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Setup

Definition
A partition ⇡ of the integer n
(⇡ ` n, or ⇡ 2 Pn): a finite
non-increasing sequence of positive
integers ⇡1 � ⇡2 � · · · � ⇡k , such
that |⇡| :=

P
i ⇡i = n;

Graphical representation by a
Young diagram � 2 Yn of size n.

Problem
We want to study asymptotic behaviour of random Young diagrams Yn,
when their size n is tending to infinity.
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Setup

Example
⇡ = (7, 7, 4, 4, 2) ` 24,
Represented by a Young diagram �
with `(�) = 5 rows.

�1

�2

�3

�4

�5

Problem
We want to study asymptotic behaviour of random Young diagrams Yn,
when their size n is tending to infinity.
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Random Young diagrams and the symmetric group

Pn a probability measure on the set of Young diagrams Yn.

l

�n : Sn ! R a normalized central positive definite function on the
symmetric group Sn (called a reducible character):

�n(⇡) =
X

�2Yn

Pn(�)��(⇡)

⇢� - an irreducible representation of Sn,
�� - an associated irreducible character, i.e.

��(⇡) :=
Tr ⇢�(⇡)

Tr ⇢�(id)
.

Conclusion
In order to understand random Young diagrams, we can studied
associated reducible characters.
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Examples (from the representation theory)

Example
The Plancherel measure

�(⇡) :=

(
1 if ⇡ = 1n,
0 otherwise

$ P�(�) :=
(dim ⇢�)

2

n!

the Schur-Weyl measure

�(⇡) := N
`(⇡)�|⇡| $ P�(�) :=

dimE�

Nn
,

where (CN)⌦n =
L

�`n E�.
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The Plancherel measure - law of large numbers

We can describe the Plancherel measure more combinatorially:

as a push-forward of the uniform measure on Sn through RSK
using hook-length formula:

P(�) = n!Q
(x,y)2� h2

�(x , y)
,

where h�(x , y) - hook length of a cell (x , y) 2 �.

Theorem (Logan–Shepp, Vershik–Kerov 1977, informal statement)

Let �n 2 Yn be a random Young diagram sampled with the Plancherel
distribution Pn. Then the sequence (�n) of Young diagrams converges to
some limit shape in the limit n ! 1 when the number of the boxes
tends to infinity.
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Vershik-Kerov, Logan-Shepp limit shape

Figure: Scaled random Young diagram of size 100 distributed according with
Plancherel measure
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Vershik-Kerov, Logan-Shepp limit shape

Figure: Scaled random Young diagram of size 1000 distributed according with
Plancherel measure
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Vershik-Kerov, Logan-Shepp limit shape

Figure: Scaled random Young diagram of size 5000 distributed according with
Plancherel measure
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Vershik-Kerov, Logan-Shepp limit shape

�2 �1 1 2

1

2
!⇤1(x)

Figure: !⇤1(x) =

(
|x | if |x | � 2;
2
⇡

�
x · arcsin x

2 +
p

4 � x2
�

otherwise.
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Anisotropic Young diagrams

Definition
Anisotropic Young diagram Tw ,h(�) - polygon obtained from the Young
diagram � by a horizontal stretching of ratio w and a vertical stretching
of ratio h (each box 1 ⇥ 1 is replaced by a box of dimension w ⇥ h).

� 7! T2, 1
2
(�)

In order to study the shape of random Young diagrams �n 2 Yn sampled
by the Plancherel measure, the right scaling is the following:

⇤n := Tp
1
n ,
p

1
n
�n.
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Anisotropic Young diagrams
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Young diagrams as continuous objects

French convention:

x
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Young diagrams as continuous objects

French convention:

z

�
3�

2�
1

1
2

3

t

1
2

3
4

5
6

7
8

9

x
1 2 3 4 5

y

1

2

3

4



The approximate factorization property Symmetric functions and deformation Polynomial functions

Young diagrams as continuous objects

Russian convention:
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Young diagrams as continuous objects

Russian convention:
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Young diagrams as continuous objects

Russian convention:

z
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Definition
A profile of a Young diagram � is a function !� : R ! R+ such that its
graph is a profile of � drawn in Russian convention.
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Young diagrams as continuous objects
Russian convention:

z
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Theorem (Logan–Shepp, Vershik–Kerov 1977 (revisited))

Let �n be a random Young diagram sampled with the Plancherel
distribution Pn. Then there exists a deterministic function !⇤1 : R ! R
with the property that

lim
n!1

!⇤n = !⇤1 ,

where the convergence holds true with respect to the supremum norm, in
probability.
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The approximate factorization property

We extend the domain of �n : Pn ! R to the set
F

0kn Pk of partitions
of sufficiently small numbers by setting

�n(⇡) := �n(⇡, 1n�|⇡|) for |⇡|  n.

