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The approximate factorization property

Setup

@ A partition 7 of the integer n
(mF n, or m € Pp): a finite
non-increasing sequence of positive
integers my > mp > - -+ > Tk, such
that |7| ==, =n;

@ Graphical representation by a
Young diagram X\ € Y, of size n.




The approximate factorization property

Setup

o m=(7,7,4,4,2) | 24,
@ Represented by a Young diagram \ Ao
with £(X) =5 rows. \
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The approximate factorization property

Setup

@ A partition 7 of the integer n
(mF n, or m € Pp): a finite
non-increasing sequence of positive
integers my > mp > - -+ > Tk, such
that |7| ==, =n;

@ Graphical representation by a
Young diagram X\ € Y, of size n.

We want to study asymptotic behaviour of random Young diagrams Y,
when their size n is tending to infinity.
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Random Young diagrams and the symmetric group

P, a probability measure on the set of Young diagrams Y,,.

!

Xn : &, — R a normalized central positive definite function on the
symmetric group &, (called a reducible character):

Xa(m) = D Pa(A)xa(m)

AEY,

@ p) - an irreducible representation of &,,,
@ X - an associated irreducible character, i.e.

In order to understand random Young diagrams, we can studied
associated reducible characters.
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Examples (from the representation theory)

@ The Plancherel measure

1 ifr=1" (dim py)?
= P,(\) = ———
x(m) {0 otherwise < x(A) n!

@ the Schur-Weyl measure

_ dim E)\

x(m) = NI B () = SR

where (CM)®" = @, , Ex.
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The Plancherel measure - law of large numbers

We can describe the Plancherel measure more combinatorially:

@ as a push-forward of the uniform measure on &,, through RSK

@ using hook-length formula:

n!
B H(x,y)G)\ hi(X’y)7

where hy(x,y) - hook length of a cell (x,y) € A.

P())

Theorem (Logan—Shepp, Vershik—Kerov 1977, informal statement)

Let \, € Y,, be a random Young diagram sampled with the Plancherel
distribution P,. Then the sequence (\,) of Young diagrams converges to
some limit shape in the limit n — oo when the number of the boxes
tends to infinity.
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Vershik-Kerov, Logan-Shepp limit shape

Figure: Scaled random Young diagram of size 100 distributed according with
Plancherel measure
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The approximate factorization property

Figure: Scaled random Young diagram of size 1000 distributed according with

Plancherel measure
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Vershik-Kerov, Logan-Shepp limit shape

Figure: Scaled random Young diagram of size 5000 distributed according with
Plancherel measure
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Vershik-Kerov, Logan-Shepp limit shape

WA, (X)
2 1
1 A4
2 1 1 2
x| if x| > 2,

Figure: w x) =
& oo (X) {i (x - arcsin 3 + V4 — x2)  otherwise.
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Anisotropic Young diagrams

Definition

Anisotropic Young diagram T,, »(\) - polygon obtained from the Young
diagram \ by a horizontal stretching of ratio w and a vertical stretching
of ratio h (each box 1 x 1 is replaced by a box of dimension w x h).
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Anisotropic Young diagrams

Definition

Anisotropic Young diagram T,, »(\) - polygon obtained from the Young
diagram \ by a horizontal stretching of ratio w and a vertical stretching
of ratio h (each box 1 x 1 is replaced by a box of dimension w x h).

A Tpa(N)
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Anisotropic Young diagrams

Definition

Anisotropic Young diagram T,, »(\) - polygon obtained from the Young
diagram \ by a horizontal stretching of ratio w and a vertical stretching
of ratio h (each box 1 x 1 is replaced by a box of dimension w x h).

