Renormalizable Rectangle Exchange Maps

Ian M. Alevy

Department of Mathematics University of Rochester

February 4, 2020

イロト イヨト イヨト イヨ

Outline

- Introduction
 - Main results
 - Background
- Cut-and-Project Domain Exchange Maps (DEMs)
- O PV DEMs
- 4 Renormalization scheme for PV REMs
- Multistage REMs
- 6 Further Work on REMs
 - I. Alevy, R. Kenyon and R. Yi, A Family of Minimal and Renormalizable Rectangle Exchange Maps, ArXiv e-prints (March 2018), 1803.06369, to appear in Ergodic Theory and Dynamical Systems.

Main results Background	Introduction Cut-and-Project Domain Exchange Maps (DEMs) PV DEMs Renormalization scheme for PV REMs Multistage REMs Further Work on REMs

Outline

- Main results
- Background
- 2 Cut-and-Project Domain Exchange Maps (DEMs)
- 3 PV DEMs
- 4 Renormalization scheme for PV REMs
- 5 Multistage REMs
- 6 Further Work on REMs

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Domain exchange map (DEM)

- A dynamical system defined on a **smooth Jordan domain** which is a piecewise translation
- Joint work with Richard Kenyon and Ren Yi

Definition

Let X be a **Jordan domain** partitioned into smaller Jordan domains, with disjoint interiors, in two different ways

$$X = \bigcup_{k=0}^{N} A_k = \bigcup_{k=0}^{N} B_k$$

such that for each k = 0, ..., N, $\exists v_k \in \mathbb{R}^2$ with

$$A_k + v_k = B_k$$

A domain exchange map is the dynamical system

$$T(x) = x + v_k$$
 for $x \in \mathring{A}_k$.

The map is not defined for points $x \in \bigcup_{k=0}^{N} \partial A_k$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のなぐ

Setup: $T : X \to X$ a dynamical system and $Y \subsetneq X$

Definition

A dynamical system is minimal if every point has a dense orbit

Definition

The **first-return map** $\widehat{T}|_Y : Y \to Y$ is defined by

 $\widehat{T}|_{Y}(p) = T^{m}(p)$ where $m = \min\{k \in \mathbb{N} : T^{k}(p) \in Y\}$

for $p \in Y$.

If $X = [0, 1]^2$ the DEM is a Rectangle Exchange Map (REM)

Setup: $T : X \to X$ a dynamical system and $Y \subsetneq X$

Definition

A dynamical system is **minimal** if every point has a dense orbit

Definition

The first-return map $\widehat{T}|_{Y}: Y \to Y$ is defined by

 $\widehat{\mathcal{T}}|_{Y}(p) = \mathcal{T}^{m}(p) \quad ext{where} \quad m = \min\{k \in \mathbb{N}: \mathcal{T}^{k}(p) \in Y\}$

for $p \in Y$.

If $X = [0, 1]^2$ the DEM is a Rectangle Exchange Map (REM)

《曰》 《聞》 《臣》 《臣》 三臣 …

Setup: $T : X \to X$ a dynamical system and $Y \subsetneq X$

Definition

A dynamical system is minimal if every point has a dense orbit

Definition

The first-return map $\widehat{T}|_{Y}: Y \to Y$ is defined by

 $\widehat{\mathcal{T}}|_{Y}(p) = \mathcal{T}^{m}(p)$ where $m = \min\{k \in \mathbb{N} : \mathcal{T}^{k}(p) \in Y\}$

for $p \in Y$.

If $X = [0, 1]^2$ the DEM is a Rectangle Exchange Map (REM)

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー わらぐ

Definition

A **renormalization scheme** is a proper subset $Y \subsetneq X$, a dynamical system $T' : X' \to X'$, and a homeomorphism $\phi : X \to X'$ such that

$$\widehat{T}|_{\mathbf{Y}} = \phi^{-1} \circ T' \circ \phi.$$

If T' = T the dynamical system is called **self-induced** or **renormalizable**.