Biane defined characters with the approximate factorization property:

the characters do not decay too slow:

�n(⇡) = O(n� |⇡|�`(⇡)
2 ),

the characters should approximately factorize, i.e.

�n(⇡1 · ⇡2) � �n(⇡1) · �n(⇡2) = O

⇣
n

� |⇡1|+⇡2�`(⇡1)�`(⇡2)�2
2

⌘
.
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The approximate factorization property
Biane defined characters with the approximate factorization property:

the characters do not decay too slow:

�n(⇡) = O(n� |⇡|�`(⇡)
2 ),

the characters should approximately factorize, i.e.

�n(⇡1 · ⇡2) � �n(⇡1) · �n(⇡2) = O

⇣
n

� |⇡1|+⇡2�`(⇡1)�`(⇡2)�2
2

⌘
.

Theorem (Biane 2001)

Let �n : Pn ! R, n � 1 be a family of reducible characters with the
approximate factorization property. Let �n be a random Young diagram
with the probability distribution P�n . Then there exists some
deterministic function !⇤1 : R ! R with the property that

lim
n!1

!⇤n = !⇤1 ,

where the convergence holds true with respect to the supremum norm,
in probability.
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Back to our examples

The Plancherel measure has the character with the approximate
factorization property ! Logan-Shepp, Vershik–Kerov result.
the Schur-Weyl measure has the character given by
�(⇡) := N

`(⇡)�|⇡|. Let
p
n

N ! c 2 [0, 1). Then � has the
approximate factorization property and the limit shape !⇤1 is given
by an explicit curve !c (Biane 2001):

4 PIERRE-LOÏC MÉLIOT

length in m; consequently, the study of Schur-Weyl measures is related to analogues of Ulam’s problem
([Ula61]).

If � is a Young diagram, we turn it by 45 degrees and we consider the upper boundary of the new
drawing as a continuous function s 7! �(s), with by convention �(s) = |s| if s is too big (see figure 4).
This interpretation permits to rescale the Young diagrams, and in particular, we shall denote by �� the

y = �(x)

Figure 4. Function s 7! �(s) associated to the Young diagram � = (5, 4, 4, 1).

Young diagram � rescaled by a factor 1/
�

|�| in both directions:

��(s) = �(s
p

n)/
p

n

Then, P. Biane has shown that under Schur-Weyl measures with parameter ↵ � 1/2, rescaled Young
diagrams admit a limit form (see Theorem 3 in [Bia01]):

c = 0

c = 1

c = 1/2

c = 2

Figure 5. Limit shapes of the rescaled Young diagrams under Schur-Weyl measures of
parameter ↵ = 1/2.

Theorem 1 (First order asymptotics of Schur-Weyl measures of parameter ↵ = 1/2). We fix � > 0, and
we suppose that ↵ = 1/2. As n goes to infinity,

SWn,↵,c[k�� � �ck1 � �] ! 0,
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Fluctuations

Problem
How to “measure” fluctuations around the limit shape !⇤1?

We know that !⇤n ! !⇤1 , so we define

�n :=
p
n (!⇤n � !⇤1) .

We would like to show that �n converges to some function �1, so
informally speaking,

!⇤n ⇡ !⇤1 +
1p
n
�1.

We need to study suitable test functions:

Yk :=
k � 1

2

Z
u
k�2 �n(u)du, k � 2.



The approximate factorization property Symmetric functions and deformation Polynomial functions

the Plancherel measure - central limit theorem

Theorem (Kerov 1993)

Let �n be a random Young diagram sampled with the Plancherel
distribution Pn.

Then the random vector �n converges in distribution to some
(non-centered) Gaussian random vector �1 as n ! 1.