A Tpa(N)

In order to study the shape of random Young diagrams A\, € Y, sampled
by the Plancherel measure, the right scaling is the following:

An = 1 i/\n-
VEVEA
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Young diagrams as continuous objects

French convention:
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Young diagrams as continuous objects

French convention:
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Young diagrams as continuous objects

Russian convention:

t +

H N wp o
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Young diagrams as continuous objects

Russian convention:
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Young diagrams as continuous objects

Russian convention:

Definition

A profile of a Young diagram A is a function wy : R — R, such that its
graph is a profile of A drawn in Russian convention.
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Young diagrams as continuous objects

Russian convention:

Theorem (Logan—Shepp, Vershik—Kerov 1977 (revisited))

Let \, be a random Young diagram sampled with the Plancherel
distribution P,. Then there exists a deterministic function wa__ : R — R
with the property that

lim wp =w,
n— oo An Ao

where the convergence holds true with respect to the supremum norm, in
probability.
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The approximate factorization property

We extend the domain of x,: P, — R to the set | |y~ ,~, Pk of partitions
of sufficiently small numbers by setting o

Xn(T) = Xn(m, 177171y for |n| < n.

Biane defined characters with the approximate factorization property:
@ the characters do not decay too slow:

_ Iwl—e(m)

Xn(m) = O(n );

@ the characters should approximately factorize, i.e.

_ Imaltma—£(ry)—b(r2)—2 )
2

Xn(m1 - m2) — xn(7m1) - Xn(m2) = O (n
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The approximate factorization property

Biane defined characters with the approximate factorization property:
@ the characters do not decay too slow:

@ the characters should approximately factorize, i.e.

_ Imaltma—£(my)—l(mp)—2 )
2

Xo(m1 + 72) = Xa(m1) + Xa(2) = O (n
Theorem (Biane 2001)

Let x,: Pn — R,n > 1 be a family of reducible characters with the
approximate factorization property. Let A, be a random Young diagram
with the probability distribution IPy,. Then there exists some
deterministic function wp_ : R — R with the property that

lim wa, =wa_,
n—o0

‘where the convergence holds true with respect to the supremum norm,
in probability.
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Back to our examples

@ The Plancherel measure has the character with the approximate
factorization property — Logan-Shepp, Vershik—Kerov result.

@ the Schur-Weyl measure has the character given by
xX(m) = NE =17l Let Y7 5 ¢ € [0,00). Then x has the
approximate factorization property and the limit shape wa__ is given
by an explicit curve w¢ (Biane 2001):
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Fluctuations

Problem

How to “measure” fluctuations around the limit shape wp_, 7

We know that wa, — wp__, so we define

A, i=/n(wp, —wr)-

We would like to show that A, converges to some function A, so
informally speaking,

WA R wp. + —=A0D.

n oo \/E

We need to study suitable test functions:

k—1
Yii=—— / u =2 Ay (u)du, k>2.
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the Plancherel measure - central limit theorem

Theorem (Kerov 1993)
Let \, be a random Young diagram sampled with the Plancherel
distribution P,,.

Then the random vector A, converges in distribution to some
(non-centered) Gaussian random vector A, as n — 0.

Equivalently, the family of random variables (Y )x>2> converges as
n — oo to a (non-centered) Gaussian distribution.
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Characters with the approximate factorization property

revisited - cumulants

Note that
° Xn(1) = E(x(0)(7)),
® Xn(m1 - m2) = Xa(m1) - Xa(m2) = Var (x(o)())
of the irreducible characters x () taken with the probability P, ().



The approximate factorization property

Characters with the approximate factorization property

revisited - cumulants

Note that

° Xn(m) = E(x(0)(m)),
® Xn(m1 - m2) = Xa(m1) - Xn(m2) = Var (x(o)())

Cumulants &5 (xa, ..., x¢) of random variables xi, ..., x,; - natural
generalization of a variance:

E(x) = £t

(x1),
E(xix2) = k5(x1,%2) + k7 (x1)kT (x2),
(

=

X1, %2, x3) + Ky (x1) K5 (X2, X3)

xo)K5 (X1, x3) + Ky (x3)Ks (X1, X2)

E(x1x2x3) = K3

+ ki (
1 (

+ k1 (xa)ky (x2)k1 (x3),
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Characters with the approximate factorization property

revisited - cumulants

Note that
o Xn(7) = E(x(0) (7)),
® Xn(m1 - m2) = Xn(m1) - Xn(m2) = Var (x(o)())