Main Results (A., Kenyon, Yi 2018)

- Construct minimal DEMs on any domain with equidistributed orbits
- Find an infinite family of renormalizable REMs
- Compose REMs to produce multistage REMs with periodic renormalization schemes

Definition

A **renormalization scheme** is a proper subset $Y \subsetneq X$, a dynamical system $T' : X' \to X'$, and a homeomorphism $\phi : X \to X'$ such that

$$\widehat{T}|_{\mathbf{Y}} = \phi^{-1} \circ T' \circ \phi.$$

If T' = T the dynamical system is called **self-induced** or **renormalizable**.

Main Results (A., Kenyon, Yi 2018)

- Construct minimal DEMs on any domain with equidistributed orbits
- Find an infinite family of renormalizable REMs
- Compose REMs to produce **multistage** REMs with periodic renormalization schemes

Background

An interval exchange transformation (IET) $T: X \to X$ is a 1-dimensional DEM defined on an interval

- Each probability vector and permutation (of matching length) defines an IET on [0, 1]
- IETs are important examples in ergodic theory
- Keane's minimality criterion ('75)
- T is uniquely ergodic if the only invariant probability measure is a multiple of Lebesgue measure
 - A measure μ is invariant with respect to T if $\mu(T^{-1}(A)) = \mu(A) \quad \forall A$
 - Output $ergodicity \implies$ orbits of points uniformly distributed

- There exist minimal IETs (n = 4) which are not uniquely ergodic (Keane '77)
- Almost every minimal IET with an irreducible permutation is uniquely ergodic (Masur/Veech '82)

Background

An interval exchange transformation (IET) $T : X \to X$ is a 1-dimensional DEM defined on an interval

- Each probability vector and permutation (of matching length) defines an IET on [0, 1]
- IETs are important examples in ergodic theory
- Keane's minimality criterion ('75)
- T is uniquely ergodic if the only invariant probability measure is a multiple of Lebesgue measure
 - A measure μ is invariant with respect to *T* if $\mu(T^{-1}(A)) = \mu(A) \quad \forall A$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□ ● ●

- So There exist minimal IETs (n = 4) which are not uniquely ergodic (Keane '77)
- Almost every minimal IET with an irreducible permutation is uniquely ergodic (Masur/Veech '82)

Background

An interval exchange transformation (IET) $T : X \to X$ is a 1-dimensional DEM defined on an interval

- Each probability vector and permutation (of matching length) defines an IET on [0, 1]
- IETs are important examples in ergodic theory
- Keane's minimality criterion ('75)
- T is uniquely ergodic if the only invariant probability measure is a multiple of Lebesgue measure
 - A measure μ is invariant with respect to T if $\mu(T^{-1}(A)) = \mu(A) \quad \forall A$
 - $\ensuremath{\textcircled{0}}$ Unique ergodicity \implies orbits of points uniformly distributed

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●□ ● ●

- So There exist minimal IETs (n = 4) which are not uniquely ergodic (Keane '77)
- Almost every minimal IET with an irreducible permutation is uniquely ergodic (Masur/Veech '82)

- The Hausdorff dimension of the set of non-uniquely ergodic IETs with *n* pieces is n 1 1/2 (Chaika-Masur '18)
 - Proof uses Rauzy Induction to construct large sets of non-uniquely ergodic IETs
 - Rauzy Induction is a renormalization scheme for general IETs ('79)
- Almost every minimal IET with an irreducible permutation that isn't a rotation is weak mixing (Avila & Forni '04)

Open Questions for DEMs

- Find examples of minimal DEMs
- 2 Develop a general renormalization theory
- Understand ergodic properties

ヘロン 人間 とくほ とくほう

ъ

- The Hausdorff dimension of the set of non-uniquely ergodic IETs with *n* pieces is n 1 1/2 (Chaika-Masur '18)
 - Proof uses Rauzy Induction to construct large sets of non-uniquely ergodic IETs
 - Rauzy Induction is a renormalization scheme for general IETs ('79)
- Almost every minimal IET with an irreducible permutation that isn't a rotation is weak mixing (Avila & Forni '04)

Open Questions for DEMs

- Find examples of minimal DEMs
- Oevelop a general renormalization theory
- Understand ergodic properties

