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Think in threes

The number three surrounds us: three is the first recognizable and
easy to remember sequence of numbers; the three-act structure is
the predominant model used in screenwriting; and a triangle is the
strongest physical shape. That is why we rely on three security
triads to lay the foundation of what it means to be secure!

-UC Cyber Security Awareness Fundamentals

Figure: c© The Security Awareness Company, LLC
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Random matrices

For a self-adjoint N ×N matrix AN ∈ MatN (C), let

λ1(AN ) ≥ · · · ≥ λN (AN )

denote the eigenvalues of AN , counting multiplicity, arranged in a
non-increasing order.

We write µ(AN ) for the empirical spectral distribution (or ESD for
short) of AN , i.e.,

µ(AN ) =
1

N

N∑
k=1

δλk(AN ).

For a random matrix AN , the ESD µ(AN ) becomes a random
probability measure on the real line (R,B(R)).
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Wigner matrices

Let (Xi,j)1≤i<j<∞ and (Xi,i)1≤i<∞ be independent families of i.i.d.
random variables: the former, complex-valued, centered, and of unit
variance; the latter, real-valued and of finite variance.

Taken together, the two families define a random self-adjoint matrix
WN with entries given by

WN (i, j) =


Xi,j√
N

if i < j,

Xi,i√
N

if i = j.

We call WN a Wigner matrix with β = 1 if Xi,j is real-valued and
β = 2 otherwise.
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Wigner matrices

Theorem (Wigner’s semicircle law)

Let WN be a Wigner matrix. Then the ESD µ(WN ) converges weakly

almost surely to the semicircle distribution µSC(dx) = 1
2π (4− x2)1/2+ dx.

Example
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Behavior of the largest eigenvalue

Location:

Theorem (FK81, BY88)

P( lim
N→∞

λ1(WN ) = 2) = 1 ⇐⇒ E[|X1,2|4] <∞

Fluctuations:

Theorem (TW94, TW96, Sos99, LY14)

lim
N→∞

P(N2/3(λ1(WN )− 2) ≤ s) = Fβ(s) ⇐⇒ lim
s→∞

s4P(|X1,2| ≥ s) = 0

Combinatorics:

Theorem (BDJ99)

lim
N→∞

P

(
`(πN )− 2

√
N

N1/6
≤ s

)
= F2(s)
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Method of moments

Idea: look at traces of powers of our matrix

1

N
tr(Wp

N ) =
1

N

(
λ1(WN )p + · · ·+ λN (WN )p

)
= mp(µ(WN )).

1 Prove that limN→∞ E 1
N tr(Wp

N ) = E[Sp], where S
d
= µSC .

2 Prove that Var( 1
N tr(Wp

N )) = O(N−2).
3 In particular, the even moments of the semicircle distribution are given

by the Catalan numbers Cn, while the odd moments equal to zero:

lim
N→∞

E
[

1

N
tr(Wn

N )

]
= 1{n ∈ 2N}Cn/2

Can also be used to study finer statistics.
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Universality

The semicircle law holds regardless of the distribution of the entries of
the matrix Xi,j up to the modest assumptions on the mean and
variance.

The Wigner surmise: random matrices as a statistical model for
heavy-nuclei atoms, namely the gap distribution of the eigenvalues
model the gap distribution of the energy levels.

The invariant ensembles: GUE and GOE. The advantage: exact
formulas for many quantities of interest by exploiting the algebraic
structure.

Universality: establish the general case by comparison.
1 Eigenvalue universality
2 Eigenvector universality (delocalization)
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Random band matrices

Let (Xi,j)1≤i<j<∞ and (Xi,i)1≤i<∞ be independent families of i.i.d.
random variables: the former, complex-valued, centered, and of unit
variance; the latter, real-valued and of finite variance.

Let (bN ) be a sequence of non-negative integers such that bN � 1.

Taken together, the two families define a random self-adjoint matrix
ΞN with entries given by

ΞN (i, j) =


Xi,j√

2bN + 1
if i < j and |i− j| ≤ bN ,

Xi,i√
2bN + 1

if i = j.

We call ΞN a random band matrix.
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Random band matrices

|i− j| ≤ bN min{|i− j|, N − |i− j|} ≤ bN
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Random band matrices

Global behavior:

Theorem (BMP91)

P( lim
N→∞

µ(ΞN ) = µSC) = 1 ⇐⇒ bN � 1.

Largest eigenvalue:

Theorem (Sod10,BvH16)

If the entries Xi,j are sub-Gaussian, then

P( lim
N→∞

λ1(ΞN ) = 2) = 1 ⇐⇒ bN � log(N).

