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Domain exchange map (DEM)
A dynamical system defined on a smooth Jordan domain
which is a piecewise translation
Joint work with Richard Kenyon and Ren Yi

T : D1 → D1

T : x 7→ x + v



Definition
Let X be a Jordan domain partitioned into smaller Jordan
domains, with disjoint interiors, in two different ways

X =
N⋃

k=0

Ak =
N⋃

k=0

Bk

such that for each k = 0, . . . ,N, ∃vk ∈ R2 with

Ak + vk = Bk .

A domain exchange map is the dynamical system

T (x) = x + vk for x ∈ Åk .

The map is not defined for points x ∈
⋃N

k=0 ∂Ak .



Setup: T : X → X a dynamical system and Y ( X

Definition
A dynamical system is minimal if every point has a dense orbit

Definition

The first-return map T̂ |Y : Y → Y is defined by

T̂ |Y (p) = T m(p) where m = min{k ∈ N : T k (p) ∈ Y}

for p ∈ Y .

If X = [0,1]2 the DEM is a Rectangle Exchange Map (REM)
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Definition
A renormalization scheme is a proper subset Y ( X , a
dynamical system T ′ : X ′ → X ′, and a homeomorphism
φ : X → X ′ such that

T̂ |Y = φ−1 ◦ T ′ ◦ φ.

If T ′ = T the dynamical system is called self-induced or
renormalizable.

Main Results (A., Kenyon, Yi 2018)
Construct minimal DEMs on any domain with
equidistributed orbits
Find an infinite family of renormalizable REMs
Compose REMs to produce multistage REMs with
periodic renormalization schemes
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Background

An interval exchange transformation (IET) T : X → X is a
1-dimensional DEM defined on an interval

1 Each probability vector and permutation (of matching
length) defines an IET on [0,1]

2 IETs are important examples in ergodic theory
3 Keane’s minimality criterion (’75)
4 T is uniquely ergodic if the only invariant probability

measure is a multiple of Lebesgue measure
1 A measure µ is invariant with respect to T if
µ(T−1(A)) = µ(A) ∀A

2 Unique ergodicity =⇒ orbits of points uniformly distributed
5 There exist minimal IETs (n = 4) which are not uniquely

ergodic (Keane ’77)
6 Almost every minimal IET with an irreducible permutation

is uniquely ergodic (Masur/Veech ‘82)
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Main results
Background

The Hausdorff dimension of the set of non-uniquely ergodic
IETs with n pieces is n − 1− 1/2 (Chaika-Masur ’18)

Proof uses Rauzy Induction to construct large sets of
non-uniquely ergodic IETs
Rauzy Induction is a renormalization scheme for general
IETs (‘79)

Almost every minimal IET with an irreducible permutation
that isn’t a rotation is weak mixing (Avila & Forni ’04)

Open Questions for DEMs
1 Find examples of minimal DEMs
2 Develop a general renormalization theory
3 Understand ergodic properties
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Previous Work on DEMs

Keane’s minimality condition generalized to REMs (Haller
’81)

Difficult to verify in practice

Piecewise isometries in any dimension have zero
topological entropy (Buzzi ‘01)
Hooper found a 2-dimensional family of renormalizable
REMs with periodic points (‘13)
Schwartz used multigraphs to construct polytope exchange
transformations (PETs) in every dimension and developed
a renormalization theory for the Octagonal PETs (‘14)
Yi constructed renormalizable triple lattice PETs (‘17)

Our Goal
Find a large family of minimal DEMs and develop their
renormalization theory
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Cut-and-Project Sets

L a full-rank lattice in R3

X a domain in the xy -plane
Define:

Λ(X ,L) = {x ∈ L : πxy (x) ∈ X}
P = {πz(p) : p ∈ L and πxy (p) ∈ X}.

Figure: Lattice points Λ(X ,L)

Definition
P is a cut-and-project set if

1 πz |L is injective
2 πxy (L) is dense in R2.



