Sp(M) and a ∈ Z is
Hp,a := {m ∈M | p(m) ≥ a}.

Example. An PL halfspace inM2 is:

M1 M2

8 / 15



Polyptych lattice polytopes

We denote by Sp(M) the collection of points ofM.

The PL-halfspace associated to p ∈ Sp(M) and a ∈ Z is
Hp,a := {m ∈M | p(m) ≥ a}.

A PL-polytope is a bounded finite intersection of PL-halfspaces.

Example. A PL-polytope inM2:

M1 M2

An PL-polytope is integral if for all i ∈ I its chart in Mi is an
integral/lattice polytope.
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Polyptych lattice polytopes

We denote by Sp(M) the collection of points ofM.

The PL-halfspace associated to p ∈ Sp(M) and a ∈ Z is
Hp,a := {m ∈M | p(m) ≥ a}.

A PL-polytope is a bounded finite intersection of PL-halfspaces.

Example. A PL-polytope inM2 that is not integral:

An PL-polytope is integral if for all i ∈ I its chart in Mi is an
integral/lattice polytope.
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Compactifications via polytopes

1. Toric case.

Let P be a lattice polytope in Rn. The toric variety XP is a
compactification of the torus Spec(C[x±1

1 , . . . , x±1
r ]).

The homogeneous coordinate ring of the toric variety XP is given by
C[XP ] =

⊕∞
k=0 C[xm | m ∈ Zr ∩ kP].

We have a valuation ν : C[x±1
1 , . . . , x±1

r ]→ {PWL functions Zr → Z}
given by ν(

∑
cαx

α)(−) := min
cα ̸=0
⟨α,−⟩.

The support function ψP : Zr → R of a polytope P is defined by
ψP := min{⟨m,−⟩ | m ∈ P}.

We have that C[XP ] =
⊕∞

k=0{f ∈ C[x±1
1 , . . . , x±1

n ] | ν(f ) ≥ ψkP}.
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Detropicalization of a polyptych lattice

Assume thatM is dualizable. Roughly, this means there is a polyptych
lattice N and a pair of bijections N : N → Sp(M) and
M :M→ Sp(N ).

Let PN be the semialgebra generated by Sp(N ) with respect to the
operations ⊕ := min and ⊙ := +.

Definition. Given a domain A, a function ν : A → PN is a valuation if

▶ ν(f + g) ≥ ν(f )⊕ ν(g),
▶ ν(fg) = ν(f )⊙ ν(g), and
▶ ν(c) = 0 for all c ∈ C∗.

A detropicalization ofM is a domain A together with a valuation
ν : A → PN such that Sp(N ) ⊆ im(ν).
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Example. For the trivial polyptych lattice of rank r ,Mr
◦ := ({Zr}, {id}),

recall that Sp(Mr
◦) = Hom(Zr ,Z). The dual isMr

◦ and PMr
◦
is the set

of piecewise-linear convex functions on Zr .

The ring C[x±1
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Assume thatM is dualizable. Roughly, this means there is a polyptych
lattice N and a pair of bijections N : N → Sp(M) and
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Definition. Given a domain A, a function ν : A → PN is a valuation if
▶ ν(f + g) ≥ ν(f )⊕ ν(g),
▶ ν(fg) = ν(f )⊙ ν(g), and
▶ ν(c) = 0 for all c ∈ C∗.

A detropicalization ofM is a domain A together with a valuation
ν : A → PN such that Sp(N ) ⊆ im(ν).

Example. Let A = C[x1, x2, t±1]/⟨x1x2 − 1− t⟩. There exists a
valuation ν such that (A, ν) is a detropicalization ofM2.

Remark. For each d , r ∈ N we give a polyptych latticeMd,r together
with detropicalization (Ad,r , νd,r ) where
Ad,r = C[x1, . . . , xd , t±1

1 , . . . , t±1
r ]/⟨x1 · · · xd − t1 − · · · − tr ⟩.
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Compactifications via polyptych lattice polytopes

2. Polyptych lattice case.

Let A be a detropicalization ofM with valuation ν and ∆ an integral
PL-polytope.

Let N be the dual ofM with bijection M :M→ Sp(N ).

The support function ψ∆ : N → R of ∆ is defined by
ψ∆ := min{M(m) | m ∈ ∆ ∩M}.

Define the graded algebra A∆ :=
⊕∞

k=0{f ∈ A | ν(f ) ≥ ψk∆}.

Theorem. (E–Harada–Manon) X∆ := Proj(A∆) is a compactification of
Spec(A). Moreover, for each i ∈ I , the chart image of ∆ in Mi is a
Newton–Okounkov body of X∆ and these polytopes are connected by the
PWL bijections µij .
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Geometric properties

Theorem. (E–Harada–Manon) X∆ := Proj(A∆) is a compactification of
Spec(A). Moreover, for each i ∈ I , the chart image of ∆ in Mi is a
Newton–Okounkov body of X∆ and these polytopes are connected by the
PWL bijections µij .

Theorem. (E–Harada–Manon) Suppose each chart image ∆i of ∆ is a
lattice polytope. There exists a toric degeneration π : Xi → C with
generic fiber isomorphic to X∆ and special fiber the toric variety
associated to ∆i .

Moreover,

▶ A∆ is finitely generated.

▶ X∆ is arithmetically Cohen-Macaullay.

▶ If A is normal, then X∆ is also normal.

▶ If A is a UFD, then X∆ has a finitely generated class group and a
finitely generated Cox ring.
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We give a family of rank-2, two-chart examples in
(Cook–E–Harada–Manon), and also give lots of sample computations for
this family, e.g. the PL analogue of Gorenstein-Fano polytopes.
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Thank you!
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