Moreover,

lim
N→∞

P(N2/3(λ1(ΞN )− 2) ≤ s) = Fβ(s) ⇐⇒ bN � N5/6.
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Random band matrices

Universality:

Conjecture (CGI90, CMI90, FLW91, WFL91, FM91)

Sharp transition around the critical rate
√
N :

(strong disorder) Poisson local statistics and eigenvector localization
for bN �

√
N ;

(weak disorder) random matrix theory local statistics and eigenvector
delocalization for bN �

√
N .

Progress:

Eigenvector localization for bN � N1/8 (Schenker 2009)
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Random band matrices

Universality:

Conjecture (CGI90, CMI90, FLW91, WFL91, FM91)

Sharp transition around the critical rate
√
N :

(strong disorder) Poisson local statistics and eigenvector localization
for bN �
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N ;

(weak disorder) random matrix theory local statistics and eigenvector
delocalization for bN �

√
N .

Progress:

Eigenvector localization for bN � N1/7 (PSSS 2017)

Eigenvector delocalization and QUE for bN � N3/4+α (BYY 2018)

Localization implies Poisson statistics (Min96)

QUE implies random matrix theory local statistics (BEYY17)
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Free probability

Definition

A ∗-probability space (A, ϕ) is a pair consisting of a unital ∗-algebra A
over C together with a unital linear functional ϕ : A → C such that
ϕ(a∗a) ≥ 0 for any a ∈ A.

Examples

(L∞−(Ω,F ,P),E)

(MatN (C), 1
N Tr)

(MatN (L∞−(Ω,F ,P)),E 1
N Tr)

(B(H), 〈·ξ, ξ〉)
(C[G], 〈·δe, δe〉)
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Free probability

Definition

We say that subalgebras (Ai)i∈I of a ∗-probability space (A, ϕ) are
classically independent if [Ai,Aj ] = 0 for i 6= j and

ϕ

( n∏
j=1

aj

)
=

n∏
j=1

ϕ(aj), ∀aj ∈ Ai(j),

whenever the indices (i(j))nj=1 are distinct.

Examples

In (L∞−(Ω,F ,P),E), the subalgebras (L∞−(Ω,Fi,P))i∈I for
independent σ-algebras (Fi)i∈I
In (C[G], 〈·δe, δe〉), the subalgebras (C[Gi])i∈I for the direct product
G = ×i∈I Gi.
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Free probability

Definition

We say that subalgebras (Ai)i∈I of a ∗-probability space (A, ϕ) are freely
independent if

ϕ

( n∏
j=1

◦
aj

)
= 0, ∀aj ∈ Ai(j),

where the indices are consecutively distinct i(1) 6= i(2) 6= · · · 6= i(n) and
◦
aj = aj − ϕ(aj).

Examples

(Voi91) Unitarily invariant random matrix ensembles in the large N
limit; (Dyk93) mean-field matrix ensembles in the large N limit.

In (C[G], 〈·δe, δe〉), the subalgebras (C[Gi])i∈I for the free product
G = ∗i∈I Gi.
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Free convolution

Observation: the joint distribution of freely independent random variables
is completely determined by the marginal distributions in a universal way.

Definition

Given two probability measures µ and ν on the real line, one defines the
free convolution µ� ν as the distribution of X + Y for X and Y

self-adjoint and freely independent with X
d
= µ and Y

d
= ν.

Question: How do we actually compute the free convolution in practice?

Theorem (BV93)

Let Gµ(z) =
∫

1
z−t µ(dt) be the Cauchy transform of µ and Fµ(z) = 1

Gµ(z)

its reciprocal. Then

F−1µ (z) + F−1ν (z) = z + F−1µ�ν(z).
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Free convolution

Example

Let WN be a Wigner matrix and DN a diagonal matrix with i.i.d.
Rademacher random variables. Then

µ(WN )
w→ 1

2π
(4− x2)1/2+ dx and µ(DN )

w→ 1

2
δ±1.

The asymptotic freeness of WN and DN further tells us that

µ(WN + DN )
w→
(

1

2π
(4− x2)1/2+ dx

)
�

(
1

2
δ±1

)
,

which is absolutely continuous with density

1

2π
√

3

( 3
√

27x− 2x3 + 3
√

3
√

27x2 − 4x4

3
√

2
−

3
√

2x2

3
√

27x− 2x3 + 3
√

3
√

27x2 − 4x4

)
.
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Free convolution
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Finite-rank perturbations

Theorem (Péc06, FP07, CDMF09, PRS13)

Let WN be a Wigner matrix. For a localized perturbation θE
(1,1)
N with

θ > 1, the largest eigenvalue of the perturbed model

MN = WN + θE
(1,1)
N

satisfies
λ1(MN )

a.s.→ θ + θ−1.

