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Domain exchange map (DEM)

@ A dynamical system defined on a smooth Jordan domain
which is a piecewise translation

@ Joint work with Richard Kenyon and Ren Yi



Definition
Let X be a Jordan domain partitioned into smaller Jordan
domains, with disjoint interiors, in two different ways

N N
X=|JA=J Bk
k=0 k=0
such that for each k = 0,..., N, 3v, € R? with
Ai + vk = Bx.

A domain exchange map is the dynamical system

T(X)=x+v for xeA

The map is not defined for points x € Uﬁ:o OAk.




Setup: T : X — X adynamical systemand Y C X
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A dynamical system is minimal if every point has a dense orbit
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Setup: T : X — X adynamical systemand Y C X

Definition
A dynamical system is minimal if every point has a dense orbit

Definition
The first-return map 7’|y : Y — Y is defined by

Tly(p) = T™(p) where m=min{k e N: T(p) € Y}

forpeY.

If X = [0, 1]? the DEM is a Rectangle Exchange Map (REM)



Definition

A renormalization scheme is a proper subset Y C X, a
dynamical system T’ : X’ — X’, and a homeomorphism
¢ : X — X' such that

/7\-|y:¢_1 oT o¢.

If 7" = T the dynamical system is called self-induced or
renormalizable.
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A

Main Results (A., Kenyon, Yi 2018)

@ Construct minimal DEMs on any domain with
equidistributed orbits

@ Find an infinite family of renormalizable REMs

@ Compose REMs to produce multistage REMs with
periodic renormalization schemes




Background

An interval exchange transformation (IET) 7 : X — Xis a
1-dimensional DEM defined on an interval l

@ Each probability vector and permutation (of matching
length) defines an IET on [0, 1]

@ |ETs are important examples in ergodic theory
© Keane’s minimality criterion ('75)
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1-dimensional DEM defined on an interval l
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length) defines an IET on [0, 1]

@ |ETs are important examples in ergodic theory
© Keane’s minimality criterion ('75)
© T is uniquely ergodic if the only invariant probability

measure is a multiple of Lebesgue measure
@ A measure p is invariant with respect to T if
W(T71(A)) = p(A) VA
@ Unique ergodicity = orbits of points uniformly distributed
© There exist minimal IETs (n = 4) which are not uniquely
ergodic (Keane ’77)
© Almost every minimal IET with an irreducible permutation
is uniquely ergodic (Masur/Veech ‘82)
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VENEETS

Background

@ The Hausdorff dimension of the set of non-uniquely ergodic
IETs with n pieces is n— 1 — 1/2 (Chaika-Masur ’18)
e Proof uses Rauzy Induction to construct large sets of
non-uniquely ergodic IETs
e Rauzy Induction is a renormalization scheme for general
IETs (‘'79)
@ Almost every minimal IET with an irreducible permutation
that isn’t a rotation is weak mixing (Avila & Forni ’04)
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IETs with n pieces is n— 1 — 1/2 (Chaika-Masur ’18)
e Proof uses Rauzy Induction to construct large sets of
non-uniquely ergodic IETs
e Rauzy Induction is a renormalization scheme for general
IETs (‘79)
@ Almost every minimal IET with an irreducible permutation
that isn’t a rotation is weak mixing (Avila & Forni ’04)

Open Questions for DEMs

@ Find examples of minimal DEMs
© Develop a general renormalization theory
© Understand ergodic properties
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Previous Work on DEMs

° ,Pé?ane’s minimality condition generalized to REMs (Haller
o) Difficult to verify in practice

@ Piecewise isometries in any dimension have zero
topological entropy (Buzzi ‘01)

@ Hooper found a 2-dimensional family of renormalizable
REMs with periodic points (‘13)

@ Schwartz used multigraphs to construct polytope exchange
transformations (PETs) in every dimension and developed
a renormalization theory for the Octagonal PETs (‘14)

@ Yi constructed renormalizable triple lattice PETs (17)

Find a large family of minimal DEMs and develop their
renormalization theory
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Cut-and-Project Sets

@ L afull-rank lattice in R3
@ X a domain in the xy-plane
Define:

/\(X,L):{XGL']TXIV(X)GX} g
P={m,(p) : peLandmy(p) € X} AT
Figure: Lattice points A(X, L)

Definition

P is a cut-and-project set if
Q@ ~|. is injective
@ 7. (L) is dense in R?.