ヘロト ヘ戸ト ヘヨト ヘヨト

Previous Work on DEMs

- Keane's minimality condition generalized to REMs (Haller '81)
 - Difficult to verify in practice
- Piecewise isometries in any dimension have zero topological entropy (Buzzi '01)
- Hooper found a 2-dimensional family of renormalizable REMs with periodic points ('13)
- Schwartz used multigraphs to construct polytope exchange transformations (PETs) in every dimension and developed a renormalization theory for the Octagonal PETs ('14)
- Yi constructed renormalizable triple lattice PETs ('17)

Our Goal

Find a large family of minimal DEMs and develop their renormalization theory

Introduction
Cut-and-Project Domain Exchange Maps (DEMs)
PV DEMs
Renormalization scheme for PV REMs
Multistage REMs
Further Work on REMs

Outline

Introduction

- Main results
- Background

2 Cut-and-Project Domain Exchange Maps (DEMs)

3 PV DEMs

- 4 Renormalization scheme for PV REMs
- 5 Multistage REMs
- 6 Further Work on REMs

・ 同 ト ・ ヨ ト ・ ヨ ト …

3

Cut-and-Project Sets

L a full-rank lattice in ℝ³ *X* a domain in the *xy*-plane
Define:

$$egin{aligned} & \Lambda(X,L) = \{x \in L: \pi_{xy}(x) \in X\} \ & P = \{\pi_z(p) \ : \ p \in L ext{ and } \pi_{xy}(p) \in X\}. \end{aligned}$$

Figure: Lattice points $\Lambda(X, L)$

・ロト ・ 日 ・ ・ ヨ ・ ・

DefinitionP is a cut-and-project set if $\ensuremath{\mathbb{I}}_{z}|_{L}$ is injective $\ensuremath{\mathbb{I}}_{xy}(L)$ is dense in \mathbb{R}^{2} .

• $\Lambda(X, L)$ has a natural ordering: {..., $x_{-1}, x_0, x_1, ...$ } where $\pi_z(x_i) < \pi_z(x_j)$ for i < j

• Define $\widetilde{T} : \Lambda(X, L) \to \Lambda(X, L)$ by $\widetilde{T}(x_i) = x_{i+1}$

Figure: \tilde{T} and the partition associated to the induced DEM T

T has finitely many translation vectors *E* = {η_i}^N_{i=0}
π_{xy} ∘ *T* induces a DEM *T* : *X* → *X* with translations v_i = π_{xy}(η_i), i = 0,..., N with inherited ordering

Proposition

T is a DEM on X

Proof.

Partition X greedily into finitely many sets on which $\pi_{xy} \circ \tilde{T}$ is constant

Figure: Constructing the partition induced by $\pi_{xy} \circ \widetilde{T}$

Let
$$f_{v}(x) = x + v$$
 for $x \in \mathbb{R}^{2}$ denote translation by $v \in \mathbb{R}^{2}$
 $A_{0} = f_{v_{0}}^{-1}(X) \cap X$ and $A_{k} = (f_{v_{k}}^{-1}(X) \cap X) \setminus \bigcup_{j=0}^{k-1} A_{j}$ for $k = 1, \dots, N$

Theorem

Every well-defined orbit is dense and equidistributed in X

Proof:

$$egin{aligned} &i:X o \mathbb{R}^3/L \ &\Phi_t(x,y,z)=(x,y,z+t)\mod L \ & au_p=\inf\{t>0\mid \Phi_t(i(p))\in i(X)\} \end{aligned}$$

T is conjugate to the first return map to *X* of the vertical linear flow on ℝ³/*L*:

$$(i \circ T)(p) = (\Phi_{\tau_p} \circ i)(p)$$

 Orbits of vertical linear flow are dense and equidistributed by Weyl's Equidistribution Theorem

Outline

Introduction

- Main results
- Background
- 2 Cut-and-Project Domain Exchange Maps (DEMs)

3 PV DEMs

- 4 Renormalization scheme for PV REMs
- 5 Multistage REMs
- 6 Further Work on REMs

イロト イポト イヨト イヨト

æ

Constructing renormalizable DEMs

• Idea: use the algebraic structure of the lattice to find renormalizable cut-and-project DEMs

Definition

A **Pisot-Vijayaraghavan or PV number** is a real algebraic integer with modulus larger than 1 whose Galois conjugates have modulus strictly less than one.