Furthermore,

√
N(1− θ−2)−1

(
λ1(MN )− (θ + θ−1)

)
d→ µ ∗ N (0, vθ),

where

vθ =
1

β

(
κ4(µ)

θ2
+

2

θ2 − 1

)
.
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Finite-rank perturbations

Theorem (Péc06, FP07, CDMF09, PRS13)

Let WN be a Wigner matrix. For a delocalized perturbation θ
N JN with

θ > 1, the largest eigenvalue of the perturbed model

MN = WN +
θ

N
JN

satisfies
λ1(MN )

a.s.→ θ + θ−1.

Furthermore,

√
N(1− θ−2)−1

(
λ1(MN )− (θ + θ−1)

)
d→ N (0, 2β−1).
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Free probability for finite-rank perturbations

Observation: WN and θE
(1,1)
N are asymptotically free with

µ(WN )
w→ 1

2π
(4− x2)1/2+ dx and µ(θE

(1,1)
N )

w→ δ0.

So,

µ(MN )
w→
(

1

2π
(4− x2)1/2+ dx

)
� δ0 =

1

2π
(4− x2)1/2+ dx.

Second observation (BBCDMFF):

GµSC(z) =
z −
√
z2 − 4

2
;

FµSC(z) =
2

z −
√
z2 − 4

;

F−1µSC(z) = z + z−1
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GµSC(z) =
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√
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2
;

FµSC(z) =
2

z −
√
z2 − 4

;

F−1µSC(z) = z + z−1 (θ + θ−1?)

Benson Au Infinitesimal free probability February 6th, 2020 24 / 45



Infinitesimal free probability

Definition (BS12)

An infinitesimal probability space (A, ϕ, ϕ′) is a ∗-probability space (A, ϕ)
with an additional linear functional ϕ′ : A → C such that ϕ′(1) = 0. We
say that subalgebras (Ai)i∈I are infinitesimally free if they are free in
(A, ϕ) and

ϕ′(a1 · · · ak) =

k∑
j=1

ϕ(a1 · · · aj−1ϕ′(aj)aj+1 · · · ak)

for aj ∈ Ai(j) and consecutively distinct indices i(1) 6= i(2) 6= · · · 6= i(k).
Equivalently, for ϕt = ϕ+ tϕ′,

ϕt((a1 − ϕt(a1)) · · · (ak − ϕt(ak))) = O(t2).
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Infinitesimal free probability

Example

Assume that

ϕ(P ) = lim
N→∞

ϕN (P ) = lim
N→∞

E
1

N
Tr[P (AN )]

exists for any non-commutative polynomial P in the family of random
matrices AN . If the limit

ϕ′(P ) = lim
N→∞

N(ϕN (P )− ϕ(P ))“ = ” lim
h→0

ϕ1/h(P )− ϕ(P )

h

also exists for any non-commutative polynomial P , then we can define an
infinitesimal probability space (A, ϕ, ϕ′).
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Infinitesimal distribution

Recall that

lim
N→∞

E
1

N
tr(W p

N ) = 1{p ∈ 2N}Cp/2.

In other words,

E
1

N
tr(W p

N )− 1{p ∈ 2N}Cp/2 = op(1).

What can we say about

N

[
E

1

N
tr(W p

N )− 1{p ∈ 2N}Cp/2
]
?
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Infinitesimal free probability

Example

Assume that

ϕ(P ) = lim
N→∞

ϕN (P ) = lim
N→∞

E
1

N
Tr[P (AN )]

exists for any non-commutative polynomial P in the family of random
matrices AN . If the limit

ϕ′(P ) = lim
N→∞

N(ϕN (P )− ϕ(P ))“ = ” lim
h→0

ϕ1/h(P )− ϕ(P )

h

also exists for any non-commutative polynomial P , then we can define an
infinitesimal probability space (A, ϕ, ϕ′).
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Infinitesimal distribution

For WN GUE,

lim
N→∞

N

[
E

1

N
tr(W p

N )− 1{p ∈ 2N}Cp/2
]

= 0 =

∫
xp νGUE(dx),

where νGUE is the null measure.

Theorem (Joh98)

For WN GOE,

lim
N→∞

N

[
E

1

N
tr(W p

N )− 1{p ∈ 2N}Cp/2
]

=

∫
xp νGOE(dx),

where νGOE(dx) is the signed measure

νGOE(dx) =
1

2

(
1

2
δ±2 −

1

π(4− x2)1/2+

dx

)
.
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Infinitesimal distribution

Observation: For a finite-rank perturbation θE
(1,1)
N (resp., θ

N JN ), the
infinitesimal distribution is given by

(δ0, δθ − δ0).

