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Directed percolation

x

y

independent random

weights w(edge)

A

B

D(A,B) = min
A=π0→π1→···→πN=B

N∑
i=1

w(πi−1 → πi )

We proceed with a particular choice of weights — white noise.
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Brownian directed percolation

D((s,m); (t, n)) = min
s=t0<t1<···<tn−m+1=t

n−m∑
i=0

[
Bi+m(ti+1)−Bi+m(ti )

]
with independent Brownian motions Bi (τ).

N

t

Aka Brownian Last Passage Percolation with min↔ max.



Brownian directed percolation: what’s known?
N

t

D((s,m); (t, n))

min
{ti}

n−m∑
i=0

[
Bi+m(ti+1)− Bi+m(ti )

]
• Explicit joint laws D((0, 0); (t, n)) via Fredholm determinants

[Kuperberg-99], [Baryshnikov-01], [Borodin-Olshanski-04], [Ferrari-08], [Dotsenko-10],

[Johansson-Rahman-19]

Important idea: Robinson–Schensted–Knuth correspondence
maps the computation to Dyson Brownian Motion — evolution
of eigenvalues of Hermitian matrix with Brownian entries.

Formulas are efficient for the asymptotic analysis

• No exact formulas for both endpoints (s,m); (t, n) varying.

However, formula-less asymptotic analysis is possible. E.g. in [Balasz–Busani–Seppalainen-19],

[Fan–Seppalainen-19], [Basu–Ganguly–Hammond-19], [Dauvergne–Ortman–Virag-18],

[Basu–Sarkar–Sly-18], [Basu–Hoffman–Sly-18], [Hammond-17], [Matetski–Quastel–Remenik-17],

[Georgiou–Rasoul-Agha–Seppalainen-16], . . . [Newman-94], . . .
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Brownian directed percolation: simplest unknown

N

tC

D

A

B

Question: What is the joint law for the (intersecting) pair of
distances D(A,B) and D(C ,D)?



Brownian directed percolation: sample result
N

t
C ′ =

D′

A

B

N

tC

D

A

B

=

distribution
same

Theorem. [Borodin–Gorin–Wheeler-19] The law is shift invariant:
If C is on the same horizontal as A, with abscissa between the
ones of A and B , and if D is above and to the left from B , then[

D(A,B),D(C ,D)
] d

=
[
D(A,B),D(A,D + A− C )

]
.

• Hence, the distribution is explicit.
• The intersection condition is crucial.
• No elementary proof.
• Similar property holds for multi-point distributions...
• ... and for many more models!
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Zoo of integrable stochastic systems

Γ00

Z(0,0)→(4,2)

x

y

Γ01

Γ02

Γ10

Γ11

Γ12

Γ20

Γ21

Γ22

Γ30

Γ31

Γ32

1

1111

1 1 1

Airy sheet

KPZ equation

Bernoulli-Exponential LPP

O’Connell-Yor Brownian polymer

strict-weak polymer

(multiplicative SHE)

Higher spin

colored vertex models

Colored

ASEP/TASEP/SSEP

Colored stochastic

telegraph equation

Additive SHE

Colored stochastic

six-vertex model

∫∫
eB1(t1)−B1(t0)+···+BN (tN )−BN (tN−1)dt1 · · · dtN

∂tH = 1
2∂

2
xH− 1

2 (∂xH)
2 + η

∂tH = 1
2∂

2
xH+ p(x, t)η

∂x∂yf + β1∂xf + β2∂yf = η

Beta polymer

N

tN∑
i=1

[
Bi(ti+1) − Bi(ti)

]
→ max

Last Passage Percolation
Brownian

Colored q-PushTASEP

PushTASEP

(colorless)

Gamma

Theorem. [BGW-19] Shift invariance holds for each system.



Gamma polymer and its shift invariance

Γ00

Z(0,0)→(4,2)

x

y

Γ01

Γ02

Γ10

Γ11

Γ12

Γ20

Γ21

Γ22

Γ30

Γ31

Γ32

1

1111

1 1 1

Γij ∼ i.i.d. Gamma(κ)

of density

1

Γ(κ)
zκ−1e−z , z > 0.