Equivalently, the family of random variables (Yk)k�2 converges as
n ! 1 to a (non-centered) Gaussian distribution.
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Characters with the approximate factorization property
revisited - cumulants

Note that

�n(⇡) = E
�
�(�)(⇡)

�
,

�n(⇡1 · ⇡2) � �n(⇡1) · �n(⇡2) = Var
�
�(�)(⇡)

�

of the irreducible characters ��(⇡) taken with the probability P�n(�).
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Characters with the approximate factorization property
revisited - cumulants

Note that
�n(⇡) = E

�
�(�)(⇡)

�
,

�n(⇡1 · ⇡2) � �n(⇡1) · �n(⇡2) = Var
�
�(�)(⇡)

�

Cumulants E
` (x1, . . . , x`) of random variables x1, . . . , x` - natural

generalization of a variance:
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

E(x1) = E
1 (x1),

E(x1x2) = E
2 (x1, x2) + E

1 (x1)
E
1 (x2),

E(x1x2x3) = E
3 (x1, x2, x3) + E

1 (x1)
E
2 (x2, x3)

+ E
1 (x2)

E
2 (x1, x3) + E

1 (x3)
E
2 (x1, x2)

+ E
1 (x1)

E
1 (x2)

E
1 (x3),

...
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Characters with the approximate factorization property
revisited - cumulants

Note that

�n(⇡) = E
�
�(�)(⇡)

�
,

�n(⇡1 · ⇡2) � �n(⇡1) · �n(⇡2) = Var
�
�(�)(⇡)

�

Cumulants �
` (⇡1 . . . ⇡`) of random variables �(�)(⇡1), . . . , �(�)(⇡`) -

natural generalization of a variance:
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

�(⇡1) = �
1
(⇡1),

�(⇡1⇡2) = �
2
(⇡1, ⇡2) + �

1
(⇡1) �

1
(⇡2),

�(⇡1⇡2⇡3) = �
3
(⇡1, ⇡2, ⇡3) + �

1
(⇡1) �

2
(⇡2, ⇡3)

+ �
1
(⇡2) �

2
(⇡1, ⇡3) + �

1
(⇡3) �

2
(⇡1, ⇡2)

+ �
1
(⇡1) �

1
(⇡2) �

1
(⇡3),

...
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Characters with the approximate factorization property
revisited

Śniady redefined characters with the approximate factorization property:

8
<

:
�n(⇡) = �

1
(⇡1) = O(n� k⇡k

2 ),

�n(⇡1 · ⇡2) � �n(⇡1) · �n(⇡2) = �
2
(⇡1, ⇡2) = O

⇣
n

� k⇡1k+k⇡2k�2
2

⌘
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Characters with the approximate factorization property
revisited

Śniady redefined characters with the approximate factorization property:

�
` (⇡1, . . . , ⇡`) = O

⇣
n

� k⇡1k+···+k⇡`k�2(`�1)
2

⌘
.

Theorem (Śniady 2006)

Let �n : Pn ! R, n � 1 be a family of reducible characters with the
approximate factorization property. Let �n be a random Young diagram
with the probability distribution P�n .

Then the random vector �n converges in distribution to some
(non-centered) Gaussian random vector �1 as n ! 1.

Equivalently, the family of random variables (Yk)k�2 converges as
n ! 1 to a (non-centered) Gaussian distribution.
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Symmetric functions vs. representation theory

Power-sum symmetric functions p�:

pk =
X

i

x
k
i , p� =

Y

i

p�i .

Schur symmetric functions s�:

s� =
1
n!

X

⇡2Sn

��(⇡) p⇡ =
X

⇡2Pn

��(⇡)

z⇡
p⇡,

where z⇡ =
Q

i mi (⇡)!imi (⇡).

Definition
Hall scalar product:

hp�, pµi = ��,µz�,

Schur symmetric functions s�:
obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process.
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X

⇡2Pn

��(⇡)

z⇡
p⇡,

where z⇡ =
Q

i mi (⇡)!imi (⇡).

Definition
Hall scalar product:

hp�, pµi = ��,µz�,

Schur symmetric functions s�:
obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process.
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Jack symmetric functions

Definition
Deformation of Hall scalar product:

hp�, pµi↵ = ↵`(�)��,µz�.