Λ(X ,L) has a natural ordering: {. . . , x−1, x0, x1, . . .} where

πz(xi) < πz(xj) for i < j

Define T̃ : Λ(X ,L)→ Λ(X ,L) by T̃ (xi) = xi+1

Figure: T̃ and the partition associated to the induced DEM T

T̃ has finitely many translation vectors E = {ηi}Ni=0

πxy ◦ T̃ induces a DEM T : X → X with translations
vi = πxy (ηi), i = 0, . . . ,N with inherited ordering



Proposition
T is a DEM on X

Proof.

Partition X greedily into finitely many sets on which πxy ◦ T̃ is
constant

Figure: Constructing the partition induced by πxy ◦ T̃

Let fv (x) = x + v for x ∈ R2 denote translation by v ∈ R2

A0 = f−1
v0

(X )∩X and Ak = (f−1
vk

(X )∩X )\
k−1⋃
j=0

Aj for k = 1, . . . ,N



Theorem
Every well-defined orbit is dense and equidistributed in X

Proof:

i : X → R3/L
Φt (x , y , z) = (x , y , z + t) mod L
τp = inf{t > 0 | Φt (i(p)) ∈ i(X )}

T is conjugate to the first return map to X of the vertical
linear flow on R3/L:

(i ◦ T )(p) = (Φτp ◦ i)(p)

Orbits of vertical linear flow are dense and equidistributed
by Weyl’s Equidistribution Theorem
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Constructing renormalizable DEMs

Idea: use the algebraic structure of the lattice to find
renormalizable cut-and-project DEMs

Definition
A Pisot-Vijayaraghavan or PV number is a real algebraic
integer with modulus larger than 1 whose Galois conjugates
have modulus strictly less than one.

For n ≥ 1 the leading root of

x3 − (n + 1)x2 + nx − 1 = 0

is a PV number
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λ = λ3 a PV number with Galois conjugates λ1, λ2 ∈ R
Let L be the Galois embedding Z[λ] ↪→ R3

L = 〈(1,1,1), (λ1, λ2, λ3), (λ2
1, λ

2
2, λ

2
3)〉

=⇒ Λ(X ,L) is a cut-and-project set
Z[λ] can be identified with Z3

(a,b, c) 7→ a + bλ+ cλ2.

πxy (a + bλ+ cλ2) = (a + bλ1 + cλ2
1,a + bλ2 + cλ2

2)

πz(a + bλ+ cλ2) = a + bλ3 + cλ2
3

Definition
A PV DEM is a cut-and-project DEM associated to the Galois
embedding of a PV number with real Galois conjugates
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Choose the domain X = [0,1]× [0,1] =⇒ DEMs are
REMs with rectilinear tiles

S =

Mn =

0 1 0
0 0 1
1 −n n + 1

 , n ≥ 6


det(λI −Mn) = λ3 − (n + 1)λ2 + nλ− 1

Fact: 0 < λ1(Mn) < λ2(Mn) < 1 < λ3(Mn)

λ3(Mn) is a PV number and
determines a PV REM TMn

Theorem
The PV REMs {TMn}n≥6 all have the
same combinatorics

0

1 2

3

4

5 6
0

12

3

4

56

0

1 2

3
4

5 6
0

12

3
4

56

Figure: Two REMs with the
same combinatorics
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Coordinates of the tiles for the PV REM TMn , λi = λi(Mn)

A0 = [1− λ1,1]× [1− λ2,1]

A1 = [0,1− λ1]× [0,1− λ2]

A2 = ([1− 2λ1,1− λ1]× [1− λ2,2− 2λ2]) ∪ ([1− λ1,1]× [0,1− λ2])

A3 = [0,3λ1 − λ2
1]× [−1 + 3λ2 − λ2

2,1]

A4 = [3λ1 − λ2
1,1− λ1]× [2λ2 − λ2

2,1]

A5 = [0,2λ1 − λ2
1]× [1− λ2,−1 + 3λ2 − λ2

2]

A6 =
(
[1− 2λ1,3λ1 − λ2

1]× [2− 2λ2,−1 + 3λ2 − λ2
2]
)

∪
(
[2λ1 − λ2

1,1− 2λ1]× [1− λ2,−1 + 3λ2 − λ2
2]
)

∪
(
[3λ1 − λ2

1,1− λ1]× [2− 2λ2,2λ2 − λ2
2]
)
.

