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We proceed with a particular choice of weights — white noise.



Brownian directed percolation

n—m

D((S7 m); (t’ n)) - s:to<t1<m-~l<ntn—m+1=t z_; [Bi+m(ti+1) N Bi+m(ti)]

with independent Brownian motions B;(7).

Aka Brownian Last Passage Percolation with min <> max.



Brownian directed percolation: what's known?
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e Explicit joint laws D((0,0); (¢, n)) via Fredholm determinants
[Kuperberg-99], [Baryshnikov-01], [Borodin-Olshanski-04], [Ferrari-08], [Dotsenko-10],

[Johansson-Rahman-19]

Important idea: Robinson—Schensted—Knuth correspondence
maps the computation to Dyson Brownian Motion — evolution
of eigenvalues of Hermitian matrix with Brownian entries.

Formulas are efficient for the asymptotic analysis



Brownian directed percolation: what's known?

f """""""" /\/W\ D((s, m); (t, n))
4,\ SN M rﬂl? ' [Bivm(tit1) — Bivm(ti)]

e Explicit joint laws D((0, 0); (t, n)) via Fredholm determinants

¢ No exact formulas for both endpoints (s, m); (t, n) varying.

However, formula-less asymptotic analysis is possible. E.g. in [Balasz—Busani—Seppalainen-19],
[Fan—Seppalainen-19], [Basu—Ganguly-Hammond-19], [Dauvergne—Ortman—Virag-18],
[Basu—Sarkar—Sly-18], [Basu—Hoffman—Sly-18], [Hammond-17], [Matetski-Quastel-Remenik-17],

[Georgiou—Rasoul-Agha—Seppalainen-16], ... [Newman-94], ...



Brownian directed percolation: simplest unknown

Question: What is the joint law for the (intersecting) pair of
distances D(A, B) and D(C, D)?



Brownian directed percolation: sample result
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Theorem. [Borodin—-Gorin—Wheeler-19] The law is shift invariant:
If C is on the same horizontal as A, with abscissa between the
ones of A and B, and if D is above and to the left from B, then

[D(A, B), D(C, D)] £ [D(A, B), D(A, D + A— C)].
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Brownian directed percolation: sample result
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Theorem. [Borodin—-Gorin—Wheeler-19] The law is shift invariant:
If C is on the same horizontal as A, with abscissa between the
ones of A and B, and if D is above and to the left from B, then

[D(A, B), D(C, D)] £ [D(A, B), D(A, D + A— C)].

Hence, the distribution is explicit.

The intersection condition is crucial.

No elementary proof.

Similar property holds for multi-point distributions...
... and for many more models!
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Theorem. [BGW-19] Shift invariance holds for each system.



Gamma polymer and its shift invariance
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[Seppéldinen-10], [Corwin—Seppaldinen—Shen-14], [O’Connell-Ortmann-14]:
Integrability and limits.



Gamma polymer and its shift invariance
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Theorem. [BGW-19] {k;}, {Ui}, 1 <¢<n, A >0. Set
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Under intersection condition, we have:
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KPZ equation and its shift invariance
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KPZ equation and its shift invariance

y A
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Kardar-Parisi-Zhang SPDE

KPZ (1986): This equation is /"\-’\_\/\\
universal for 1d surface growth

Rigorously found as a scaling limit in numerous stochastic systems.



KPZ equation and its shift invariance
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Solutions with Z(0, x) = dx=, coupled through 2d white noise 7.

t="T

Theorem. [BGW-19] For A > 0: Z(Ty)(x) g Z(T)'+A)(X + A),
/ d ! A

jointly with any Zg-y )(x’) for |7 Sy, Xz xE A, o
y' >y+ A X <x



Airy sheet and its shift invariance
Last Passage Percolation Hy = %Hm - % (Hz)2 +n

D((sL + L3y, asL); (tL + L*/3x, atL)) KPZ equation
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Space-time Airy sheet / Directed landscape
AL(z,5;y,t)
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Conjectures:

e AL(-) should be a limit of LPP with general weights.
e AL(-) should govern large-time behavior of KPZ.
Because H ~ In

JBrownian - &<P( ] white noise along ’y))



Airy sheet and its shift invariance
Last Passage Percolation H;, = %H_“; — % (H,L.)2 +n

D((sL + L*3y,asL); (tL + L*/3z,atL)) KPZ equation
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Theorems:

¢ [Davergne—Ortmann-Virag-18|: Brownian LPP — AL(")
® Numerous partial results for LPP with integrable weights.