For $n \ge 1$ the leading root of

$$x^3 - (n+1)x^2 + nx - 1 = 0$$

is a PV number

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Constructing renormalizable DEMs

 Idea: use the algebraic structure of the lattice to find renormalizable cut-and-project DEMs

Definition

A **Pisot-Vijayaraghavan or PV number** is a real algebraic integer with modulus larger than 1 whose Galois conjugates have modulus strictly less than one.

For $n \ge 1$ the leading root of

$$x^3 - (n+1)x^2 + nx - 1 = 0$$

is a PV number

伺き くほき くほう

- $\lambda = \lambda_3$ a PV number with Galois conjugates $\lambda_1, \lambda_2 \in \mathbb{R}$
- Let *L* be the Galois embedding $\mathbb{Z}[\lambda] \hookrightarrow \mathbb{R}^3$

$$L = \langle (1, 1, 1), (\lambda_1, \lambda_2, \lambda_3), (\lambda_1^2, \lambda_2^2, \lambda_3^2) \rangle$$

$\implies \Lambda(X, L)$ is a cut-and-project set

• $\mathbb{Z}[\lambda]$ can be identified with \mathbb{Z}^3

 $(a, b, c) \mapsto a + b\lambda + c\lambda^2.$

 $\pi_{xy}(a+b\lambda+c\lambda^2) = (a+b\lambda_1+c\lambda_1^2, a+b\lambda_2+c\lambda_2^2)$ $\pi_z(a+b\lambda+c\lambda^2) = a+b\lambda_3+c\lambda_3^2$

《曰》 《聞》 《臣》 《臣》 三臣

Definition

A **PV DEM** is a cut-and-project DEM associated to the Galois embedding of a PV number with real Galois conjugates

- $\lambda = \lambda_3$ a PV number with Galois conjugates $\lambda_1, \lambda_2 \in \mathbb{R}$
- Let *L* be the Galois embedding $\mathbb{Z}[\lambda] \hookrightarrow \mathbb{R}^3$

$$L = \langle (1, 1, 1), (\lambda_1, \lambda_2, \lambda_3), (\lambda_1^2, \lambda_2^2, \lambda_3^2) \rangle$$

 $\implies \Lambda(X, L)$ is a cut-and-project set

• $\mathbb{Z}[\lambda]$ can be identified with \mathbb{Z}^3

$$(a, b, c) \mapsto a + b\lambda + c\lambda^2.$$

$$\pi_{xy}(a + b\lambda + c\lambda^2) = (a + b\lambda_1 + c\lambda_1^2, a + b\lambda_2 + c\lambda_2^2)$$

 $\pi_z(a + b\lambda + c\lambda^2) = a + b\lambda_3 + c\lambda_3^2$

Definition

A **PV DEM** is a cut-and-project DEM associated to the Galois embedding of a PV number with real Galois conjugates

 Choose the domain X = [0, 1] × [0, 1] ⇒ DEMs are REMs with rectilinear tiles

$$S = \left\{ M_n = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -n & n+1 \end{bmatrix}, \ n \ge 6 \right\}$$
$$\det(\lambda I - M_n) = \lambda^3 - (n+1)\lambda^2 + n\lambda - 1$$