Jack symmetric functions J
(↵)
� :

obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process and
multiplied by explicit constant c(↵)(�) =

Q
⇤2� h↵(⇤);
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Jack symmetric functions

Definition
Deformation of Hall scalar product:

hp�, pµi↵ = ↵`(�)��,µz�.

Jack symmetric functions for ↵ = 1 :
obtained from monomial symmetric functions ordered by
lexicographic order by Gram-Schmidt orthonormalization process and
multiplied by explicit constant c(1)(�) = n!

dim(�) ;



The approximate factorization property Symmetric functions and deformation Polynomial functions

Jack symmetric functions - combinatorial formula
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Jack symmetric functions - combinatorial formula

u

d(u)
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Jack symmetric functions - combinatorial formula
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Jack symmetric functions - combinatorial formula
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Jack symmetric functions - combinatorial formula

Theorem (Knop, Sahi 1997)

J
(↵)
� =

X

�:�t!N+,non-attacking

x
�

Y

�(⇤)=�(d(⇤)

(↵(`(⇤) + 1) + a(⇤) + 1).
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Jack symmetric functions - combinatorial formula

12 3 5 4

4321

1 2 4 5

5 2

5

1

x4
1x

4
2x

2
3x

3
4x

4
5 ⇥ (2↵+ 2)(2↵+ 3)(4↵+ 4)(↵+ 1)(2↵+ 1)
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Jack symmetric functions - combinatorial formula

Theorem (Knop, Sahi 1997)

J
(↵)
� =

X

�:�t!N+,non-attacking

x
�

Y

�(⇤)=�(d(⇤)

(↵(`(⇤) + 1) + a(⇤) + 1).

J
(↵)
� = lim

t!1

J�(x ; t↵, t)

(1 � t)|�| .
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Jack deformation

Fix ↵ 2 R>0 and expand Jack polynomials J
(↵)
� in power-sum basis:

J
(↵)
� =

X

⇡

✓(↵)
⇡ (�) p⇡.

We define irreducible Jack character �(↵)
� :

�(↵)
� (⇡) := ↵� k⇡k

2
z⇡

n!
✓(↵)

⇡ (�),

where k⇡k := |⇡| � `(⇡).
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Jack deformation

Fix ↵ 2 R>0 and expand Jack polynomials J
(↵)
� in power-sum basis:

J
(↵)
� =

X

⇡

✓(↵)
⇡ (�) p⇡.

We define irreducible Jack character �(1)
� :

�(1)
� (⇡) := ��(⇡),

where k⇡k := |⇡| � `(⇡).
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Jack deformation

Fix ↵ 2 R>0 and expand Jack polynomials J
(↵)
� in power-sum basis:

J
(↵)
� =

X

⇡

✓(↵)
⇡ (�) p⇡.

We define irreducible Jack character �(↵)
� :

�(↵)
� (⇡) := ↵� k⇡k

2
z⇡

n!
✓(↵)

⇡ (�),

where k⇡k := |⇡| � `(⇡).

We call � : Pn ! R a reducible Jack character, if it is a convex
combination of irreducible Jack characters.
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Jack deformation - examples

Example
Jack-Plancherel measure

�(⇡) :=

(
1 if ⇡ = 1n,
0 otherwise

$ P�(�) :=
n!Q

(x,y)2� h↵(x , y)h0
↵(x , y)

Jack-Schur-Weyl measure

�(⇡) : = N
`(⇡)�|⇡| = N

�k⇡k $

P�(�) : = n!
Y

(x,y)2�

N +
p

↵(x � 1) �
p

↵
�1

(y � 1)
N · h↵(x , y)h0

↵(x , y)

= n!
Y

(x,y)2�

N + (
p

↵ x �
p

↵
�1

y) + (
p

↵
�1 �

p
↵)

N · h↵(x , y)h0
↵(x , y)

.
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Jack deformation - examples

Example
Jack-Plancherel measure

�(⇡) :=

(
1 if ⇡ = 1n,
0 otherwise

$ P�(�) :=
n!Q

(x,y)2� h↵(x , y)h0
↵(x , y)

Jack-Schur-Weyl measure

�(⇡) : = N
`(⇡)�|⇡| = N

�k⇡k $

P�(�) : = n!
Y

(x,y)2�

N +
p

↵(x � 1) �
p

↵
�1

(y � 1)
N · h↵(x , y)h0

↵(x , y)

= n!
Y

(x,y)2�

N + (
p

↵ x �
p

↵
�1

y) + (
p

↵
�1 �

p
↵)

N · h↵(x , y)h0
↵(x , y)

.