Cumulants &y (71 ... m;) of random variables x(o)(m1), .. ., X(0)(7¢) -
natural generalization of a variance:

x(mimams) = KX (71, T2, 73) + KL (1) K (T2, 73)
+ Hi((ﬂ'z) Ii%((ﬂ'lﬂk) + Iiic(ﬂ':;) m%(wl, 7'('2)

+ k1 (m1) Ky (m2) K (73),
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Characters with the approximate factorization property
revisited

Sniady redefined characters with the approximate factorization property:

[

Xn(7) = Ky(m) = O(n™ =),

Xn(71 - m2) — Xn(m1) - Xn(72) = KX (71, m2) = O (n‘ HWIHTZH)
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Characters with the approximate factorization property
revisited

Sniady redefined characters with the approximate factorization property:

_mall g =2 - 1)
m%‘(m,...,m):O(n z )

Theorem (Sniady 2006)

Let xn: Pn — R, n > 1 be a family of reducible characters with the
approximate factorization property. Let )\, be a random Young diagram
with the probability distribution P, .

Then the random vector A, converges in distribution to some
(non-centered) Gaussian random vector A, as n — 0.

Equivalently, the family of random variables (Y))i>> converges as
n — oo to a (non-centered) Gaussian distribution.




Symmetric functions and deformation

Symmetric functions vs. representation theory

@ Power-sum symmetric functions py:
k
Pk = ZX; o P = HP/\,--
i i

@ Schur symmetric functions sy:

S\ :l! Z X)\(”T) Pr = Z X)\(,]T) Prs

n 4
eSS, TEP,

where z, =[], m,-(71-)!,'mf(7f)_



Symmetric functions and deformation

Symmetric functions vs. representation theory

@ Power-sum symmetric functions py:
k
Pk = ZX; o P = HP/\,--
i i

@ Schur symmetric functions sy:

S\ :l! Z X)\(’/T) Pr = Z X)\(,]T) Prs

n Zr
eSS, TEP,

where z, =[], m,-(71-)!,'mf(7f)_

Hall scalar product:

(Pr, Pu) = O ,pu2n,

Schur symmetric functions sy:

@ obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process.




Symmetric functions and deformation

Jack symmetric functions

Deformation of Hall scalar product:

<p)\a pu>o¢ = O/(/\)(s)\,yz)\'

Jack symmetric functions Jga):

@ obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process and
multiplied by explicit constant c(®)(\) = [Ty ha(D);




Symmetric functions and deformation

Jack symmetric functions

Deformation of Hall scalar product:
<p)\a p,u>cx = O/(A)(s)\,pz)\-

Jack symmetric functions for « = 1 :

@ obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process and
n!

multiplied by explicit constant c()(\) = Ty




Symmetric functions and deformation

Jack symmetric functions - combinatorial formula
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Jack symmetric functions - combinatorial formula
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Jack symmetric functions - combinatorial formula
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Jack symmetric functions - combinatorial formula
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Jack symmetric functions - combinatorial formula

Theorem (Knop, Sahi 1997)

S = 3 ¥ [I (@ +1)+a@) +1).

o0: At =Ny non-attacking  o(0)=oc(d(0)




Symmetric functions and deformation

Jack symmetric functions - combinatorial formula

2
2|4
2
1

w
Tt = | Ot

4]
da+4)(a+1)2a+1)

rizdririzd x (2a+2)(2a + 3)

—~
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Jack symmetric functions - combinatorial formula

Theorem (Knop, Sahi 1997)

S = > ¥ ] (aD)+1)+a@) +1).

0:At—=N, ,non-attacking  o(0)=oc(d(0)

(@) _ iy 2GS 1)
N =g
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Jack deformation

Fix o € R+ and expand Jack polynomials J/(\a) in power-sum basis:
S =370
We define irreducible Jack character X(;)i
a _l=ll Zp
W) = o E ),

where ||| := |7| — £(7).