Z(x ′,y ′)→(x ,y) =
∑

(x ′,y ′)=π0→···→πx+y−x′−y′=(x ,y)

x+y−x ′−y ′∏
k=1

w(πk−1 → πk)

[Seppäläinen-10], [Corwin–Seppäläinen–Shen-14], [O’Connell–Ortmann-14]:
Integrability and limits.



Gamma polymer and its shift invariance

Z(3,0)→(13,6)
d
= Z(5,0)→(15,6)

1

Γij

Theorem. [BGW-19] {ki}, {Ui}, 1 ≤ ι ≤ n, ∆ > 0. Set

k ′i =

{
ki , i 6= ι,

kι + ∆, i = ι,
U ′i =

{
Ui , i 6= ι

Uι + (∆, 0), i = ι.

Under intersection condition, we have:(
Z(0,k1)→U1

, . . . ,Z(0,kn)→Un
) d

=
(
Z(0,k ′1)→U ′1 , . . . ,Z(0,k ′n)→U ′n

)



KPZ equation and its shift invariance

mesh size → 0 Zt =
1
2Zxx − ηZ

H = − ln(Z)

Ht =
1
2Hxx − 1

2 (Hx)
2 + η

Kardar-Parisi-Zhang SPDE

2d white noise η

Γ00

x

y

Γ01

Γ02

Γ10

Γ11

Γ12

Γ20

Γ21

Γ22

Γ30

Γ31

Γ32

1

1111

1 1 1

KPZ (1986): This equation is
universal for 1d surface growth

Rigorously found as a scaling limit in numerous stochastic systems.
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KPZ equation and its shift invariance

Zt = 1
2Zxx − ηZ

H=− ln(Z)←→ Ht = 1
2Hxx − 1

2 (Hx)2 + η

Solutions with Z (0, x) = δx=y coupled through 2d white noise η.

t = 0

t = T

xy y + ∆

x x + ∆

Theorem. [BGW-19] For ∆ > 0: Z
(y)
T (x)

d
= Z

(y+∆)
T (x + ∆),

jointly with any Z
(y ′)
T (x ′) for

[
y ′ < y , x ′ > x + ∆, or

y ′ > y + ∆, x ′ < x .



Airy sheet and its shift invariance

KPZ equation

Ht =
1
2Hxx − 1

2 (Hx)
2
+ ηLast Passage Percolation

D((sL+ L2/3y, αsL); (tL+ L2/3x, αtL))

T →∞

Airy sheet

y

x

A(x, y)

Space-time Airy sheet / Directed landscape

AL(x, s; y, t)
t = 1s = 0

L→∞

Conjectures:
• AL(·) should be a limit of LPP with general weights.
• AL(·) should govern large-time behavior of KPZ.

Because H ≈ ln
(∫

Brownian γ exp(
∫
white noise along γ)

)
.



Airy sheet and its shift invariance

KPZ equation

Ht =
1
2Hxx − 1

2 (Hx)
2
+ ηLast Passage Percolation

D((sL+ L2/3y, αsL); (tL+ L2/3x, αtL))

T →∞

Airy sheet

y

x

A(x, y)

Space-time Airy sheet / Directed landscape

AL(x, s; y, t)
t = 1s = 0

L→∞

Theorems:
• [Davergne–Ortmann–Virag-18]: Brownian LPP → AL(·)
• Numerous partial results for LPP with integrable weights.
• [Amir–Corwin–Quastel-11][Sasomoto–Spohn–10][Calabrese–Le Dousal–Rosso-10][Dotsenko-10]

1-point KPZ → A(0, 0) = Tracy–Widom distribution



Airy sheet and its shift invariance

KPZ equation

Ht =
1
2Hxx − 1

2 (Hx)
2
+ ηLast Passage Percolation

D((sL+ L2/3y, αsL); (tL+ L2/3x, αtL))

T →∞

Airy sheet

y

x

A(x, y)

Space-time Airy sheet / Directed landscape

AL(x, s; y, t)
t = 1s = 0

L→∞

Theorem. [BGW-19] For ∆ > 0: A(x , y)
d
= A(x + ∆, y + ∆),

jointly with any A(x ′, y ′) for

[
y ′ < y , x ′ > x + ∆, or

y ′ > y + ∆, x ′ < x .

A(0, ·) was known, but no distributions beyond it.



Shift invariance: How general is it?
• For special integrable weights in LPP and directed polymers.