Fact:
$$0 < \lambda_1(M_n) < \lambda_2(M_n) < 1 < \lambda_3(M_n)$$

 $\lambda_3(M_n)$ is a PV number and determines a PV REM T_{M_n}

Theorem

The PV REMs $\{T_{M_n}\}_{n\geq 6}$ all have the same combinatorics

Figure: Two REMs with the same combinatorics

<ロト <回ト < 国ト < 国ト < 国ト = 国

Coordinates of the tiles for the PV REM T_{M_n} , $\lambda_i = \lambda_i(M_n)$

$$\begin{split} &\mathcal{A}_{0} = [1 - \lambda_{1}, 1] \times [1 - \lambda_{2}, 1] \\ &\mathcal{A}_{1} = [0, 1 - \lambda_{1}] \times [0, 1 - \lambda_{2}] \\ &\mathcal{A}_{2} = ([1 - 2\lambda_{1}, 1 - \lambda_{1}] \times [1 - \lambda_{2}, 2 - 2\lambda_{2}]) \cup ([1 - \lambda_{1}, 1] \times [0, 1 - \lambda_{2}]) \\ &\mathcal{A}_{3} = [0, 3\lambda_{1} - \lambda_{1}^{2}] \times [-1 + 3\lambda_{2} - \lambda_{2}^{2}, 1] \\ &\mathcal{A}_{4} = [3\lambda_{1} - \lambda_{1}^{2}, 1 - \lambda_{1}] \times [2\lambda_{2} - \lambda_{2}^{2}, 1] \\ &\mathcal{A}_{5} = [0, 2\lambda_{1} - \lambda_{1}^{2}] \times [1 - \lambda_{2}, -1 + 3\lambda_{2} - \lambda_{2}^{2}] \\ &\mathcal{A}_{6} = ([1 - 2\lambda_{1}, 3\lambda_{1} - \lambda_{1}^{2}] \times [2 - 2\lambda_{2}, -1 + 3\lambda_{2} - \lambda_{2}^{2}]) \\ &\cup ([2\lambda_{1} - \lambda_{1}^{2}, 1 - 2\lambda_{1}] \times [1 - \lambda_{2}, -1 + 3\lambda_{2} - \lambda_{2}^{2}]) \\ &\cup ([3\lambda_{1} - \lambda_{1}^{2}, 1 - \lambda_{1}] \times [2 - 2\lambda_{2}, 2\lambda_{2} - \lambda_{2}^{2}]). \end{split}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Outline

Introduction

- Main results
- Background
- 2 Cut-and-Project Domain Exchange Maps (DEMs)
- 3 PV DEMs
- 4 Renormalization scheme for PV REMs
- 5 Multistage REMs
- 6 Further Work on REMs

くロト (過) (目) (日)

æ

Introduction Cut-and-Project Domain Exchange Maps (DEMs) PV DEMs Renormalization scheme for PV PEMs

Multistage REMs Further Work on REMs

Renormalization scheme

Figure: PV REM T_{M_6} and the partition induced by the first return map $\hat{T}_{M_6}|_Y$ to $Y = A_0$

イロト 不得 とくほと くほとう

3

Theorem

Let

- $M \in S$ a matrix with eigenvalues $0 < \lambda_1 < \lambda_2 < 1 < \lambda_3$
- T_M the associated PV REM
- Y ⊂ X the tile in the partition corresponding to the rectangle [1 − λ₁, 1] × [1 − λ₂, 1].

T_M is renormalizable with

$$\widehat{T}_M|_Y = \phi^{-1} \circ T_M \circ \phi$$

where $\phi: X \to Y$ is the affine map

$$\phi: (\mathbf{x}, \mathbf{y}) \mapsto \left(\frac{\mathbf{x} + \lambda_1 - \mathbf{1}}{\lambda_1}, \frac{\mathbf{y} + \lambda_2 - \mathbf{1}}{\lambda_2}\right).$$

Proof of the renormalization scheme

$$egin{aligned} & \Lambda(X,L) = \{(x,y,z) \in \mathbb{Z}^3 \mid \pi_{xy}(x,y,z) \in X\} \ & \Lambda_Y = \{(x,y,z) \in \mathbb{Z}^3 \mid \pi_{xy}(x,y,z) \in Y\} \end{aligned}$$

Define a bijection $\Psi : \Lambda(X, L) \to \Lambda_Y$

$$\Psi: \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mapsto (M_n)^T \begin{bmatrix} a \\ b \\ c \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$$

which preserves the ordering of $\Lambda(X, L)$

 $\pi_z(\omega_i) < \pi_z(\omega_j)$ if and only if $\pi_z \circ \Psi(\omega_j) < \pi_z \circ \Psi(\omega_j)$.