@ A(X, L) has a natural ordering: {...,x_1, Xo, X1, ...} Where
(X)) < mz(x;) for i<

e Define T : A(X, L) — A(X, L) by T(x;) = X1

Figure: T and the partition associated to the induced DEM T

@ T has finitely many translation vectors £ = i,

® 7y o T induces a DEM T : X — X with translations
Vi = mxy(ni), 1 =0,..., N with inherited ordering



Proposition
T isa DEMon X

Partition X greedily into finitely many sets on which 7y, o Tis
constant O

Figure: Constructing the partition induced by my, o T

Let f,(x) = x + v for x € R? denote translation by v € R?

k—1
Ao =, 1(X)NX and Ag = (f, ' (X)NX\J A for k=1,...,N
j=0



Every well-defined orbit is dense and equidistributed in X

Proof:

it X —R3L
¢t(xay,z)=(x7y,2+t) mod L
7p = inf{t > 0| &(i(p)) € i(X)}

@ T is conjugate to the first return map to X of the vertical
linear flow on R3/L:

(o T)(p) = (¥, 0 1) (p)

@ Orbits of vertical linear flow are dense and equidistributed
by Weyl's Equidistribution Theorem
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PV DEMs

Constructing

@ Idea: use the algebraic structure of the lattice to find
renormalizable cut-and-project DEMs
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PV DEMs

Constructing

@ Idea: use the algebraic structure of the lattice to find
renormalizable cut-and-project DEMs

Definition

A Pisot-Vijayaraghavan or PV number is a real algebraic
integer with modulus larger than 1 whose Galois conjugates
have modulus strictly less than one.

For n > 1 the leading root of
X —(n+1)x®4+nx—1=0

is a PV number
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@ )\ = )3 a PV number with Galois conjugates A\, > € R
@ Let L be the Galois embedding Z[)\] — R®

L=((1,1,1), (M, A2, A3), (A%, 23, )3))

= A(X, L) is a cut-and-project set



@ )\ = )3 a PV number with Galois conjugates A\, > € R
@ Let L be the Galois embedding Z[)\] — R®

L=((1,1,1), (M, A2, A3), (A%, 23, )3))

= NA(X, L) is a cut-and-project set
@ Z[)] can be identified with Z3

(a,b,c) — a+ bx+ cA2.

Txy(@+ DA+ €A2) = (a+ bAy + €A%, a+ bo + cA3)
m2(a+ bA+ cA?) = a+ bz + c)\3

Definition

A PV DEM is a cut-and-project DEM associated to the Galois
embedding of a PV number with real Galois conjugates




@ Choose the domain X =[0,1] x [0,1] = DEMs are
REMs with rectilinear tiles
0 1 0
S=<M,=10 O 1 , n>6
1 —n n+1

det(AM — Mp) = X3 — (n+1)\2 4 nx — 1

Fact: 0 < M\ (Mp) < X2(Mp) <1 < A3(Mp) E. ..]

A3(Mp) is a PV number and
determines a PV REM Ty,

Figure: Two REMs with the
The PV REMs { Ty, }n>6 all have the same combinatorics
same combinatorics




PV DEMs

Coordinates of the tiles for the PV REM Ty, Aj = \i(My)

Ao =1 =X, 1] x [1 = Ao, 1]
A; =[0,1—=X] x [0,1 = Ag]
Ao = (1 =201 = NI x [1 = X2,2 = 2Xa]) U ([1 = M\, 1] x [0,1 = A2])
A3 =[0,3)\1 — \2] x [-1+3)Xa — A3, 1]
Ay =B\ — X2, 1 — M) x [2X2 — X3, 1]
As =[0,2A1 = AT x [1 = 2, =1+ 38Xz — AF]
As = ([1 —ZMSM — 28] % [2—2Xp, —1+ 38X — A3))
U ([201 = A5, 1 —20] x [1 = D2, =1 43Xz = A3])
U (B = 23,1 — M) x [2— 222X — A3)).
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Renormalization scheme for PV REMs
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e Renormalization scheme for PV REMs
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Renormalization scheme for PV REMs

Renormalization scheme

1

Figure: PV REM Ty, and the partition induced by the first return map
Tulyto Y = A
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Renormalization scheme for PV REMs

Theorem
Let

@ M e S a matrix with eigenvalues 0 < Ay < Ao <1 < A3
@ Ty the associated PV REM

@ Y C X the tile in the partition corresponding to the
rectangle [1 — A, 1] x [1 — A2, 1].
Ty is renormalizable with

Tuly =¢ ToTyoo

where ¢ : X — Y s the affine map

oo tupy (£ER=1 R 1)

A A2
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Proof of the renormalization scheme

(M)

ANX, L) ={(x,y,2) € 73 | Txy(X,y,2) € X}
Ny ={(x,y,2) € 23 | myy(x,y,2) € Y}

Define a bijection W : A(X, L) — Ay

a a 1
Vbl — M) |b| + |1
c c 0

which preserves the ordering of A(X, L)

mz(wi) < mz(wj) ifandonlyif w0 WV(w;) <m0 V(wj).



Multistage REMs

Outline

e Multistage REMs
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Multi-stage REMs

Combine PV REMs to form a multistage REM whose
renormalization scheme has multiple stages

0.80

Figure: The 4-dimensional
parameter space of multi-stage
REMs

The closure of the parameter
space of all renormalizable
multistage REMs is a Cantor
setin R4,




Multistage REMs

0 1 0
0 O 1 , n>6
1 —n n+1

Define the monoid M = (S, -)

Key lemma

As before let S = {M,, =

If W € M then its eigenvalues \1, \» and A3 are real and satisfy
the inequalities

0</\1<)\2<1<>\3.