Ian M. Alevy Renormalizable Rectangle Exchange Maps
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Renormalization scheme

0
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0
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56

Figure: PV REM TM6 and the partition induced by the first return map
T̂M6 |Y to Y = A0
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Theorem
Let

M ∈ S a matrix with eigenvalues 0 < λ1 < λ2 < 1 < λ3

TM the associated PV REM
Y ⊂ X the tile in the partition corresponding to the
rectangle [1− λ1,1]× [1− λ2,1].

TM is renormalizable with

T̂M |Y = φ−1 ◦ TM ◦ φ

where φ : X → Y is the affine map

φ : (x , y) 7→
(

x + λ1 − 1
λ1

,
y + λ2 − 1

λ2

)
.

Ian M. Alevy Renormalizable Rectangle Exchange Maps



Proof of the renormalization scheme

Λ(X ,L) = {(x , y , z) ∈ Z3 | πxy (x , y , z) ∈ X}
ΛY = {(x , y , z) ∈ Z3 | πxy (x , y , z) ∈ Y}

Define a bijection Ψ : Λ(X ,L)→ ΛY

Ψ :

a
b
c

 7→ (Mn)T

a
b
c

+

 1
−1
0


which preserves the ordering of Λ(X ,L)

πz(ωi) < πz(ωj) if and only if πz ◦Ψ(ωi) < πz ◦Ψ(ωj).
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Multi-stage REMs

Combine PV REMs to form a multistage REM whose
renormalization scheme has multiple stages

Figure: The 4-dimensional
parameter space of multi-stage
REMs

Conjecture
The closure of the parameter
space of all renormalizable
multistage REMs is a Cantor
set in R4.
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Key lemma

As before let S =

Mn =

0 1 0
0 0 1
1 −n n + 1

 , n ≥ 6


Define the monoidM = 〈S, ·〉

Lemma
If W ∈M then its eigenvalues λ1, λ2 and λ3 are real and satisfy
the inequalities

0 < λ1 < λ2 < 1 < λ3.

M is a Pisot monoid of Pisot matrices

Ian M. Alevy Renormalizable Rectangle Exchange Maps
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Proof

Find a change of basis S so that S−1MnS is primitive (has
a positive power with positive entries)
Perron-Frobenius theorem =⇒ λ3 > 1
Find a change of basis Q so that Q−1M−1

n Q is primitive
Perron-Frobenius theorem =⇒ λ1 > 0
Let P ∈M with characteristic polynomial

qP(x) = x3 − Tr(P)x2 + b(P)x − 1

Use induction on the length of the product and Cramer’s
rule to show b(P) < Tr(P)

Conclude λ2 < 1

Ian M. Alevy Renormalizable Rectangle Exchange Maps



Admissible REMs

A REM with the same combinatorics as the family of PV
REMs associated to S
Let L be the Galois embedding of the eigenvalues of
Mn ∈ S
Let E = {ηi}6i=0 be the translation vectors associated to the
dynamical system T̃Mn : Λ(X ,L)→ Λ(X ,L)

Let W ∈M with normalized eigenvectors

ξ1 = (1, x , x ′) and ξ2 = (1, y , y ′),

associated to eigenvalues λ1 and λ2 respectively
The REM TW defined by the translation vectors

V = {vi = πxy (ηi), for i = 0,1, . . .6}

where πxy : x 7→ (x · ξ1, x · ξ2) is admissible if it has the same
combinatorics as TMn



The tiles in the partition are given by
0 A0 = [1− x ,1]× [1− y ,1]