L4 [Amir—Corwin—Quastel-11][Sasomoto—Spohn—10][Calabrese—Le Dousal-Rosso-10][Dotsenko-10]

1-point KPZ — A(0,0) = Tracy—Widom distribution



Airy sheet and its shift invariance
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Theorem. [BGW-19] For A > 0: A(x,y) 4 Ax+ A,y + A),
y <y, xX'>x+A, or
y' >y+ A X <x.

jointly with any A(x’,y’) for

A(0, -) was known, but no distributions beyond it.



Shift invariance: How general is it?
e For special integrable weights in LPP and directed polymers.

\“ /\/W\ Ut,\ % % %1 . 3(0,0-(4.2)
AN 4
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e For universal limiting objects: KPZ-equation, Airy sheet.

x T+ A

RN
y y+ A x

What other weights lead to shift invariance? We do not know.



We proceed to another world

The master statement
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(still inside Integrable Probability)
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Stochastic colored six-vertex model

Six-vertex model configurations:

paths on the square grid.

Treat it as white/black model.
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Stochastic colored six-vertex model

Six-vertex model configurations:
paths on the square grid.

Treat it as white/black model.

3 4 5 Add colors.



Stochastic colored six-vertex model
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Stochastic colored six-vertex model
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Stochastic colored six-vertex model
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Stochastic colored six-vertex model
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Stochastic colored six-vertex model

Simulation by Leonid Petrov



Stochastic colored six-vertex model

color 7j—’ 1 1 b bo 1-0 1—0by
color 6 _J | _J

color 5 r_ r—
color 4 — = smaller color  _J = larger color
color 3
color 2
color 1
color 0 Relevant history:
°

[Pauling-1935] Six-vertex (aka square ice) model.

[Lieb-1967] Bethe ansatz analysis. Residual entropy of ice.
[Bazhanov-1985], [Jimbo-1986] Colored vertex models
[Gwa-Spohn-1992] Stochastic version. KPZ class indications.

[Borodin—Corwin—Gorin-2014] Adaptation of integrable
probability methods. Confirmation of KPZ class predictions.

[Kuniba—Mangazeev—Maruyama—Okado-2016] Stochastic
higher rank colored models.



Stochastic colored six-vertex model
color 7 —
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color 6 1 5 Height function H>'(x, y)

color 5
Counts the number of

paths of colors >/ to the
right/below (x, y).

color 4
color 3
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11 00
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00 00
00 00

+— H>2(x,y) shown
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Stochastic colored six-vertex model
color 7 —
413121 11

color 6 Height function H>' X,
432711 00 ¢ boy)
color 5
11 00 Counts the number of
color 4 .
paths of colors >/ to the
color 3 0/0J0J0 right/below (X, y).
] 0 0 010
color 2 0000 +— H>2(x, y) shown
color 1
Theorem. [BGW-19] {k;}, {Ui}, 1 <t <n, A > 0. Set
W ki, i #t, U — U; i #
’ k+A, i=u, ’ U +(0,4), i=1

Under intersection condition, we have:



Stochastic colored six-vertex model
1

color T ——r. 1 b by 1—b 1—b
J 2J

colorGiIZ’3 2 1 1 1 r | r

4 3 2 1 1 O O = smaller color J= larger color
Coiorii 2111111 010 Theorem. [BGW-19]

21 0000007 GrRea). )
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0/0]j0/0 000 e "

color 1

Elements of the proof:
® Consider inhomogeneous model based on g, {v,}, {u,}:

bi(x,y) = 42— b(x,y) =

uy, — qvy uy, — qx

® Polynomial identity: need to check at enough points.
® When v, = uy, behavior at (x, y)—vertex trivializes: only turns.
® |n such situations Yang-Baxter equation relates the weighted

sums to the ones available by induction assumption.

Uy, — Vx



Stochastic colored six-vertex model

color 7 —
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Our proof:

® Lagrange interpolation + Yang-Baxter equation.



Stochastic colored six-vertex model
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Our proof:
® | agrange interpolation + Yang-Baxter equation.

Later alternative (still integrablel!):
e (Davergne-20+) Last Passage Percolation case: symmetries of
Robinson—Schenstead—Knuth correspondence
¢ (Galashin-20+) 6v case: Hecke algebras and two reflections.