Symmetric functions and deformation

Jack deformation

Fix o € R+ and expand Jack polynomials Jga)

S =300

in power-sum basis:

We define irreducible Jack character Xf\l):

where ||| := |7| — £(m).
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Jack deformation

)

Fix o € Ry and expand Jack polynomials J/(\a in power-sum basis:

A =30 (N) pr.

We define irreducible Jack character XE\Q):

_l=l Zp P
W) = a” F 5000,
where ||| := |7| — £(7).
We call x : P, — R a reducible Jack character, if it is a convex
combination of irreducible Jack characters.
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Jack deformation - examples

@ Jack-Plancherel measure

x(m) 1= {1 IO .

0 otherwise [xpyen ha(x, ¥)HL(x, ¥)
o Jack-Schur-Weyl measure
() : = NEO=Iml = y=liml

N N+valx—1) - va '(y-1)
Py(N):=n! [] N ()R (%, y)

(x,y)EA

[ MEWEx VA e - vE)
| N~ ha(x, y) i (%, )

(x,y)EX
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Jack deformation - examples

@ Jack-Plancherel measure

() i {1 fr=1 P(A) = nl

0 otherwise [xpyen ha(x, ¥)HL(x, ¥)
o Jack-Schur-Weyl measure
() : = NEO=Iml = y=liml

Ty NEva-n-valy -1
Py(A): = !(XEIGA N - ho(x,y)h.(x,y) ¥

Co:(X,)
o T N+ (Torm e ) + ()

N : hoz(X7y)h;1(X7y)

(x,y)EX




Symmetric functions an d deformation

Jack deformation of hook-length formula

¢(0)
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Asymptotic shape of large Jack-deformed Young diagrams

Theorem (D., Sniady 2019; o = 1 Biane 2001)

For each n let x,: P, — R be a reducible Jack character, and let
a = a(n) be such that

vi=va '—Va=gJ/n+g +o(l)

for some g, g’ € R.

Let A\, be a random Young diagram with the probability distribution P,
associated with reducible Jack-characters x := x, with the approximate
factorization property.

Then there exists some deterministic function wy__ : R — R with the
property that

nli}moo WA, = WA, Nn= \/%\/g()‘n)

where the convergence holds true with respect to the supremum norm, in
probability.
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Central limit theorem

Theorem (D., Sniady 2019; a = 1 Sniady 2006)

For each n let x,: P, — R be a reducible Jack character, and let
a = «a(n) be such that

vi=va = Va=gV/n+g +o(l)

for some g, g’ € R.

Let A\, be a random Young diagram with the probability distribution P,
associated with reducible Jack-characters x := x, with the approximate
factorization property.

Then the random vector A, converges in distribution to some
(non-centered) Gaussian random vector A, as n — co.

Equivalently, the family of random variables (Y))x>2> converges as
n — oo to a (non-centered) Gaussian distribution.
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Examples

We recall that v = g/n+ g’ + o(1).

When « > 0 is fixed, that is g = 0 then the limit shape wp_, does not
depend on al.

e Jack-Plancherel measure (D., Féray 2016)

|x| if [x| > 2;
(X) (x arcsin 3 + V4 — x2) otherwise.

o Jack-Schur-Weyl measure with ¥ 5 c € [0, 00)

wp, (x) — explicit function depending on c.
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Examples

We recall that v = g/n+ g’ + o(1).

An interesting choice is when
a(n) = 4 for some ¢ > 0, that is
g = c¢,g’ = 0. Then the anisotropic

2 Young diagram A, is a collection of
rectangles of the same height g and
of the widths ﬁ, %, ..., and the
limit shape wp__ clearly depends on

1 g!

The limit shape of random Young
diagrams distributed according to

the Jack—Plancherel measure in the

double scaling limit for ¢ = %.
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Approximate factorization property revisited

Examples (Of measures with the AFP, thus CLT)
@ Jack-Plancherel measure (o > 0 fixed, D., Féray 2016)

0 otherwise

1 ifr=1" 1 ife=1m =1k
= ’ X ceey = ? 9
Xa(m) : {0 cilwia 2 (1, ) {

o Jack-Schur-Weyl measure (% — c € [0,00))

N-lmell =1,

0 otherwise.