Ξ.

Outline

- Introduction
 - Main results
 - Background
- 2 Cut-and-Project Domain Exchange Maps (DEMs)
- 3 PV DEMs
- 4 Renormalization scheme for PV REMs
- 5 Multistage REMs
 - 6 Further Work on REMs

・ 回 ト ・ ヨ ト ・ ヨ ト

æ

Multi-stage REMs

Combine PV REMs to form a **multistage** REM whose renormalization scheme has multiple stages

Figure: The 4-dimensional parameter space of multi-stage REMs

Conjecture

The closure of the parameter space of all renormalizable multistage REMs is a Cantor set in \mathbb{R}^4 .

イロト イヨト イヨト イヨト

Key lemma

As before let
$$S = \left\{ M_n = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -n & n+1 \end{bmatrix}, n \ge 6 \right\}$$

Define the monoid $\mathcal{M} = \langle S, \cdot \rangle$

Lemma

If $W \in M$ then its eigenvalues λ_1, λ_2 and λ_3 are real and satisfy the inequalities

$$0 < \lambda_1 < \lambda_2 < 1 < \lambda_3.$$

${\mathcal M}$ is a Pisot monoid of Pisot matrices

ヘロト ヘアト ヘビト ヘビト

э.

- Find a change of basis *S* so that $S^{-1}M_nS$ is primitive (has a positive power with positive entries)
- Perron-Frobenius theorem $\implies \lambda_3 > 1$
- Find a change of basis Q so that $Q^{-1}M_n^{-1}Q$ is primitive
- Perron-Frobenius theorem $\implies \lambda_1 > 0$
- Let $P \in \mathcal{M}$ with characteristic polynomial

$$q_P(x) = x^3 - \text{Tr}(P)x^2 + b(P)x - 1$$

- Use induction on the length of the product and Cramer's rule to show b(P) < Tr(P)
- Conclude $\lambda_2 < 1$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Admissible REMs

- A REM with the same combinatorics as the family of PV REMs associated to S
- Let *L* be the Galois embedding of the eigenvalues of *M_n* ∈ S
- Let *E* = {η_i}⁶_{i=0} be the translation vectors associated to the dynamical system *T*_{M_n} : Λ(*X*, *L*) → Λ(*X*, *L*)
- Let $W \in \mathcal{M}$ with normalized eigenvectors

$$\xi_1 = (1, x, x')$$
 and $\xi_2 = (1, y, y')$,

associated to eigenvalues λ_1 and λ_2 respectively The REM T_W defined by the translation vectors

$$V = \{v_i = \pi_{xy}(\eta_i), \text{ for } i = 0, 1, \dots 6\}$$

where $\pi_{xy} : x \mapsto (x \cdot \xi_1, x \cdot \xi_2)$ is admissible if it has the same combinatorics as T_{M_n}

The tiles in the partition are given by

$$\begin{array}{l} \textcircledleft \label{eq:A0} \blacksquare A_0 = [1-x,1] \times [1-y,1] \\ \textcircledleft \label{A1} A_1 = [0,1-x] \times [0,1-y] \\ \textcircledleft \label{A2} = \\ ([1-2x,1-x] \times [1-y,2-2y]) \cup ([1-x,1] \times [0,1-y]) \\ \textcircledleft \label{A3} \blacksquare [0,3x-x'] \times [-1+3y-y',1] \\ \textcircledleft \label{A3} A_3 = [0,3x-x'] \times [-1+3y-y',1] \\ \textcircledleft \label{A4} A_4 = [3x-x',1-x] \times [2y-y',1] \\ \textcircledleft \label{A5} A_5 = [0,2x-x'] \times [1-y,-1+3y-y'] \\ \textcircledleft \label{A6} A_6 = ([1-2x,3x-x'] \times [2-2y,-1+3y-y']) \\ \cup ([2x-x',1-2x] \times [1-y,-1+3y-y']) \\ \cup ([3x-x',1-x] \times [2-2y,2y-y']). \end{array}$$

where

$$\xi_1 = (1, x, x')$$
 and $\xi_2 = (1, y, y')$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ - 注

Theorem

Admissible REMs are minimal.