-4¥ I
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Jack deformation of hook-length formula

a(⇤)

`(⇤)

⇤

h↵(⇤) :=
p

↵ a(⇤) +
p

↵
�1

`(⇤) +
p

↵,

h
0
↵(⇤) :=

p
↵ a(⇤) +

p
↵

�1
`(⇤) +

p
↵

�1
.
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Asymptotic shape of large Jack-deformed Young diagrams

Theorem (D., Śniady 2019; ↵ = 1 Biane 2001)

For each n let �n : Pn ! R be a reducible Jack character, and let
↵ = ↵(n) be such that

� :=
p

↵
�1 �

p
↵ = g

p
n + g

0 + o(1)

for some g , g 0 2 R.
Let �n be a random Young diagram with the probability distribution P�n

associated with reducible Jack-characters � := �n with the approximate
factorization property.
Then there exists some deterministic function !⇤1 : R ! R with the
property that

lim
n!1

!⇤n = !⇤1 , ⇤n = Tp
↵
n ,

p
1
↵n
(�n)

where the convergence holds true with respect to the supremum norm, in
probability.
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Central limit theorem

Theorem (D., Śniady 2019; ↵ = 1 Śniady 2006)

For each n let �n : Pn ! R be a reducible Jack character, and let
↵ = ↵(n) be such that

� :=
p

↵
�1 �

p
↵ = g

p
n + g

0 + o(1)

for some g , g 0 2 R.
Let �n be a random Young diagram with the probability distribution P�n

associated with reducible Jack-characters � := �n with the approximate
factorization property.

Then the random vector �n converges in distribution to some
(non-centered) Gaussian random vector �1 as n ! 1.

Equivalently, the family of random variables (Yk)k�2 converges as
n ! 1 to a (non-centered) Gaussian distribution.
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Examples

We recall that � = g
p
n + g

0 + o(1).

Example
When ↵ > 0 is fixed, that is g = 0 then the limit shape !⇤1 does not
depend on ↵!.

Jack-Plancherel measure (D., Féray 2016)

!⇤1(x) =

(
|x | if |x | � 2;
2

⇡

⇣
x · arcsin x

2
+

p
4 � x2

⌘
otherwise.

Jack-Schur-Weyl measure with
p
n

N ! c 2 [0, 1)

!⇤1(x) � explicit function depending on c .
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Examples

We recall that � = g
p
n + g

0 + o(1).

Example

1

1

2

An interesting choice is when
↵(n) = 1

c2n for some c > 0, that is
g = c , g 0 = 0. Then the anisotropic
Young diagram ⇤n is a collection of
rectangles of the same height g and
of the widths �1

gn , �2
gn , . . . , and the

limit shape !⇤1 clearly depends on
g !

The limit shape of random Young
diagrams distributed according to
the Jack–Plancherel measure in the
double scaling limit for c = 1

4
.
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Approximate factorization property revisited

Examples (Of measures with the AFP, thus CLT)

Jack-Plancherel measure (↵ > 0 fixed, D., Féray 2016)

�n(⇡) :=

(
1 if ⇡ = 1n,
0 otherwise

�
` (⇡1, . . . , ⇡`) =

(
1 if ` = 1, ⇡1 = 1k ,
0 otherwise

Jack-Schur-Weyl measure (
p
n

N ! c 2 [0, 1))

�n(⇡) := N
�k⇡k �

` (⇡1, . . . , ⇡`) =

(
N

�k⇡`k if ` = 1,

0 otherwise.
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More examples

Theorem

Let
�
�1
n

�
,
�
�2
n

�
be two families of reducible Jack characters with the

approximate factorization property. Then all the families consists of
reducible Jack characters with the approximate factorization property:

the restriction
�
�i
q,n

�
:=

⇣�
�i
qn

�#qn
n

⌘
, where qn � n and

limn!1
qn
n = q;

the induction
�
�i
q,n

�
:=

⇣�
�i
qn

�"qn
n

⌘
, where qn  n and

limn!1
qn
n = q;

the outer product
(�n) :=

⇣
�1

q(1)
n

� �2

q(2)
n

⌘
,

where q
(1)
n + q

(2)
n = n and the limits q

(i) := limn!1
q(i)
n
n exist;

the tensor product
(�n) :=

�
�1

n · �2

n

�
.
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The outer product vs. structure constants

The outer product
(�n) :=

⇣
�1

q(1)
n

� �2

q(2)
n

⌘
,

is defined through the multiplication of Jack polynomials:

J
(↵)
� · J(↵)

µ =
X

⌫

c
⌫
�,µ(↵) J

(↵)
⌫ .