Xn(7T) = N_”ﬂ'H Féz((’ﬁl,...ﬂu): {
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More examples

Theorem

Let (x}), (x3) be two families of reducible Jack characters with the
approximate factorization property. Then all the families consists of
reducible Jack characters with the approximate factorization property:

h W i - q oy h > d
@ the restriction (Xq’,,) = (an) , where q, > n an

lim,_ o0 qT: =4q,

; : i i\t

@ the induction (Xq,n) = ((an) ) where g, < n and

lim,— oo qT;' =4q;
@ the outer product

: 1 2
(xn) = (Xqﬁl) ° qu)) ’
g (i)
where qf,l) + q£,2) = n and the limits q(’) = limp_eo % exist;

@ the tensor product

(xn) = (x5 X2) -
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The outer product vs. structure constants

The outer product
) 1 2
(Xn) == (qul) Oquz)) )

is defined through the multiplication of Jack polynomials:

a) J ZC/\ u(a) ) Ji),

Conjecture (Stanley 1989)

cﬁ\’,u(a) . (Jl(,a), J,(,a)) are polynomials in « with nonnegative integer
coefficients!




Polynomial functions

The main tool - algebraic combinatorics

Our main tool for proving above theorems are certain results on the
structure of the algebra of polynomial functions &2.

We define the normalized Jack character Ch{®): Y — Q[\/a, \/a‘l]:
Chsra)()\) — A XA () !f Al = |m];
0 if |[A| <=

e Basis: & = {7¥Ch,: ke N, 7 € P}.
o Gradation: deg(v* Ch,) = k + ||7]|.



Polynomial functions

Understanding normalized Jack characters

We define the free cumulants:

Proposition

Functionals Rga),Rga), .- € P, they generate & and deg(Rf(a)) = k.

Express the Jack character Ch,, in terms of free cumulants
R(a) R(a)
5 Ry, ...




Polynomial functions

Kerov polynomials and a conjecture of Lassalle

A polynomial K,L(R(za),Rga), ... ) expressing the Jack character Ch,, in
terms of free cumulants is called Kerov polynomial.

Kby =R,

K5) =Rs+7Ra,

KS) = Ra+37Rs + (1+27%)Ra,

Ky =Rs +67Ra + 7R3 + (5 + 119%)Rs + (77 + 69°)Ra,

Q

K

( )) = Re + 107Rs + 57R3R2 + (15 + 357°)Ra + (5 + 104°)R3

+ (557 4 507%)R3 + (8 + 4672 + 24v*) R,

o

where vy = \/a " — .



Polynomial functions

Kerov polynomials and a conjecture of Lassalle

A polynomial K,,(RS), R{™, .. .) expressing the Jack character Ch,, in
terms of free cumulants is called Kerov polynomial.

(@)

Koy =R,

Ky = Rs+ 7Rz,
(

&) = Ra+37Ra + (1 +27°)Ra,
K§) = Rs + 6vR4 +1RE + 1172Rs + 69°Ro +5R3 + T7Rz,

top
Ch<4)

K&) = Re + 107Rs + 57RsR + (15 + 3592 Ra + (5 + 1092 R3
+ (557 + 507%)R3 + (8 + 4672 + 247" R,

where v = \/a* — .
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Kerov polynomials and a conjecture of Lassalle

A polynomial KH(R(;),R(;), ...) expressing the Jack character Ch,, in

terms of free cumulants is called Kerov polynomial.

Conjecture (Lassalle, 2009)
Let k > 1 be a positive integer. Then Ky is a polynomial in
v, R(za),Rga), ... with positive, integer coefficients.

° K((f‘)) is a polynomial in W,R(za),Rga), ... with rational coefficients
(D., Féray 2016),

° Chzig’ is a weighted generating function of some bipartite unicellular

maps (Czyzewska-Jankowska, Sniady 2017).