N

t

Γ00

Z(0,0)→(4,2)

x

y

Γ01

Γ02

Γ10

Γ11

Γ12

Γ20

Γ21

Γ22

Γ30

Γ31

Γ32

1

1111

1 1 1

• For universal limiting objects: KPZ-equation, Airy sheet.

t = 0

t = T

xy y + ∆

x x + ∆

What other weights lead to shift invariance? We do not know.



We proceed to another world

Γ00
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Airy sheet

KPZ equation

Bernoulli-Exponential LPP

O’Connell-Yor Brownian polymer

strict-weak polymer

(multiplicative SHE)

Higher spin

colored vertex models

Colored

ASEP/TASEP/SSEP

Colored stochastic

telegraph equation

Additive SHE

Colored stochastic

six-vertex model

∫∫
eB1(t1)−B1(t0)+···+BN (tN )−BN (tN−1)dt1 · · · dtN

∂tH = 1
2∂

2
xH− 1

2 (∂xH)
2 + η

∂tH = 1
2∂

2
xH+ p(x, t)η

∂x∂yf + β1∂xf + β2∂yf = η

Beta polymer

N

tN∑
i=1

[
Bi(ti+1) − Bi(ti)

]
→ max

Last Passage Percolation
Brownian

Colored q-PushTASEP

PushTASEP

(colorless)

Gamma

The master statement

(still inside Integrable Probability)



Stochastic colored six-vertex model

0 1 2 3 4 5

1

2

3

4

5

Six-vertex model configurations:
paths on the square grid.

Treat it as white/black model.

Add colors.
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Stochastic colored six-vertex model
1

= smaller color = larger color

1 b1 b2 1− b1 1− b2

color 1

color 0

color 2

color 3

color 4

color 5

color 6

color 7

Domain wall

boundary condition



Stochastic colored six-vertex model
1

= smaller color = larger color

1 b1 b2 1− b1 1− b2

color 1

color 0

color 2

color 3

color 4

color 5

color 6

color 7

b1 1− b1

make a random choice
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Stochastic colored six-vertex model
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Stochastic colored six-vertex model
1

= smaller color = larger color

1 b1 b2 1− b1 1− b2

color 1

color 0

color 2

color 3

color 4

color 5

color 6

color 7

1

no choice



Stochastic colored six-vertex model
1

= smaller color = larger color

1 b1 b2 1− b1 1− b2

color 1

color 0

color 2

color 3

color 4

color 5

color 6

color 7

contininue until you fill

the entire quadrant



Stochastic colored six-vertex model
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Stochastic colored six-vertex model

color 1

color 0

color 2

color 3

color 4

color 5

color 6

color 7
1

= smaller color = larger color

1 b1 b2 1− b1 1− b2

Relevant history:

• [Pauling-1935] Six-vertex (aka square ice) model.
• [Lieb-1967] Bethe ansatz analysis. Residual entropy of ice.
• [Bazhanov–1985], [Jimbo–1986] Colored vertex models
• [Gwa–Spohn-1992] Stochastic version. KPZ class indications.
• [Borodin–Corwin–Gorin-2014] Adaptation of integrable

probability methods. Confirmation of KPZ class predictions.
• [Kuniba–Mangazeev–Maruyama–Okado-2016] Stochastic
higher rank colored models.



Stochastic colored six-vertex model

color 1

color 2

color 3

color 4

color 5

color 6

color 7

0

0

00

0

0

0

0

0

0

01

2

3

4

5

1

1 1 1

11

1 1 1

2

2

2

3

34

0 0

0 0

0 0

0

0

0

0

0

Height function H>i (x , y)

Counts the number of
paths of colors >i to the
right/below (x , y).

←− H>2(x , y) shown

Theorem. [BGW-19] {ki}, {Ui}, 1 ≤ ι ≤ n, ∆ > 0. Set

k ′i =

{
ki , i 6= ι,

kι + ∆, i = ι,
U ′i =

{
Ui , i 6= ι

Uι + (0,∆), i = ι.