Theorem (Shl18)

Let WN be GUE or GOE. Then WN and the matrix units are
asymptotically infinitesimally free.

Theorem (BS12)

Let (µ1, ν1) and (µ2, ν2) be infinitesimal distributions. Then the
infinitesimal free convolution (µ3, ν3) = (µ1, ν1) � (µ2, ν2) satisfies

F−1µ1 (z) + F−1µ2 (z) = z + F−1µ3 (z);(1)
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Infinitesimal free convolution

Theorem (BS12)

Let (µ1, ν1) and (µ2, ν2) be infinitesimal distributions. Then the
infinitesimal free convolution (µ3, ν3) = (µ1, ν1) � (µ2, ν2) satisfies
µ3 = µ1 � µ2 and

Gν3(z) = Gν1(ω1(z))ω
′
1(z) +Gν2(ω2(z))ω

′
2(z).

Example (Shl18)

Assume that θ > 1. Then

(µSC , νGUE) � (δ0, δθ − δ0) =

(
µSC , δθ+θ−1 − θ(x− 2θ)

2π
√

4− x2(θ(x− θ)− 1)
dx

)
.

For the GOE, one adds the signed measure of mass 0

1

2

(
1

2
δx=±2 −

1

π(4− x2)
1/2
+

dx

)
.
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Infinitesimal free convolution

Theorem (EM16)

Assume that WN is a Wigner matrix such that the upper-triangular entries
(resp., the diagonal entries) have a common distribution. Then WN has a

limiting infinitesimal distribution given by ν = 1
2

[
1{β=1}

2 δ±2 + νac

]
, where

dνac
dt

=

[(
α+ β − 4

)
x4 +

(
s2 − 4α− 3β + 13

)
x2 + 2

(
α− s2 − 2

)
+ β

]
π
√

4− x2
.

Lemma (Au19+)

Let WN be a Wigner matrix as above. Then WN , the matrix units, and
the normalized all-ones matrix 1

N JN are asymptotically infinitesimally free.
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Free probability for random band matrices

Theorem (BMP91)

Let

ΞN (i, j) = 1{min(|i− j|, N − |i− j|) ≤ bN}
Xi,j√

2bN + 1

be a periodic random band matrix with band width bN � 1. Then µ(ΞN )
converges weakly almost surely to the semicircle distribution µSC .

Theorem (Au18)

Informally, free probability still works for random band matrices (e.g.,
asymptotic freeness for independent random band matrices).

Remark

Rate of the band width does not play a role.
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Periodically banded GUE matrices

Example

-2 -1 0 1 2

0.0

0.1

0.2

0.3

0.4

0.5 [W
(1)
N ,W

(2)
N ]

[Ξ
(1)
N ,Ξ

(2)
N ]
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Periodically banded GUE matrices

Theorem (Au19+)

lim
N→∞

N

[
E

1

N
tr(Ξ2p

N )− Cp
]

=


0 if bN �

√
N ;

+∞ if bN �
√
N ;

γ2p ∈ (0,+∞) if bN �
√
N.

Independent copies of ΞN of the same band width are asymptotically
infinitesimally free iff the band widths satisfy bN �

√
N . Moreover, ΞN is

asymptotically infinitesimally free from the matrix units and the
normalized all-ones matrix.

Corollary

The infinitesimal distribution of the perturbed model ΞN + θE
(1,1)
N (resp.,

ΞN + θ
N JN ) is identical to the perturbed GUE for band widths bn �

√
N .

In particular, we find outliers at the classical locations.
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Example (FN,1(bn) =
√
2bN+1√
θ2−12

θ2

[
λ1(ΞN + θE

(1,1)
N )− (θ + 1

θ
)
]

)

-3 -2 -1 0 1 2 3
0.0

0.1

0.2

0.3

0.4

0.5
bN = N3/5

bN = N2/5
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Random band matrices
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Example (FN,2(bn) =
√
N√

θ2−12

θ2
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λ1(ΞN + θ

N
JN)− (θ + 1

θ
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]
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Further questions and future work

Conjecture: localized perturbations result in fluctuations at the scale
of the band width; delocalized perturbations result in fluctuations at
the level of the dimension. Interpolation?

Location of outliers for finite-rank perturbations of aperiodic random
band matrices? Fluctuations?

How does this relate to the original
√
N conjecture?

Where’s the combinatorics?

Thank you!
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