Proof.

Let $T: X \to X$ be an admissible REM

• Let ξ_3 be the eigenvector with eigenvalue λ_3 . Define

 $\pi_z : x \mapsto x \cdot \xi_3 \text{ and } P = \{\pi_z(p) : p \in L \text{ and } \pi_{xy}(p) \in X\}$

- P is a cut-and-project set
- T defines the same REM as the cut-and-project REM constructed using Λ(X, L)
- Apply proof of minimality for cut-and-project REMs

• Let $W = M_{n_L} \cdots M_{n_1} \in \mathcal{M}$ and T_W be an admissible REM

- ξ_1, ξ_2 be appropriately normalized eigenvectors of W
- Define $W_1 = M_{n_1}, W_2 = M_{n_2}M_{n_1}, \dots W = W_L = M_{n_L} \cdots M_{n_1}$

•
$$\xi_i^k = W_k \xi_i$$
, for $i = 1, 2$

• Consider projections $\pi_{xy}^k : x \mapsto (x \cdot \xi_1^k, x \cdot \xi_2^k)$

For each k, $V_k = \{v_i^k = \pi_{xy}^k(\eta_i), \text{ for } i = 0, 1, \dots 6\}$ defines a REM T_k

Definition

An admissible REM T_W is a **multistage REM** if the induced REMs $T_1, T_2, \ldots, T_{L-1}, T_L$ all have the same combinatorics

・ロト ・ 理 ト ・ ヨ ト ・

1

Let T_W be a multi-stage REM with $W = M_{n_L} \cdots M_{n_2} M_{n_1}$.

Theorem

The multistage REM T_W is renormalizable, i.e., for each k there exists $Y_k \subset X$ and an affine map $\phi_k : Y_k \to X$ such that

$$\widehat{T}_k|_{Y_k} = \phi_k^{-1} \circ T_{k+1} \circ \phi_k.$$

Figure: The multistage REM T_W and associated REMs T_{W_1} , T_{W_2} , T_{W_3} and $T_{W_4} = T_W$ with $W = M_7 M_7 M_8 M_6$.

・ロト ・ 理 ト ・ ヨ ト ・

Each affine map has the form

$$\phi_k: (x, y) \mapsto \left(\frac{x + x_k - 1}{x_k}, \frac{y + y_k - 1}{y_k}\right)$$

where x_k and y_k are the dimensions of the tile in the partition corresponding to the rectangle $[1 - x_k, 1] \times [1 - y_k, 1]$.

$$W_{1} = M_{n_{1}}, W_{2} = M_{n_{2}}M_{n_{1}}, \dots W = W_{L} = M_{n_{L}} \cdots M_{n_{1}}$$
$$\xi_{i}^{k} = W_{k}\xi_{i}, \text{ for } i = 1, 2$$
$$\xi_{i}^{k} = (1, x_{k}, x_{k}') \text{ and } \xi_{2}^{k} = (1, y_{k}, y_{k}')$$

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

Introduction	
Cut-and-Project Domain Exchange Maps (DEMs)	
PV DEMs	
Renormalization scheme for PV REMs	
Multistage REMs	
Further Work on REMs	

Outline

- Introduction
 - Main results
 - Background
- 2 Cut-and-Project Domain Exchange Maps (DEMs)
- 3 PV DEMs
- 4 Renormalization scheme for PV REMs
- 5 Multistage REMs
- 6 Further Work on REMs

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

Extend cut-and-project DEMs to rank 4 lattices and degree 4 **Perron numbers**

Figure: Lattice determined by roots of $x^4 - 4x^2 + x + 1$

(a) REM induced by previous figure (b)

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

(b) REM induced by previous figure (c)

Figure: Two REMs associated to $x^4 - 4x^2 + x + 1$

Open problems

- Study the full parameter space of REMs associated to matrices in \mathcal{M}
- Find a renormalization scheme for REMs associated to rank 4 lattices
- Use the renormalization scheme to construct minimal but non-uniquely ergodic REMs

Figure: The 4-dimensional parameter space of multi-stage REMs

Thank you!