Under intersection condition, we have:(
H>k1(U1), . . . ,H>kn(Un)

) d
=
(
H>k ′1(U ′1), . . . ,H>k ′n(U ′n)

)
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Stochastic colored six-vertex model

color 1

color 2

color 3

color 4

color 5
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1 1 1
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1

= smaller color = larger color

1 b1 b2 1− b1 1− b2

Theorem. [BGW-19](
H>k1(U1), . . . ,H>kn(Un)

)
‖d(

H>k ′1(U1), . . . ,H>k ′n(Un)
)

Elements of the proof:
• Consider inhomogeneous model based on q, {vx}, {uy}:

b1(x , y) = q
uy − vx
uy − qvx

, b2(x , y) =
uy − vx
uy − qvx

.

• Polynomial identity: need to check at enough points.
• When vx = uy , behavior at (x , y)–vertex trivializes: only turns.
• In such situations Yang-Baxter equation relates the weighted

sums to the ones available by induction assumption.



Stochastic colored six-vertex model
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Our proof:
• Lagrange interpolation + Yang-Baxter equation.

Later alternative (still integrable!):
• (Davergne-20+) Last Passage Percolation case: symmetries of
Robinson–Schenstead–Knuth correspondence
• (Galashin-20+) 6v case: Hecke algebras and two reflections.

Is there anything simpler or more conceptual?



Stochastic colored six-vertex model

color 1

color 2

color 3

color 4

color 5

color 6

color 7

0

0

00

0

0

0

0

0

0

01

2

3

4

5

1

1 1 1

11

1 1 1

2

2

2

3

34

0 0

0 0

0 0

0

0

0

0

0

1

= smaller color = larger color

1 b1 b2 1− b1 1− b2

Theorem. [BGW-19](
H>k1(U1), . . . ,H>kn(Un)

)
‖d(

H>k ′1(U1), . . . ,H>k ′n(Un)
)

Our proof:
• Lagrange interpolation + Yang-Baxter equation.

Later alternative (still integrable!):
• (Davergne-20+) Last Passage Percolation case: symmetries of
Robinson–Schenstead–Knuth correspondence
• (Galashin-20+) 6v case: Hecke algebras and two reflections.

Is there anything simpler or more conceptual?



Stochastic colored six-vertex model

color 1

color 2

color 3

color 4

color 5

color 6

color 7

0

0

00

0

0

0

0

0

0

01

2

3

4

5

1

1 1 1

11

1 1 1

2

2

2

3

34

0 0

0 0

0 0

0

0

0

0

0

1

= smaller color = larger color

1 b1 b2 1− b1 1− b2

Theorem. [BGW-19](
H>k1(U1), . . . ,H>kn(Un)

)
‖d(

H>k ′1(U1), . . . ,H>k ′n(Un)
)

Our proof:
• Lagrange interpolation + Yang-Baxter equation.

Later alternative (still integrable!):
• (Davergne-20+) Last Passage Percolation case: symmetries of
Robinson–Schenstead–Knuth correspondence
• (Galashin-20+) 6v case: Hecke algebras and two reflections.

Is there anything simpler or more conceptual?



Is there a simpler proof?
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Bernoulli-Exponential LPP

O’Connell-Yor Brownian polymer

strict-weak polymer

(multiplicative SHE)

Higher spin

colored vertex models

Colored

ASEP/TASEP/SSEP

Colored stochastic

telegraph equation

Additive SHE

Colored stochastic

six-vertex model

∫∫
eB1(t1)−B1(t0)+···+BN (tN )−BN (tN−1)dt1 · · · dtN

∂tH = 1
2∂

2
xH− 1

2 (∂xH)
2 + η

∂tH = 1
2∂

2
xH+ p(x, t)η

∂x∂yf + β1∂xf + β2∂yf = η

Beta polymer

N

tN∑
i=1

[
Bi(ti+1) − Bi(ti)

]
→ max

Last Passage Percolation
Brownian

Colored q-PushTASEP

PushTASEP

(colorless)

Gamma

The master statement

The Gaussian case

In general, we do not know. But if one cares only about
covariance...



Simplest case: additive SHE

Ht = 1
2Hxx + p(x − y , t) · η, H(x , 0) = 0,

y is a parameter, η is the 2d white noise, and

p(x − y , t) =
1√
2πt

exp

(
−(x − y)2

2t

)
.

Proposition. For ∆ > 0: H(y)(x ,T )
d
= H(y+∆)(x + ∆,T ),

jointly with any H(y ′)(x ′,T ) for

[
y ′ < y , x ′ > x + ∆, or

y ′ > y + ∆, x ′ < x .