Originally, conjecture of Lassalle was stated rather vaguely, since he used
a different normalization of Kerov polynomials and he suggested that
there exists a way to express it as a polynomial in free cumulants and

a, B := 1 — « with non-negative, integer coefficients.




Polynomial functions

o (Bipartite) map M is a connected (bipartite) graph embedded into a
surface in a way that the complement of the image is homeomorphic
to the collection of open discs called faces.

@ Map is rooted if there is a ditingueshed corner of the map.

@ The degree of a vertex/face is the number of adjacent corners.
degfaces

° (degoadegn T) — (:U"V7>‘)'

AN
7
AN
7

%

A‘Aa (M)-0) , Jg.(”\= ) /%*34.(«: 6]



Polynomial functions

Maps and Jack symmetric functions revisited

_ i _ i _ i
@ pi= ano Xy qi = ano Yo i = ano Zm

SR ()
° F(t;b,p,q) =3 ,50t" >\ RTGEN L
T,

Theorem (Cauchy formula - Stanley 1989)

Pxgx _ oy )—1/(1+b)
F(t:b,p,q)=> t Z 3 5% =TI — ) :

n>0 i




Polynomial functions

Maps and Jack symmetric functions revisited

Jp— i A i S i.
° pi= ano Xpy Qi = ano Yoo Fi = ano Zn

J(1+b)(X)J(1+b)(y)J(1+b)(z)
o F(t;b,p,q,r) = ano t" > aen <J(1ib) J(1+b)A> .
A X

Conjecture (the b-conjecture - Goulden, Jackson 1996)

®(t; b, p,q,r) :=(1+ b)td; log (F(t; b,p,q,r)) =

> MMV TT gy [I Gueey [ e

M feEF(M) ve Vo (M) vE Ve (M)

where we sum over all rooted, bipartite maps and MON : BipMaps — N
is a statistic (Measure Of Nonorientability) such that
MON(M) =0 <= M is orientable.
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What is known?

@ Brown, Jackson 2007: there exists a statistic MON on the set of
maps (not necessarily bipartite) s.t.

:Zte(/v/)bmow(m) H Gaeg(v):
M veV(M)

)

p=(1.1,...),r=(0,1,0,0,...),

@ La Croix 2009: there exists a statistic MON on the set of maps (not
necessarily bipartite) s.t.

(0]

:Zte(M)bMON(M)Pf(M) H Gaeg(v).
M

p=(P.P,...),r=(0,1,0,0,...), vev(M)

e Kannunikov, Vassilieva 2015: the coefficient [t"p,q,,r,|® is a
polynomial in b with nonnegative integer coefficients,

e D., Féray 2017: the coefficient [t"p,,q, r\]® is a polynomial in b
with rational coefficients,

@ Kanunnikov, Promyslov, Vassilieva 2018 the normalized coefficient
a(u) - [t"puqgura]® is a polynomial in b with integer coefficients,
where a(p) = []; il Aut(p).



Polynomial functions

A bit more, but still something to do...

Theorem (Chapuy, D. 2020+)
There exists a statistic MON : BipMaps — N s.t.

r=(R,R... Zte(M)bMON R ] pdeg 2 || ddeew)
feF(M ve Vo (M)

®|

@ geometric interpretation in terms of weighted branched coverings of
the sphere

o b-deformation of classical (single or double) Hurwitz numbers
obtained as a specialization b = 0.



Polynomial functions

Perspectives

@ Limit shape of the Jack-Plancherel measure (or other measures
given by convex characters) in the double scaling limit?

o Covariance of normal distribution in the double scaling limit = the
top-degree of normalized Jack characters indexed by two rows = the
combinatorics of unhandled maps with two faces.

o Joint distribution of properly normalized (A(n)), > (A(n)), = ---
with respect to Jack-Plancherel measure = Tracy-Widom f
(Guionnet, Huang 2019). What about convex characters with AFP?

o Understand better a relation between our model and other models of
discrete S-ensembles (Moll, Borodin-Gorin-Guionnet)



Thank you

THANK YOU FOR YOUR
ATTENTION!