Stochastic colored six-vertex model
color 7 _I—'m 3 2 1 1 1
1 1 by by 1=b 1-0
color 6 J 1 | 2
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Our proof:
® | agrange interpolation + Yang-Baxter equation.

Later alternative (still integrablel!):
e (Davergne-20+) Last Passage Percolation case: symmetries of
Robinson—Schenstead—Knuth correspondence
¢ (Galashin-20+) 6v case: Hecke algebras and two reflections.

Is there anything simpler or more conceptual?



Is there a simpler proof?

The master statement

Colored stochastic

Higher spin
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Bernoulli-Exponential LPP (colorless)
telegraph equation

l O’Connell-Yor Brownian polyier

A

Brownian KPZ equation

Last Passage Percolation

™.
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(multiplicative SHE)

Additive SHE

The Gaussian case

In general, we do not know. But if one cares only about
covariance...



Simplest case: additive SHE

He= Mo+ px—y,t)-n,  H(x,0)=0,

y is a parameter, 1 is the 2d white noise, and

p(x —y,t) = \/% exp <— (x 2ty)2) :

Proposition. For A > 0: H()(x, T) g HOHB) (x + A, T),
y <y, X' >x+A, or
y'>y+ A X <x

jointly with any HO)(x’, T) for
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Proof. H is an explicit Gaussian:
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HOT) = [ [ plz=y.splx— 2T = s)i(z.s) dz
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Simplest case: additive SHE

He= Mo+ px—y,t)-n,  H(x,0)=0,

y is a parameter, 1 is the 2d white noise, and

p(x —y,t) = \/%exp <—(X2ty)2> -

Proposition. For A > 0: H()(x, T) g HOHB) (x + A, T),
y <y, X' >x+A, or
y'>y+ A X <x

jointly with any HO)(x’, T) for

Proof. H is an explicit Gaussian:

T [e’e)
HOT) = [ [ plz=y.splx— 2T = s)i(z.s) dz
0 —00

Hence,

B0 0 (! ,/T/"" / /
X TYHU D, T) = pz = y,8)p(x — 2, T — s)p(z — ¥/, $)p(x" — 2, T — s) dzds
0 —oo



Simplest case: additive SHE

He= Mo+ px—y,t)-n,  H(x,0)=0,

Hence, EHW) (x, TYHV)(x', T) =
expected intersection local time of two Brownian bridges

@ x f—T




Simplest case: additive SHE

He= Mo+ px—y,t)-n,  H(x,0)=0,

Hence, EHW) (x, TYHV)(x', T) =
expected intersection local time of two Brownian bridges

@ x =T

Y Yy
Shift invariance of additive SHE

)

El[local time] invariant under (x,y) = (x + A,y + A)



Simplest case: additive SHE

Eventually, shift invariance for additive SHE becomes:
A

a

t=20 t=1

Theorem. The expected local time the Brownian bridge from a to
b spends at level c is independent of ¢ as long as a < ¢ < b.



Simplest case: additive SHE

Eventually, shift invariance for additive SHE becomes:
A

I
. A [

a

[
>

t=20 t=1

Theorem. The expected local time the Brownian bridge from a to

b spends at level c is independent of ¢ as long as a < ¢ < b.

In fact, the law of the local time at c is known:

~ (le=al+lc=bl+y)exp (—3(lc —al +[c — b| +¥)?) dy,  y>0.

[Ray-63], [Williams-74], [Biane-Yor-88], [Borodin-89], [Pitman-99]



Back to the six-vertex model
A

t=0 t=1

Theorem. The expected local time the Brownian bridge from a to
b spends at level c is independent of ¢ as long as a < ¢ < b.
Theorem. [BGW-19] Discrete versions of this statement hold and
generalize up to the level of the six-vertex model paths.
® Can be used to prove shift invariance of covariances.
® However, high enough in the hierarchy, the models are
non-gaussian!



Summary of shift invariance

same
distribution

® Joint laws invariant with
respect to partial shifts.

Colored stochastic

wlmemesn @ Access to new distributions.

Colored -PushTASEP

® Proof for covariance: shift

ASEP/TASEP/SSEP

ewswomsinyariance for local times.

® Proof for law: inhomogeneity
/ polynomiality / Yang-Baxter

Additive SHE

® Integrable Probability ties
all models together.