Proof. H is an explicit Gaussian:

H(y)(x ,T ) =

∫ T

0

∫ ∞
−∞

p(z − y , s)p(x − z ,T − s)η(z , s) dz ds

Hence,
EH(y)(x,T )H(y′)(x′,T ) =

∫ T

0

∫ ∞
−∞

p(z − y, s)p(x − z,T − s)p(z − y′, s)p(x′ − z,T − s) dz ds



Simplest case: additive SHE

Ht = 1
2Hxx + p(x − y , t) · η, H(x , 0) = 0,

y is a parameter, η is the 2d white noise, and

p(x − y , t) =
1√
2πt

exp

(
−(x − y)2

2t

)
.

Proposition. For ∆ > 0: H(y)(x ,T )
d
= H(y+∆)(x + ∆,T ),

jointly with any H(y ′)(x ′,T ) for

[
y ′ < y , x ′ > x + ∆, or

y ′ > y + ∆, x ′ < x .

Proof. H is an explicit Gaussian:

H(y)(x ,T ) =

∫ T

0

∫ ∞
−∞

p(z − y , s)p(x − z ,T − s)η(z , s) dz ds

Hence,
EH(y)(x,T )H(y′)(x′,T ) =

∫ T

0

∫ ∞
−∞

p(z − y, s)p(x − z,T − s)p(z − y′, s)p(x′ − z,T − s) dz ds



Simplest case: additive SHE

Ht = 1
2Hxx + p(x − y , t) · η, H(x , 0) = 0,

y is a parameter, η is the 2d white noise, and

p(x − y , t) =
1√
2πt

exp

(
−(x − y)2

2t

)
.

Proposition. For ∆ > 0: H(y)(x ,T )
d
= H(y+∆)(x + ∆,T ),

jointly with any H(y ′)(x ′,T ) for

[
y ′ < y , x ′ > x + ∆, or

y ′ > y + ∆, x ′ < x .

Proof. H is an explicit Gaussian:

H(y)(x ,T ) =

∫ T

0

∫ ∞
−∞

p(z − y , s)p(x − z ,T − s)η(z , s) dz ds

Hence,
EH(y)(x,T )H(y′)(x′,T ) =

∫ T

0

∫ ∞
−∞

p(z − y, s)p(x − z,T − s)p(z − y′, s)p(x′ − z,T − s) dz ds



Simplest case: additive SHE

Ht = 1
2Hxx + p(x − y , t) · η, H(x , 0) = 0,

Hence, EH(y)(x ,T )H(y ′)(x ′,T ) =
expected intersection local time of two Brownian bridges

y

x

t = 0

t = Tx′

y′

Shift invariance of additive SHE
m

E[local time] invariant under (x , y)→ (x + ∆, y + ∆)
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Simplest case: additive SHE

Eventually, shift invariance for additive SHE becomes:

a

b

c

t = 0 t = 1

Theorem. The expected local time the Brownian bridge from a to
b spends at level c is independent of c as long as a < c < b.

In fact, the law of the local time at c is known:

∼ (|c−a|+|c−b|+y) exp
(
−1

2 (|c − a|+ |c − b|+ y)2
)
dy , y > 0.

[Ray-63], [Williams-74], [Biane-Yor-88], [Borodin-89], [Pitman-99]
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Back to the six-vertex model

a

b

c

t = 0 t = 1

Theorem. The expected local time the Brownian bridge from a to
b spends at level c is independent of c as long as a < c < b.

Theorem. [BGW-19] Discrete versions of this statement hold and
generalize up to the level of the six-vertex model paths.
• Can be used to prove shift invariance of covariances.
• However, high enough in the hierarchy, the models are
non-gaussian!



Summary of shift invariance

N

t
C ′ =

D′

A

B

N

tC

D

A

B

=

distribution
same
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∂tH = 1
2∂

2
xH− 1

2 (∂xH)
2 + η

∂tH = 1
2∂
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[
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Last Passage Percolation
Brownian

Colored q-PushTASEP

PushTASEP

(colorless)

Gamma

• Joint laws invariant with
respect to partial shifts.
• Access to new distributions.
• Proof for covariance: shift

invariance for local times.
• Proof for law: inhomogeneity

/ polynomiality / Yang-Baxter
• Integrable Probability ties

all models together.