Conjecture (Stanley 1989)

c
⌫
�,µ(↵) · hJ(↵)

⌫ , J(↵)
⌫ i are polynomials in ↵ with nonnegative integer

coefficients!
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The main tool - algebraic combinatorics

Our main tool for proving above theorems are certain results on the
structure of the algebra of polynomial functions P.

We define the normalized Jack character Ch(↵)
⇡ : Y ! Q[

p
↵,

p
↵

�1
]:

Ch(↵)
⇡ (�) :=

(
|�||⇡| �(↵)

� (⇡) if |�| � |⇡|;
0 if |�| < |⇡|.

Basis: P = {�k Ch⇡ : k 2 N, ⇡ 2 P}.
Gradation: deg(�k Ch⇡) = k + k⇡k.
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Understanding normalized Jack characters

We define the free cumulants:

R(↵)
k (�) := lim

n!1

Ch(k)(Tn,n(�))

nk+1
, k � 2.

Proposition

Functionals R(↵)
2

, R(↵)
3

, · · · 2 P, they generate P and deg(R(↵)
k ) = k .

Problem
Express the Jack character Chµ in terms of free cumulants
R(↵)

2
, R(↵)

3
, . . . .
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Kerov polynomials and a conjecture of Lassalle

A polynomial Kµ(R(↵)
2

, R(↵)
3

, . . . ) expressing the Jack character Chµ in
terms of free cumulants is called Kerov polynomial.

K
(↵)
(1) = R2,

K
(↵)
(2) = R3 + �R2,

K
(↵)
(3) = R4 + 3�R3 + (1 + 2�2)R2,

K
(↵)
(4) = R5 + 6�R4 + �R2

2 + (5 + 11�2)R3 + (7� + 6�3)R2,

K
(↵)
(5) = R6 + 10�R5 + 5�R3R2 + (15 + 35�2)R4 + (5 + 10�2)R2

2

+ (55� + 50�3)R3 + (8 + 46�2 + 24�4)R2,

where � =
p

↵
�1 �

p
↵.
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Kerov polynomials and a conjecture of Lassalle

A polynomial Kµ(R(↵)
2

, R(↵)
3

, . . . ) expressing the Jack character Chµ in
terms of free cumulants is called Kerov polynomial.

K
(↵)
(1) = R2,

K
(↵)
(2) = R3 + �R2,

K
(↵)
(3) = R4 + 3�R3 + (1 + 2�2)R2,

K
(↵)
(4) = R5 + 6�R4 + �R2

2 + 11�2R3 + 6�3R2| {z }
Ch

top
(4)

+5R3 + 7�R2,

K
(↵)
(5) = R6 + 10�R5 + 5�R3R2 + (15 + 35�2)R4 + (5 + 10�2)R2

2

+ (55� + 50�3)R3 + (8 + 46�2 + 24�4)R2,

where � =
p

↵
�1 �

p
↵.
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Kerov polynomials and a conjecture of Lassalle
A polynomial Kµ(R(↵)

2
, R(↵)

3
, . . . ) expressing the Jack character Chµ in

terms of free cumulants is called Kerov polynomial.

Conjecture (Lassalle, 2009)

Let k � 1 be a positive integer. Then K(k) is a polynomial in
�, R(↵)

2
, R(↵)

3
, . . . with positive, integer coefficients.

K
(↵)
(k) is a polynomial in �, R(↵)

2
, R(↵)

3
, . . . with rational coefficients

(D., Féray 2016),
Chtop

(k) is a weighted generating function of some bipartite unicellular
maps (Czyżewska-Jankowska, Śniady 2017).