1 A1 = [0,1− x ]× [0,1− y ]

2 A2 =
([1− 2x ,1− x ]× [1− y ,2− 2y ]) ∪ ([1− x ,1]× [0,1− y ])

3 A3 = [0,3x − x ′]× [−1 + 3y − y ′,1]

4 A4 = [3x − x ′,1− x ]× [2y − y ′,1]

5 A5 = [0,2x − x ′]× [1− y ,−1 + 3y − y ′]
6 A6 =

(
[1− 2x ,3x − x ′]× [2− 2y ,−1 + 3y − y ′]

)
∪
(
[2x − x ′,1− 2x ]× [1− y ,−1 + 3y − y ′]

)
∪
(
[3x − x ′,1− x ]× [2− 2y ,2y − y ′]

)
.

where
ξ1 = (1, x , x ′) and ξ2 = (1, y , y ′).
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Theorem
Admissible REMs are minimal.

Proof.
Let T : X → X be an admissible REM

Let ξ3 be the eigenvector with eigenvalue λ3. Define

πz : x 7→ x · ξ3 and P = {πz(p) : p ∈ L and πxy (p) ∈ X}

P is a cut-and-project set
T defines the same REM as the cut-and-project REM
constructed using Λ(X ,L)

Apply proof of minimality for cut-and-project REMs

Ian M. Alevy Renormalizable Rectangle Exchange Maps
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Let W = MnL · · ·Mn1 ∈M and TW be an admissible REM
ξ1, ξ2 be appropriately normalized eigenvectors of W
Define W1 = Mn1 ,W2 = Mn2Mn1 , . . .W = WL = MnL · · ·Mn1

ξk
i = Wkξi , for i = 1,2

Consider projections πk
xy : x 7→ (x · ξk

1 , x · ξk
2 )

For each k ,Vk = {vk
i = πk

xy (ηi), for i = 0,1, . . .6} defines a
REM Tk

Definition
An admissible REM TW is a multistage REM if the induced
REMs T1,T2, . . . ,TL−1,TL all have the same combinatorics

Ian M. Alevy Renormalizable Rectangle Exchange Maps
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Let TW be a multi-stage REM with W = MnL · · ·Mn2Mn1 .

Theorem
The multistage REM TW is renormalizable, i.e., for each k there
exists Yk ⊂ X and an affine map φk : Yk → X such that

T̂k |Yk = φ−1
k ◦ Tk+1 ◦ φk .

Figure: The multistage REM TW and associated REMs TW1 ,TW2 ,TW3

and TW4 = TW with W = M7M7M8M6.

Ian M. Alevy Renormalizable Rectangle Exchange Maps



Introduction
Cut-and-Project Domain Exchange Maps (DEMs)

PV DEMs
Renormalization scheme for PV REMs

Multistage REMs
Further Work on REMs

Each affine map has the form

φk : (x , y) 7→
(

x + xk − 1
xk

,
y + yk − 1

yk

)
where xk and yk are the dimensions of the tile in the partition
corresponding to the rectangle [1− xk ,1]× [1− yk ,1].

W1 = Mn1 ,W2 = Mn2Mn1 , . . .W = WL = MnL · · ·Mn1

ξk
i = Wkξi , for i = 1,2

ξk
i = (1, xk , x ′k ) and ξk

2 = (1, yk , y ′k )

Ian M. Alevy Renormalizable Rectangle Exchange Maps
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Extend cut-and-project DEMs to rank 4 lattices and degree 4
Perron numbers
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(a) π⊥(Λ(X , L))
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(b) Spanning forest
on π⊥(Λ(X , L))
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(c) A second
spanning forest on
π⊥(Λ(X , L))

Figure: Lattice determined by roots of x4 − 4x2 + x + 1



(a) REM induced by previous
figure (b)

(b) REM induced by previous
figure (c)

Figure: Two REMs associated to x4 − 4x2 + x + 1



Open problems

Study the full parameter
space of REMs associated
to matrices inM
Find a renormalization
scheme for REMs
associated to rank 4
lattices
Use the renormalization
scheme to construct
minimal but non-uniquely
ergodic REMs

Figure: The 4-dimensional
parameter space of multi-stage
REMs

Thank you!
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