M is a Pisot monoid of Pisot matrices
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Multistage REMs

Find a change of basis S so that S~'M,S is primitive (has
a positive power with positive entries)

Perron-Frobenius theorem =— X3 > 1

Find a change of basis Q so that @ "M, ' Q is primitive
Perron-Frobenius theorem =— Xy >0

Let P € M with characteristic polynomial

ap(x) = x3 — Tr(P)x® 4+ b(P)x — 1

Use induction on the length of the product and Cramer’s
rule to show b(P) < Tr(P)

Conclude M < 1
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Admissible REMs

@ A REM with the same combinatorics as the family of PV
REMs associated to S

@ Let L be the Galois embedding of the eigenvalues of
M,eS

o Let & = {n;}%_, be the translation vectors associated to the
dynamical system Ty, : A(X, L) — A(X, L)
@ Let W e M with normalized eigenvectors

&=01,xx) and &=1,y,y),

associated to eigenvalues Ay and \, respectively
The REM Ty defined by the translation vectors

where 7y, : X — (X - &1, X - &) is admissible if it has the same
combinatorics as Ty,



The tiles in the partition are given by

Q Ay =[1—-x1]x[1-y1]

Q@ A =[0,1-x]x[0,1—-y]

Q A=
(M—2x,1—x]x[1—=y,2=2y])U([1 —x,1] x [0,1 —y])

Q A3 =[0,3x — x| x[-1+3y —y/ 1]

Q Ay =[8x—x,1—x]x[2y — y' 1]

Q As=[02x—X]x[1-y,—1+3y -]

Q As=([1-2x,3x—x]x[2—2y,—-1+3y —y])
u(2x —x',1=2x] x[1 —y,—1+3y —y'])
U(Bx —x', 1 —x] x [2—2y,2y — y']).

where
§&1=(1,x,x) and &= (1,y,5).



Multistage REMs

Admissible REMs are minimal.

Proof.
Let T : X — X be an admissible REM
@ Let &5 be the eigenvector with eigenvalue 3. Define

X = x-&and P = {r;(p) : pe Land my(p) € X}

@ Pis a cut-and-project set

@ T defines the same REM as the cut-and-project REM
constructed using A(X, L)

@ Apply proof of minimality for cut-and-project REMs

Ol
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Multistage REMs

@ Let W= M, ---Mp € Mand Ty be an admissible REM
@ {1, & be appropriately normalized eigenvectors of W

@ Define Wy = Mp,, Wo = Mp,Mp,,... W =W, =M, ---M,
o k=W, fori=1,2
@ Consider projections 7

1

Xy X (g x - €f)

Xy -
For each k , Vi = {vf = «§, (), fori=0,1,...6} defines a

REM Ty

Definition

An admissible REM Ty, is a multistage REM if the induced
REMs T4, 1o, ..., T;_1, T, all have the same combinatorics
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Multistage REMs

Let Tw be a multi-stage REM with W = M, - - - My, Mp, .

The multistage REM Ty is renormalizable, i.e., for each k there
exists Y, C X and an affine map ¢y : Yx — X such that

= 1
Tklv, = ¢, © Tkt 0 ¢k

LK

Figure: The multistage REM Ty, and associated REMs Ty, Tw,, Tw,
and TW4 = TW with W = M7M7M8M5.
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Multistage REMs

Each affine map has the form

¢k:(xy)H<X+Xk_1 y+yk—1>

Xk Yk
where x, and yi are the dimensions of the tile in the partition
corresponding to the rectangle [1 — xk, 1] x [1 — y«, 1].
Wy = Mp,, Wo = Mp,Mp,,... W =W, =M, - M,
€K = Wigj, fori=1,2
& = (1, i) and &5 = (1, yx, Vi)
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Further Work on REMs

Outline

Q Further Work on REMs

lan M. Alevy ormalizable Rectangle Exchange Maps



Extend cut-and-project DEMs to rank 4 lattices and degree 4
Perron nhumbers

.
\

(c) A second
(b) Spanning forest spanning forest on
(@) 7L (MX,L))  onm (AX,L))  wL(A(X,L))

Figure: Lattice determined by roots of x* — 4x2 + x + 1



a) REM induced by previous
flgure (b)

(b) REM induced by previous
figure (c)
Figure: Two REMs associated to x*

4x% + X + 1



Open problems

@ Study the full parameter
space of REMs associated
to matrices in M

@ Find a renormalization
scheme for REMs
associated to rank 4
lattices

@ Use the renormalization
scheme to construct

minimal but non-uniquely Figure: The 4-dimensional
ergodic REMs parameter space of multi-stage
REMs

Thank you!
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