Remark
Originally, conjecture of Lassalle was stated rather vaguely, since he used
a different normalization of Kerov polynomials and he suggested that
there exists a way to express it as a polynomial in free cumulants and
↵, � := 1 � ↵ with non-negative, integer coefficients.
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Maps

(Bipartite) map M is a connected (bipartite) graph embedded into a
surface in a way that the complement of the image is homeomorphic
to the collection of open discs called faces.
Map is rooted if there is a ditingueshed corner of the map.
The degree of a vertex/face is the number of adjacent corners.

(deg�, deg•,
degfaces

2
) ! (µ, ⌫, �).

→

E
j

deg. (M) =D , deg.CM/--f)fzdefteces-- G)
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Maps and Jack symmetric functions revisited

pi =
P

n�0
x
i
n, qi =

P
n�0

y
i
n, ri =

P
n�0

z
i
n;

F (t; b,p,q) =
P

n�0
t
n
P

�`n
J(1+b)
� (x)J(1+b)

� (y)
hJ(1+b)

� ,J(1+b)
� i

.

Theorem (Cauchy formula - Stanley 1989)

F (t; b,p,q) =
X

n�0

t
n
X

�`n

p�q�

(1 + b)`(�)z�
=

Y

i,j

(1 � xiyj)
�1/(1+b).
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Maps and Jack symmetric functions revisited

pi =
P

n�0
x
i
n, qi =

P
n�0

y
i
n, ri =

P
n�0

z
i
n;

F (t; b,p,q, r) =
P

n�0
t
n
P

�`n
J(1+b)
� (x)J(1+b)

� (y)J(1+b)
� (z)

hJ(1+b)
� ,J(1+b)

� i
.

Conjecture (the b-conjecture - Goulden, Jackson 1996)

�(t; b,p,q, r) := (1 + b)t@t log (F (t; b,p,q, r)) =
X

M

t
e(M)

b
MON(M)

Y

f 2F (M)

pdeg(f )/2

Y

v2V�(M)

qdeg(v)

Y

v2V•(M)

rdeg(v),

where we sum over all rooted, bipartite maps and MON : BipMaps ! N
is a statistic (Measure Of Nonorientability) such that
MON(M) = 0 () M is orientable.
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What is known?

Brown, Jackson 2007: there exists a statistic MON on the set of
maps (not necessarily bipartite) s.t.

�

����
p=(1,1,... ),r=(0,1,0,0,... ),

=
X

M

t
e(M)

b
MON(M)

Y

v2V (M)

qdeg(v),

La Croix 2009: there exists a statistic MON on the set of maps (not
necessarily bipartite) s.t.

�

����
p=(P,P,... ),r=(0,1,0,0,... ),

=
X

M

t
e(M)

b
MON(M)

P
f (M)

Y

v2V (M)

qdeg(v),

Kannunikov, Vassilieva 2015: the coefficient [tnpnqµrn]� is a
polynomial in b with nonnegative integer coefficients,
D., Féray 2017: the coefficient [tnpµq⌫r�]� is a polynomial in b

with rational coefficients,
Kanunnikov, Promyslov, Vassilieva 2018 the normalized coefficient
a(µ) · [tnpµq⌫rn]� is a polynomial in b with integer coefficients,
where a(µ) =

Q
i µi !Aut(µ).
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A bit more, but still something to do...

Theorem (Chapuy, D. 2020+)

There exists a statistic MON : BipMaps ! N s.t.

�
��
r=(R,R... )

=
X

M

t
e(M)

b
MON(M)

R
v•(M)

Y

f 2F (M)

pdeg(f )/2

Y

v2V�(M)

qdeg(v).

geometric interpretation in terms of weighted branched coverings of
the sphere
b-deformation of classical (single or double) Hurwitz numbers
obtained as a specialization b = 0.
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Perspectives

Limit shape of the Jack-Plancherel measure (or other measures
given by convex characters) in the double scaling limit?

Covariance of normal distribution in the double scaling limit = the
top-degree of normalized Jack characters indexed by two rows = the
combinatorics of unhandled maps with two faces.

Joint distribution of properly normalized
�
�(n)

�
1

�
�
�(n)

�
2

� . . .
with respect to Jack-Plancherel measure = Tracy-Widom �
(Guionnet, Huang 2019). What about convex characters with AFP?

Understand better a relation between our model and other models of
discrete �-ensembles (Moll, Borodin-Gorin-Guionnet)
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Thank you

THANK YOU FOR YOUR
ATTENTION!


